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AlexNet from 2012 was the first large scale convolutional neural network that was able 
to do well on the ImageNet classification task 
In 2012 AlexNet was entered in the competition, and was able to outperform all 
previous non deep learning based models by a significant margin, and so this was the 
convNet that started the spree of convNet research usage afterwards.

the basic convNet AlexNet architecture is a conv layer followed by pooling layer, 
normalization, covolution, pool norm, and then a few more conv layers, a pooling layer, 
and then several fully connected layers afterwards. 
So this actually looks very similar to the LeNet network. 
There are just more layers in total.
There are five of these conv layers, and two fully connected layers before the final fully 
connected layer going to the output classes.

Alexnet takes as input images of size 224 by 224 by 3. so these are 3 channel colour 
images
it uses 11 by 11 filters at stride 4. other people showed in the meantime that it isn't 
necessary to have such large filter kernels.
we have a couple of fully connected layers of size 4096 and finally the last layer is FC8 
going to the soft max, which is going to the 1000 ImageNet classes.
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if you look at this AlexNet diagram, it looks kind of like the normal convNet diagrams that 
we've been seeing, except for one difference, which is that it's, you can see it's kind of 
split in these two different rows
or columns going across. The reason for this is mostly historical.

AlexNet was trained on old GTX580 GPUs that only had 3 gigs of memory.

So it couldn't actually fit this entire network on these cards, and what they ended up 
doing, was they spread the network across two GPUs.

So on each GPU you would have half of the neurons, or half of the feature maps. And so 
for example if you look at this first conv layer, we have 55 by 55 by 96 output, but if you 
look at this diagram carefully, 
you can see that, it's actually only 48 depth-wise, on each GPU, and so they just split the 
feature maps, directly in half.

What happens is that for most of these layers, for example conv one, two, four and five, 
the connections are only with feature maps on the same GPU, so you would take as 
input, half of the feature maps that were on the the same GPU as before and you don't 
look at the full 96 feature maps for example.

You just take as input the 48 in that first layer.

And then there's a few layers so conv three, as well as FC six, seven and eight, where here 
are the GPUs do talk to each other and so there's connections with all feature maps in 
the preceding layer.

so there's communication across the GPUs, and each of these neurons are then 
connected to the full depth of the previous input layer.

Nowadays you get this overhead for free, for example with pyhtorch's DataParallel
features.
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ImageNet (2010)

Deep Learning – Bernhard Kainz

Images Color images with nature 
objects

Gray image for hand-
written digits

Size 469 x 387 28 x 28 
# examples 1.2 M 60 K
# classes 1,000 10

let's look at the data. 
imagenet came out in 2010 and it was a big data set at the time with 1.2 million 
examples, thousand classes 

compare that to 60 thousand samples, ten classes for MNIST

also the resolution was considerably bigger so it went from 28 by 28 to 469 by 384 
dimensions and the images were in three channels namely red green and blue,  whereas 
before that we had great scale so that changed things a lot.
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AlexNet
• AlexNet won ImageNet competition in 

2012
• Deeper and bigger LeNet
• Key modifications:

• Add a dropout layer after two 
hidden dense layers
(better robustness / regularization)

• Change activation function from 
sigmoid to ReLu
(no more vanishing gradient)

• MaxPooling
• Heavy data augmentation
• Model ensembling

• Paradigm shift for computer vision

Manually 
engineered 

features

SVM

Features learned 
by a CNN

Softmax 
regression
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Slide adopted from Alex Smola

until 2012 around that time when Alex net1 won the imagenet competition the default 
strategy for solving computer vision problems was to go and pick manually engineered 
features and apply an SVM in the end.
This was replaced by features that were learned automatically followed by a softmax
function.

but AlexNet wasn't just a bigger and better LeNet there were a number of other key 
changes 

one was drop out regularization which allowed people to design much deeper networks 
as you move to deeper networks 

of course just regularizing with regard to the input doesn't help so much, you need to 
also regularize the inner structure of the network so this is this introduction of 
regularization applied to all the layers
of the network or at least in multiple places whenever you use dropout 

whereas otherwise you would just smooth things with regard to the input 

the second thing was really rectified linear units replacing the otherwise common 
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sigmoid non-linearity by just the max between X and 0 which had as a consequence that 
the gradient would no longer vanish because you had at least 1/2 of the space where the 
function was the identity 

Another thing was max pooling which replaced average pooling and then the result of 
that was that now features were rather a bit more shift invariant because you could now 
move your attributes a little bit and max pooling would still pull the relevant attributes 
through 

To eventually win this challenge, heavy data augmentation was used, so cropping, shifting 
rotation of the inputs together with model ensembling, where you train multiple versions 
of the same model and average their results.

so this led to a paradigm shift in computer vision and after computer vision well that's 
then when people went to speech recognition, natural language processing, text 
generation and a lot of other things.
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AlexNet Architecture 

LeNetAlexNet

Larger kernel size, stride 
because of the increased 

image size, and more output 
channels.

Larger pool size, change to max 
pooling 
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Slide adopted from Alex Smola
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AlexNet Architecture 

LeNet

AlexNet

More output channels.

3 additional
convolutional  layers

Deep Learning – Bernhard Kainz

Slide adopted from Alex Smola
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AlexNet Architecture 
LeNetAlexNet

Increase hidden size 
from 120 to 4096

1000 classes output
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Slide adopted from Alex Smola
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Complexity
#parameters FLOP

AlexNet LeNet AlexNet LeNet
Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x

Deep Learning – Bernhard Kainz
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if you look at the complexity of such networks, well, AlexNet is a lot more complex than 
LeNet-5

In terms of computation it's 250 times more expensive; in terms of parameters only ten 
times more 

and this was another key change that the trade-off between computation and memory 
changed quite a bit and alexnet is actually known for being rather extreme in terms of its 
memory usage 

so nowadays that ratio would have been probably even much more skewed towards 
compute because compute devices have become a lot faster and therefore people like 
to exploit that.

144



demo
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Silicon Valley: Season 4 Episode 4: Not Hotdog (HBO)
https://www.youtube.com/watch?v=pqTntG1RXSY

BK2

I have been looking hard for a demo of AlexNet but really all you would see is a slightly 
worse labelling of the data than provided in the test set as ground truth. Instead I show 
you what people thought at the time what’s suddenly possible.
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code
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https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

This is how you can implement Alexnet in pytorch. It also shows a consolidated network 
diagram since nowadays there is no need to split it over two GPUs anymore. 
Talk through code
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+ additional tricks

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

• Add a dropout layer after two hidden dense layers
(better robustness / regularization)

• Heavy data augmentation
• Model ensembling
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in order to get the best numbers they also did an ensembling of models and so training 
multiple of these, averaging them together and this also gives an improvement in 
performance.
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