
Deep Learning - AlexNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

136

AlexNet

Deep Learning – Bernhard Kainz

AlexNet from 2012 was the first large scale convolutional neural network that was able
to do well on the ImageNet classification task
In 2012 AlexNet was entered in the competition, and was able to outperform all
previous non deep learning based models by a significant margin, and so this was the
convNet that started the spree of convNet research usage afterwards.

the basic convNet AlexNet architecture is a conv layer followed by pooling layer,
normalization, covolution, pool norm, and then a few more conv layers, a pooling layer,
and then several fully connected layers afterwards.
So this actually looks very similar to the LeNet network.
There are just more layers in total.
There are five of these conv layers, and two fully connected layers before the final fully
connected layer going to the output classes.

Alexnet takes as input images of size 224 by 224 by 3. so these are 3 channel colour
images
it uses 11 by 11 filters at stride 4. other people showed in the meantime that it isn't
necessary to have such large filter kernels.
we have a couple of fully connected layers of size 4096 and finally the last layer is FC8
going to the soft max, which is going to the 1000 ImageNet classes.

137

if you look at this AlexNet diagram, it looks kind of like the normal convNet diagrams that
we've been seeing, except for one difference, which is that it's, you can see it's kind of
split in these two different rows
or columns going across. The reason for this is mostly historical.

AlexNet was trained on old GTX580 GPUs that only had 3 gigs of memory.

So it couldn't actually fit this entire network on these cards, and what they ended up
doing, was they spread the network across two GPUs.

So on each GPU you would have half of the neurons, or half of the feature maps. And so
for example if you look at this first conv layer, we have 55 by 55 by 96 output, but if you
look at this diagram carefully,
you can see that, it's actually only 48 depth-wise, on each GPU, and so they just split the
feature maps, directly in half.

What happens is that for most of these layers, for example conv one, two, four and five,
the connections are only with feature maps on the same GPU, so you would take as
input, half of the feature maps that were on the the same GPU as before and you don't
look at the full 96 feature maps for example.

You just take as input the 48 in that first layer.

And then there's a few layers so conv three, as well as FC six, seven and eight, where here
are the GPUs do talk to each other and so there's connections with all feature maps in
the preceding layer.

so there's communication across the GPUs, and each of these neurons are then
connected to the full depth of the previous input layer.

Nowadays you get this overhead for free, for example with pyhtorch's DataParallel
features.

137

AlexNet

Deep Learning – Bernhard Kainz

138

ImageNet (2010)

Deep Learning – Bernhard Kainz

Images Color images with nature
objects

Gray image for hand-
written digits

Size 469 x 387 28 x 28
examples 1.2 M 60 K
classes 1,000 10

let's look at the data.
imagenet came out in 2010 and it was a big data set at the time with 1.2 million
examples, thousand classes

compare that to 60 thousand samples, ten classes for MNIST

also the resolution was considerably bigger so it went from 28 by 28 to 469 by 384
dimensions and the images were in three channels namely red green and blue, whereas
before that we had great scale so that changed things a lot.

139

AlexNet
• AlexNet won ImageNet competition in

2012
• Deeper and bigger LeNet
• Key modifications:

• Add a dropout layer after two
hidden dense layers
(better robustness / regularization)

• Change activation function from
sigmoid to ReLu
(no more vanishing gradient)

• MaxPooling
• Heavy data augmentation
• Model ensembling

• Paradigm shift for computer vision

Manually
engineered

features

SVM

Features learned
by a CNN

Softmax
regression

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola

until 2012 around that time when Alex net1 won the imagenet competition the default
strategy for solving computer vision problems was to go and pick manually engineered
features and apply an SVM in the end.
This was replaced by features that were learned automatically followed by a softmax
function.

but AlexNet wasn't just a bigger and better LeNet there were a number of other key
changes

one was drop out regularization which allowed people to design much deeper networks
as you move to deeper networks

of course just regularizing with regard to the input doesn't help so much, you need to
also regularize the inner structure of the network so this is this introduction of
regularization applied to all the layers
of the network or at least in multiple places whenever you use dropout

whereas otherwise you would just smooth things with regard to the input

the second thing was really rectified linear units replacing the otherwise common

140

sigmoid non-linearity by just the max between X and 0 which had as a consequence that
the gradient would no longer vanish because you had at least 1/2 of the space where the
function was the identity

Another thing was max pooling which replaced average pooling and then the result of
that was that now features were rather a bit more shift invariant because you could now
move your attributes a little bit and max pooling would still pull the relevant attributes
through

To eventually win this challenge, heavy data augmentation was used, so cropping, shifting
rotation of the inputs together with model ensembling, where you train multiple versions
of the same model and average their results.

so this led to a paradigm shift in computer vision and after computer vision well that's
then when people went to speech recognition, natural language processing, text
generation and a lot of other things.

140

AlexNet Architecture

LeNetAlexNet

Larger kernel size, stride
because of the increased

image size, and more output
channels.

Larger pool size, change to max
pooling

Deep Learning – Bernhard Kainz

Slide adopted from Alex Smola

141

AlexNet Architecture

LeNet

AlexNet

More output channels.

3 additional
convolutional layers

Deep Learning – Bernhard Kainz

Slide adopted from Alex Smola

142

AlexNet Architecture
LeNetAlexNet

Increase hidden size
from 120 to 4096

1000 classes output

Deep Learning – Bernhard Kainz

Slide adopted from Alex Smola

143

Complexity
#parameters FLOP

AlexNet LeNet AlexNet LeNet
Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola

if you look at the complexity of such networks, well, AlexNet is a lot more complex than
LeNet-5

In terms of computation it's 250 times more expensive; in terms of parameters only ten
times more

and this was another key change that the trade-off between computation and memory
changed quite a bit and alexnet is actually known for being rather extreme in terms of its
memory usage

so nowadays that ratio would have been probably even much more skewed towards
compute because compute devices have become a lot faster and therefore people like
to exploit that.

144

demo

Deep Learning – Bernhard Kainz

Silicon Valley: Season 4 Episode 4: Not Hotdog (HBO)
https://www.youtube.com/watch?v=pqTntG1RXSY

BK2

I have been looking hard for a demo of AlexNet but really all you would see is a slightly
worse labelling of the data than provided in the test set as ground truth. Instead I show
you what people thought at the time what’s suddenly possible.

145

Slide 145

BK2 Bernhard Kainz, 22/09/2020

code

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

This is how you can implement Alexnet in pytorch. It also shows a consolidated network
diagram since nowadays there is no need to split it over two GPUs anymore.
Talk through code

146

+ additional tricks

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

• Add a dropout layer after two hidden dense layers
(better robustness / regularization)

• Heavy data augmentation
• Model ensembling

Deep Learning – Bernhard Kainz

in order to get the best numbers they also did an ensembling of models and so training
multiple of these, averaging them together and this also gives an improvement in
performance.

147

