IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Tutorial 5 - VAEs and GANs

1 Question 1

As described in the introduction, the generator and discriminator networks can be trained with the following objective function:

$$\min_{\theta} \max_{\phi} \mathcal{L} = \mathbb{E}_{\mathbf{x} \sim p_r(\mathbf{x})} [\log D_{\phi}(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} [\log (1 - D_{\phi}(G_{\theta}(\mathbf{z})))]$$

- **a**: Sketch the function $\log(1 x)$ in the range $x \in [0, 1]$ and argue with the help of your plot why the generator objective $\log (1 D_{\phi}(G_{\theta}(\mathbf{z})))$ might lead to poor training when *D* rejects samples with high confidence, *ie*. $D(G_{\theta}(\mathbf{z}) \approx 0$ for any \mathbf{z} .
- b: Provided a fixed generator G, find the optimal discriminator D*(x). Hint1: treat the function D(x) as your variable! Hint2: the objective can be formulated as

$$\int p_r(\mathbf{x}) \log(D(\mathbf{x})) + p_g(\mathbf{x}) \log(1 - D(\mathbf{x})) d\mathbf{x}$$

- **c:** What is a divergence in the context of statistics? What is the formal definition?
- **d**: Assuming a perfect discriminator D^* , the objective $V(D^*, G)$ is

$$\int p_r(\mathbf{x}) \log(D^*(\mathbf{x})) + p_g(\mathbf{x}) \log(1 - D^*(\mathbf{x})) d\mathbf{x}$$

Derive that

$$V(D^*, G) = 2D_{IS}(p_r || p_g) - \log(4)$$

Hint 1:

$$D_{JS}(p_a||p_b) = \frac{1}{2}D_{KL}(p_a||\frac{p_a + p_b}{2}) + \frac{1}{2}D_{KL}(p_b||\frac{p_a + p_b}{2})$$

and

$$D_{KL}(p_a||p_b) = \int p_a \log(\frac{p_a}{p_b}) dx$$

Hint 2: Recall the logarithm rules!

2 Question 2

- **a** For two different random events *A* and *B*, what is Bayes' Theorem?
- **b** Suppose you have a latent variable model (LVM) with model distribution *p_zθ*(**x**) and and latent variable **z** with distribution *p*(**z**) as well as the conditional distribution *p_θ*(**x**|**z**). You want to fit the model distribution *p_θ*(**x**) to the true (empirical) distribution *p*(**x**). Define the maximum-likelihood objective in this context and argue why a direct optimisation of this objective is intractable if *p_θ*(**x**|**z**) is represented by a complex neural network.
- c The KL-divergence for two multivariate gaussian distributions with means μ₀, μ₁ and covariances Σ₀, Σ₁ has a closed form solution:

$$D_{\mathrm{KL}}(\mathcal{N}_0||\mathcal{N}_1) = \frac{1}{2} \left(\mathrm{tr}(\Sigma_1^{-1}\Sigma_0) + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \Sigma_1^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) - K + \log\left(\frac{\det \Sigma_1}{\det \Sigma_0}\right) \right)$$

Show that given N_1 is a standard normal distribution, *ie*. $\mu_1 = 0$ and $\Sigma_1 = I$ and N_0 has diagonal covariance, the above equation reduces to:

$$D_{\text{KL}}(\mathcal{N}_0 \| \mathcal{N}(\mathbf{0}, \boldsymbol{I})) = \frac{1}{2} \sum_{i+1}^{K} \sigma_i^2 + \mu_i^2 - 1 - \log(\sigma_i^2)$$