

• <u>https://github.com/ali</u>	evk/avatarif <u>v</u>
	Deep Learning – Bernhard Kare
2	

Learning outcomes

- After this course you will know a little bit more about:
 - Feature extraction, convolutions and CNNs
 - Automatic parameter optimisation
 - RNNs, LSTMs, GRUs
 VAEs and GANs
 - GNNs
 - Deep learning programming frameworks
 - Applications of deep learning

Deep Learning – Bernhard Kain

Good to know

496 Mathematics for ML (prerequisite)

395 Introduction to ML (soft prerequisite, please read the basic ML notes if you haven't done this course) 316 Computer vision 416 ML for imaging 490H Natural language processing

424H Reinforcement learning

4

Reference

- I. Goodfellow, Y. Bengio, A. Courville, *Deep learning*. MIT Press, 2016 www.deeplearningbook.org
- This lecture has been heavily influenced by Material from Michael Bronstein, Kilian Weinberger, Stefanos Zafeiriou, Andreas Maier, Alex Smola, Serena Yeung, Fei-Fei Li
- Dive into Deep Learning https://d2l.ai/

Deep Learning – Bernhard Kainz

Structure

- Lecture theory and main concepts: videos. Experimental new format. Feedback welcome but be lenient please.
- Tutorials Q&A sessions with TAs on Teams
- Lab hands-on progrSamming exercises: individual with Q&A on Teams

Deep Learning – Bernhard Kain

Curse of dimensionality $\begin{array}{c}
36M \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100$

 $\int_{d_{1}} \int_{d_{2}} \int_{$

	ĹĹ
7x7 input 3x3 filter stride 2 no padding	
Deep Learning – Bernhard Kainz	
	7x7 input 3x3 filter stride 2 no padding

Invariance and equivariance • Shift invariance $\overbrace{} Fat'}_{Text under det text}$

BK1 Bernhard Kainz, 15/09/2020

					Dense (1000)
Complex	itv				
	,				Dense (4096)
	#parameters		FLC)P	Dense (4096)
	AlexNet	LeNet	AlexNet	LeNet	Max Pooling
Conv1	35K	150	101M	1.2M	3x3 Conv (384)
Conv2	614K	2.4K	415M	2.4M	3x3 Conv (384)
Conv3-5	3M		445M		3x3 Conv (384)
Dense1	26M	0.48M	26M	0.48M	Max Pooling
Dense2	16M	0.1M	16M	0.1M	5x5 Conv (256)
Total	46M	0.6M	1G	4M	Max Pooling
Increase	11x	1x	250x	1x	11x11 Conv (96), stride
		Deep Learnin	ng – Bernhard Kainz		image (224+224)

BK2 Bernhard Kainz, 22/09/2020

 Inception
 Output
 FC

 • 5 stages with 9 inception blocks
 Stage 5
 2 ×

 Stage 3
 2 ×

 Stage 3
 2 ×

 Stage 3
 2 ×

 Stage 2
 3 × 3 ManPool

 Stage 1

 To com

 Deep Learning - Bernhard Kane
 https://d21.al/

<figure><figure>

Kullback-Leibler Divergence Loss • Measures distance between distributions $\ell(x, y) = \mathcal{L} = \{l_1, ..., l_N\}^T, \quad l_n = y_n \cdot (logy_n - x_n)$ Pytroch: nn.KLDivLoss() Leep Learning - Berehard Later 236

Margin Ranking Loss/Ranking Losses/Contrastive loss $loss(x, y) = max(0, -y \cdot (x_1 - x_2) + margin)$ Useful to push classes as far away as possible and for metric learning Practical: take category that scores is closest or higher than correct one change until difference is at least the margin pytorch: nn.MarginRankingLoss() marginRankingLoss()marginRankingLoss()

What do we learn from this

- The choice of loss depends on the desired output (e.g., classification vs. regression)
- Loss functions are a hot topic of research.

241

- It informs how the overall system behaves during training
- Don't get scared by the equations. If you look closely the underlying ideas are very simple.

Deep Learning -Augmentation Bernhard Kainz rning – Bernhard K

242

Anomaly detection

- Predict continuation
- Measure distance in a latent space
- Reconstruct the input
- Classify artificial, subtle variations
- Also known as out-of-distribution detection

With Deep Networks

- Learns well from lots of data
- Own feature representation: Robust to noise and allows for
- learning cross domain patterns
- Already applied in ads: Google itself invests lots in this same
- kind of pattern recognition (targeting/relevance)

Deep Learning – Bernhard Kair

247

approaches

- Unsupervised Use autoencoder reconstruction error and use moving averages, use dropout with a set time window
- Supervised RNNs Learn from a set of yes/nos in a time series. RNNs can learn from a series of time steps and predict when an anomaly is about to occur.
- Use streaming/minibatches (all neural nets can learn like this)

Deep Learning – Bernhard K

248

Anomalies in images

- Encode, find outliers in latent space
- Reconstruct and build difference to input (AnoGAN)
 Interpolate sample patches into image and learn interpolation factor (Foreign patch interpolation)

- -> https://youtu.be/0-JYFxY3zfw

