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1 INTRODUCTION

1 Introduction

Covariate shift is a type of causal (x causes y) distribution shift, which assumes that
the distribution of input can change over time, while the labeling function P (y|x)
stays the same. It is called “covariate shift” because the problem comes from the
shift of the features (covariates) distribution.

Figure 1: Effect of covariate shift correction on data distribution

1.1 Examples

Let us consider the following training set (figure 2) and test set (figure 3).

Figure 2: Training set

Figure 3: Test set
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2 MATHEMATICAL EXPRESSION

While the labels are the same, our samples have very different features. This is an
extreme case of covariate shift, but there are many subtles cases. By default, you
can assume that any deep learning model suffers from covariate shift. The real ques-
tions are (1) how much does it affect your use case and (2) how to make that model
robust to your use case.

Here is a list of real examples where scientist have overlooked the importance of the
data distribution while building a model:

• English speech recognition trained on native English speakers and applied to
any English speaker.

• Classifying images as either cats or dogs and omitting certain species from the
training set that are seen in the test set.

• Prostate cancer detection trained on old men with cancer and healthy univer-
sity students, applied to potentially sick old men.

1. For the last case, can you explain why this data distribution is very problematic
(compare test time and real world application) ?

2 Mathematical expression

We want to estimate P (y|x) and we have access to (xi , y). Covariate shift arises be-
cause the training distribution comes from q(x) (source distribution) while the test
distribution comes from p(x) (target distribution).

We can write:

q(x,y) = q(x)p(y|x) (1)

The training risk is written as:

minimize
w

∫ ∫
p(x)p(y|x)l(f (x,w), y) dy dx (2)

or, minimize
w

1
m

m∑
i=1

l(f (xi ,w), yi) (3)

where l is a loss function, x the training samples, y the corresponding labels and m
the number of samples.

The test risk is different, and written as:

minimize
w

∫ ∫
q(x)p(y|x)l(f (x,w), y) dy dx (4)
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2.1 Weighting problem 2 MATHEMATICAL EXPRESSION

2.1 Weighting problem

Now that you have the mathematical notations ready, find a way to correct the co-
variate shift by weighting the distributions q and p. (Hint: look at eq. 1)∫

p(x)f (x)dx =
∫
q(x)α(x)f (x)dx (5)

2. What is α(x) ?

3. Rewrite eq. 3 with α plugged in.

2.2 Estimating α

How do we estimate α ? Multiple approaches exist, like operator-theoretic ap-
proaches using minimum norm or maximum entropy principles. To use such meth-
ods, you would need samples from both distributions p and q. Note that only the
features are needed (x ∼ p(x)) and not the labels (y ∼ p(y)), therefore these methods
are usable in real world settings.

Here, we are going to estimate α with a very effective approach called logistic re-
gression (softmax regression for binary classification). We train a binary classifier
to differentiate between our training set q and test data p. If it cannot distinguish
between the 2 distributions, it means that the instances are representative of the
two distributions. On the other hand, instances that can be discriminated should be
overweighted or underweighted accordingly.

We assume that we have an equal number of instances from both distributions p(x)
and q(x). We define z as the labels, with z = 1 for p(x) and z = −1 for q(x). We can
therefore write:

P (z = 1|x) =
p(x)

p(x) + q(x)
⇐⇒ P (z = 1|x)

P (z = −1|x)
=
p(x)
q(x)

(6)

4. By using the logistic regression approach P (z = 1|x) = 1
1+exp(−h(x)) , where h is a

parameterized function, compute α.

2.3 Covariate shift correction algorithm

You are now given a training set {(x1, y1), ..., (xn, yn)} and an unlabeled test set {u1, ...,um)}.
We assume that xi are sampled from the source distribution q(x) and that uj are sam-
pled from the target distribution p(x), where 1 ≤ i ≤ n and 1 ≤ j ≤m.

5. Design a prototypical algorithm (no code, plain English and math) to correct
covariate shift.

6. In which case does this method breaks? (hint: check for extreme cases)
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