Imperial College London

Department of Computing

Tutorial 5 - VAEs and GANs

1 Question 1

As described in the introduction, the generator and discriminator networks can be trained with the following objective function:

$$
\min _{\theta} \max _{\phi} \mathcal{L}=\underset{\mathbf{x} \sim p_{r}(\mathbf{x})}{\mathbb{E}}\left[\log D_{\phi}(\mathbf{x})\right]+\underset{\mathbf{z} \sim q(\mathbf{z})}{\mathbb{E}}\left[\log \left(1-D_{\phi}\left(G_{\theta}(\mathbf{z})\right)\right]\right.
$$

- a: Sketch the the function $\log (1-x)$ in the range $x \in[0,1]$ and argue with the help of your plot why the generator objective $\log \left(1-D_{\phi}\left(G_{\theta}(\mathbf{z})\right)\right.$ might lead to poor training when D rejects samples with high confidence, ie. $D\left(G_{\theta}(\mathbf{z}) \approx 0\right.$ for any \mathbf{z}.
- b: Provided a fixed generator G, find the optimal discriminator $D^{*}(x)$.

Hint1: treat the function $D(x)$ as your variable!
Hint2: the objective can be formulated as

$$
\int p_{r}(\mathbf{x}) \log (D(\mathbf{x}))+p_{g}(\mathbf{x}) \log (1-D(\mathbf{x})) d \mathbf{x}
$$

- c: What is a divergence in the context of statistics? What is the formal definition?
- d: Assuming a perfect discriminator D^{*}, the objective $V\left(D^{*}, G\right)$ is

$$
\int p_{r}(\mathbf{x}) \log \left(D^{*}(\mathbf{x})\right)+p_{g}(\mathbf{x}) \log \left(1-D^{*}(\mathbf{x})\right) d \mathbf{x}
$$

Derive that

$$
V\left(D^{*}, G\right)=2 D_{J S}\left(p_{r} \| p_{g}\right)-\log (4)
$$

Hint 1:

$$
D_{J S}\left(p_{a} \| p_{b}\right)=\frac{1}{2} D_{K L}\left(p_{a} \| \frac{p_{a}+p_{b}}{2}\right)+\frac{1}{2} D_{K L}\left(p_{b} \| \frac{p_{a}+p_{b}}{2}\right)
$$

and

$$
D_{K L}\left(p_{a} \| p_{b}\right)=\int p_{a} \log \left(\frac{p_{a}}{p_{b}}\right) d x
$$

Hint 2: Recall the logarithm rules!

2 Question 2

- a For two different random events A and B, what is Bayes' Theorem?
- b Suppose you have a latent variable model (LVM) with model distribution $p_{z} \theta(\mathbf{x})$ and and latent variable \mathbf{z} with distribution $p(\mathbf{z})$ as well as the conditional distribution $p_{\theta}(\mathbf{x} \mid \mathbf{z})$. You want to fit the model distribution $p_{\theta}(\mathbf{x})$ to the true (empirical) distribution $p(\mathbf{x})$. Define the maximum-likelihood objective in this context and argue why a direct optimisation of this objective is intractable if $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ is represented by a complex neural network.
- c The KL-divergence for two multivariate gaussian distributions with means $\boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}$ and covariances Σ_{0}, Σ_{1} has a closed form solution:

$$
D_{\mathrm{KL}}\left(\mathcal{N}_{0} \| \mathcal{N}_{1}\right)=\frac{1}{2}\left(\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{-1} \Sigma_{0}\right)+\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)^{T} \Sigma_{1}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)-K+\log \left(\frac{\operatorname{det} \boldsymbol{\Sigma}_{1}}{\operatorname{det} \Sigma_{0}}\right)\right)
$$

Show that given \mathcal{N}_{1} is a standard normal distribution, ie. $\boldsymbol{\mu}_{1}=0$ and $\Sigma_{1}=\boldsymbol{I}$ and \mathcal{N}_{0} has diagonal covariance, the above equation reduces to:

$$
D_{\mathrm{KL}}\left(\mathcal{N}_{0} \| \mathcal{N}(\mathbf{0}, \boldsymbol{I})\right)=\frac{1}{2} \sum_{i+1}^{K} \sigma_{i}^{2}+\mu_{i}^{2}-1-\log \left(\sigma_{i}^{2}\right)
$$

