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Networks in Networks

Deep Learning – Bernhard Kainz

Non-linear mapping layers 
introduced as mlpconv. 

Consists of multiple fully 
connected layers with 
non-linear activation 

function 

how can we make these CNNS a little bit smaller without loosing much accuracy?

networks and networks are a convenient strategy for doing this.

If you look at this figure you see that there's a multi-layer perceptron inserted as 
intermediate layers in my convolutional Network.

when that idea was published people thought that this was silly mainly because it didn’t 
outperform larger state of the art models. 
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Networks in Networks

Deep Learning – Bernhard Kainz

if we look at the last layers of LeNet, well they're not that big. I mean it's basically just 
120 hidden units 84 and then 10 for output.

In Alex Net and  VGG, well those things get quite massive, so if you look at the last layer 
just connecting from the convolution you have 
number of channels times the width and the height of the last resolution.

that was 48,000 parameters in LeNet, in AlexNet and 26 million parameters in VGG 4 
times that number

whereas convolutions were actually kind of well behaved it's input times output times 
convolutional kernel size if you had a kernel size of three then that's nine times input 
times output.
that's quite well behaved.

but those last layers are the ones that really made life hard. 

so the question is of course how can you fix it. And the issue is in the end you need to 
produce something that is of a dimensionality that matches the number of classes that 
you have.
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at some point you need to go from a two dimensional times channels representation to 
something that's a vector.

the challenge is how do you do that.
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Networks in Networks

• Convolution layers are parameter 
cheap 

𝑐௜  × 𝑐଴ × 𝑘ଶ

• Last layer is parameter expensive for n 
classes

𝑐 × 𝑚௪ × 𝑚௛ × 𝑛

• LeNet: 16x5x5x120 = 48k parameters
• AlexNet: 256x5x5x4096 = 26M
• VGG 512x7x7x4096 = 103M

Deep Learning – Bernhard Kainz

let's have a look at it in a bit more detail

if I print the size distribution for vgg you can see that as I'm going from sequential five, 
so this is basically the last convolutional block, so that's five grand twelve channels with 
seven by seven to a 4096 dimensional output. That needs a lot of memory.

one way to address this is to get rid of those fully connected last layers. No you don’t 
say!!

well that sounds quite easy in theory but how do you do it in practice?

the problem is convolutions and pooling reduce the resolution so you keep on having 
things but then at some point you still need to map to this you know number of classes 
dimensional object and at the same time you also need to have some degree of non-
linearity to mix and transfer the information between the various channels into a 
representation that works for the number of classes.

this is exactly where one by one convolutions come in handy. 

they only act per pixel on all the channels so this is a multi-layer perceptron applied to 
pixel wise activations.
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so if in the end you only have maybe a five by five activation wide resolution then this 
really allows you to get a large amount of per channel information quite nicely presented 
in the formyou need.
That will tell you how many classes you need.

in the very last layer essentially they just got rid of it so rather than bothering with one 
last dense layer they just perform global average pooling.

so if you look at it again, well, the one by one convolution is just a multi-layer perceptron 
and that's what address the issue. This led to something called an in block networking 
Network block.

so you basically have a convolution followed by two one by one convolutions

These act in the same way as you would have a dense layer.

ou repeat that a few times and so you get the following architecture
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NiN block

• A convolutional layer
• Kerel size, stride, and padding are hyper parameters

• Two 1x1 convolutions
• 1 stride and no padding, share the same output 

channels as first layer
• These act like dense layers

Deep Learning – Bernhard Kainz

https://d2l.ai/chapter_convolutional-modern/nin.html

so the new net had a number of you know convolutions followed by one by one 
convolutions max pooling in order to reduce the resolution and you did that three times 
in order to get a meaningful network in networks network.

and this completely got rid of the dense layer, which was the contribution of network in 
networks

they didn't perform quite as well as vgg which is one of the reasons why people initially 
overlooked it

But they were a key component in order to go to things like Inception or ResNet which 
we're going to cover now. 
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NiN

Deep Learning – Bernhard Kainz

• Final dense layers get 
replaced by ‘internal’
quasi dense layers

• Mapping to number
of output classes
is done via
globalAveragePooling
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NiN in pytorch

• Inception and ResNet superseded this approach

Deep Learning – Bernhard Kainz
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Inception (GoogLeNet)

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

So now we will look into a quite popular network Inception.

This is how the authors from google outlined their network. It is a) deep and b) this is 
the first time that you see parallel paths through a network.
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Which convolution is the best!?

Deep Learning – Bernhard Kainz

NiNVGGAlexNetLeNet
Many 
1x1

5x53x31x1 Max-
pooling

let's review a little bit what we did so far 

On the right so we have LeNet and this one has 5x5 convolutions and 

then AlexNet here  used 11 by 11 3 by 3 and 5 by f5 convolutions 

Then vgg used some other mix of tools and then it used mostly one by ones 

Well, this is a mess right 

We do not know  which convolution should we use, right?

the 1x1 the 3x3 is the 5x5 or max pooling or multiple one by ones and yeah I mean you 
can't decide right?

so this was essentially the dilemma that people back then in the deep learning stone 
age faced in trying to figure out how to build a good convolutions block

the issue is the following:  if you pick 5x5's you end up with a fair number of parameters 
and end up having to do a lot of multiply-adds and both of those things are really costly 
and make networks slow. A lot of parameters also means it won't generalize that well 
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but it's on the other hand very it is expressive 

On the other side, if you pick 1x1 convolutions then it's very well controlled and it doesn't 
need much memory area but at the same time well it maybe doesn't work so well.

so what are you gonna do?
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Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

The solution was just not to decide. 

that was the brilliant idea when this was published and yeah it's also called the inception 
network after the movie.
like we need to go deeper and that was literally their motivation for coming up with that 

name 

so here's the inception block and it's really the well we don’t know what to do to well do 
all of it

it has 1x1 convolutions because yeah why not

it has 1x1 convolutions followed by 3x3 convolutions 

it has 1 by 1 followed by 5 by 5

it has max pooling followed by 1 by 1 convolutions

We just combine this all and the hope is well if you throw it all on the wall something 
will stick.
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On the left they proposed a simple block and on the right they propose a more complex 
one also including 1x1 convolutions. 
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Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Extract with 
different size 
convolutions

Same width and 
height as input

Extract spatial 
information with 

pooling

Four paths extract information from 
different aspects, then concatenate 
along the output channel

now to make sure that this all has the same dimensionality you need to use the 
appropriate padding so that's why there are 3x3 half padding by one 5x5 and half-
padding by two .

so at least in terms of sizing the inputs and the outputs have the same size. 

and then you just stack it all together.

so you now have an architecture with different channels doing different things and the 
hope is one of those channels is gonna work for the cats and one is gonna work for I 
some birds and so on. 

This is the inception block.

now you might wonder why on earth is this specific block a good idea?

well they probably tried out different variations and this one worked best 

for now let's just assume it's the well we tried out a lot of
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Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Allocate capacities 
to each channel

The first inception block has channel sizes specified

Reduce cannel size 
to lower model 

capacity

(256)

(128) (32) (32)

(16)(96)

(64)

(192x28x28)

so for instance if you look at the first inception block well it uses 64 channels for the one 
by ones 
128 for the three by threes 

thirty-two for the five by five because they have a lot of parameters already anyway right 
so it’s 25 times 32, in the other case it's 9 times 128 right and then you have

just a few other max pooling dimensions thrown in because well you want this all to add 
up to 256 that’s really what it is.

right so there isn’t anything terribly deep in there

the input input number of channels doesn’t really matter that much 

it's just features in right channels in and then you get some appropriate number of 
channels out 
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Inception blocks

• Inception blocks have fewer parameters and less computation 
complexity than single 3x3 or 5x5 convolution layers

• They are a mix of different functions, which makes them a powerful 
function class

• Computing and memory wise they are efficient (good generalisation)

Deep Learning – Bernhard Kainz

#parameters FLOPS

Inception 0.16 M 128 M

3x3 Conv 0.44 M 346 M

5x5 Conv 1.22 M 963 M

As: replace all conv block with 3x3 or 5x5 in Inception

but what it does, is that you now have a number of parameters, a number of floating 
point operations

That are actually not higher than doing something a lot more simple 

so that’s really the key benefit of that 

so if you do a parameter count and you say well if I wanted to have  256 output layers 
well 256 output channels then with inception you only need 160,000

parameters and it costs 128 mega flops.

whereas the 3 by 3 would cost you about three times that and a five by five about eight 
times that amount and in terms of floating-point operation.

so the assumption still is you know if I can get the same thing done with fewer 
parameters then they work better and yeah that's essentially what

motivated the inception block.

so why is it simpler?
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let's just look look at the algebra
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Less parameters?

• 𝑘ଶ × 𝑐௜௡ ×  𝑐௢௨௧ × 𝑚௛ × 𝑚௪

• 𝑐௜௡ × 𝑚௛ × 𝑚௪ × [ ∑ 𝑘௝
ଶ × 𝑐௢௨௧,௝ ]௣௔௧௛  ௝

Deep Learning – Bernhard Kainz

fixedfixed

allocating compute 
to different channels 
= better computing 

let's just look look at the algebra

right so for a particular layer I have K by K so since they are like three by three or five 
four five.

I'll just write K squared times C in times C out times then I have basically MH x MW

well this one's fixed this one's fixed well that one to some extent I can play with 

so now what you get is you know CI x MH x MW x 

now a sum over the various paths j KJ squared times C out J and so by judiciously 
allocating compute to different channels different numbers of channels for different 
kernel width
you can end up in a better spot than picking something homogeneously with the same 
depth.
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Inception

• 5 stages with 9 inception blocks

Deep Learning – Bernhard Kainz

https://d2l.ai/

Output

Stage 5

Stage 1

Stage 3

Stage 2

Stage 4

okay so here's the network in it's full beauty 

this representation from the d2l book is a little bit easier to understand than from the 
original paper 

these are really the five stages of that inception network.

stage one behaves very similar to a lot of other convnets and it starts with a fairly broad 
convolution and pooling which just make sure that we have some basic

amount of translation invariance and that I am able to reduce the dimensionality 
reasonably quickly

fairly early on  -- that max pooling halves my resolution 

then stage two is again very much trying to get some overall spatial correlation and then 
some pooling operation in the end.

This is fairly vanilla relative to other networks we have seen. 

and now is where all the interesting things start happening because we now have those 

169



inception blocks 

two of them then max pooling which again reduces resolution

so the 3x3 max pooling each of those operations half my resolution 

so what I'm doing is I'm shrinking resolution but I'm also increasing the number of 
channels because now while I have fewer pixels they have more valuable more higher-
order information that I'm going to use later on.

then I have backbone of five inception blocks one after the other

this is where most of the interesting nonlinearities happen

they shrink again and then I'm picking another two 

why did they do a split of two five and two? well they probably tried out a whole bunch 
of networks and that's the best thing that they could come up with

there are some follow-up papers like AmoebaNet which is then beyond Googlenet
version 4 where they essentially use a genetic algorithm to just randomly try out 
whatever stuff  works and  if you have a lot of computers available and cost is no object 
neither for getting there for running the computation then you can get really good 
accuracies with that right anyway.
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Stage 1 and 2

• Smaller kernel size and 
output channels because of
more layers

Deep Learning – Bernhard Kainz

https://d2l.ai/

let's look at stage one and two directly so in an Alexnet it’s basically a very wide 
convolution 11 by 11 and this one's a little bit smaller

it's only a seven by seven right and you have four one by one and then again three by 
three and pooling so it's not too dissimilar from Alexnet

the only difference is that you have a bit more channels 

so in AlexNet ended up with a 12 by 12 in the end this is 28 by 28 so it's still keeping a 
fair amount of the information that you would have had otherwise 
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Stage 3

Deep Learning – Bernhard Kainz

Channel allocation is 
different

Increases output 
channel

https://d2l.ai/

stage 3 well a fair amount of stuff is already happening and so the allocation is different 
between channels even between the first and the second block 

so you can see for the first the first block you have 256 channels and the second one you 
have 480 then you actually go and reduce the resolution so you start out with 28 by 28 
then the end you get 14 by 14 

the different versions of those networks are usually due to different size trade-offs and 
whether you use 2 3 4 5 stages or blocks 
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Stage 4 & 5
Increases output 

channels

Increases output 
channels

1024 dimensional 
feature to output 

layer

Increase for output 
channel

https://d2l.ai/

stage 4 and 5 look very similar 

again you increase the number of channels to 512 up to 832 

Why that before the max pooling?  because the max pooling shrinks the resolution so 
we better store as much information as we possibly can on a per channel basis

and then in the end you have basically a 1024 channels and that just so happens to be 
the same thing as what you would get for the number of classes that you want to

predict 

and then you just perform a global average pooling 

now this is a great idea to just do global average pooling over a 7x7 
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Flavours of Inception Networks

• Inception-BN (v2) – added batch normalisation
• Inception-V3 – Modified the inception block 

• Replace 5x5 by multiple 3x3 convolutions 
• Replace 5x5 by 1x7 and 7x1 convolutions
• Replace 3x3 by 1x3 and 3x1 convolutions
• Generally deeper stack

• Inception-V4 – adds residual connections 

Deep Learning – Bernhard Kainz

the thing is of course there isn't just GoogleNet there's GoogleNet v2 and v3 and v4 and 
those different variants are then improvements on the overall

architectural pattern so we  add something called batch normalization and we'll cover 
that a little bit later then

v3 adds different shapes of convolutions so this is you know going even crazier on the 
well do we need three by threes

one by one so 5 by fives this you could also add you know a 1 by 5 or a 5 by 1 or 1 by 7 
or you know some other shapes

and overall making each of those blocks even deeper and this is exactly where if you 
didn't you know try out even more

things you might end up with something like Amoebanet which has a lot of different 
ones 

an inception v4 then copies from ResNet and essentially imports the ResNet ideas into 
Inception but still it doesn't work as well as ResNet directly 
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Inception V3 block for stage 3

Deep Learning – Bernhard Kainz
https://d2l.ai/

so let’s look at what changed 

the left-hand side is version 3 for stage 3 and if you compare left and right you can see 
well the right-hand

side replaced its five by five convolution by two three by threes 

So that's actually what you would expect 

So if you remember the Simonian Zissermann paper where they looked at whether wide 
and shallow or deep and narrow networks are better 

deep and narrow won and so that's why they replace the five by five by two three by 
threes 

that's a fairly benign change 
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Inception V3 block for stage 4

Deep Learning – Bernhard Kainz
https://d2l.ai/

7 x  1 1 x 7

now let's look at stage 4 and this is where they where the big changes were made

again it's the five by five that were replaced and replaced by 1 by 7s and 7 by ones

this is actually the first time that people then used asymmetric convolutional shapes for 
real

7 by 1 is quite narrow right but it requires only 7 parameters per channel

it's actually cheaper to do this than 3x3s  

and so this increased computational budget 

the 5 by 5 that's 25 parameters

those four layers of seven by one and one by seven convolutions that are alternated cost 
you twenty eight parameters 

This means that the cost is very similar 

you have a very similar model class in terms of number of parameters but it's much 
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more expressive 

So why do I need to combine a 1 by 7 with a 7 by one convolution?

why can't I just get away with it and say well I have a 1 by 7 convolution that's it 

why do I need both?

If I'm only going to use on of these then you might only get for example vertically 
contiguous features in some way 

The 1x7 will catch only features that are horizontally contiguous in some way

and so if you only include one of them you’re going to get a network that's particularly 
well-suited for one type of features but awful for the other 

and in general I won't want that unless this is actually my goal in the network design
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Inception V3 block for stage 5

Deep Learning – Bernhard Kainz
https://d2l.ai/

Stage five went even crazier 

so rather than those three by threes it used one by three and three by ones and likewise 
in the other part 

okay so I guess you can see a pattern of what the modification steps were 

with that we are at the point where we are now getting closer to what's actually state-
of-the-art performance 
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Inception v3

https://cv.gluon.ai/model_zoo/classification.html

this is a plot of accuracy versus throughput for a fairly large number of models 

this is from the gluon model Zoo and what you're seeing there is a large number of 
architectures implemented and

trained in the same way the size of the dot corresponds to the amount of memory 
footprint that is needed in order to execute a particular model 

so small dots are very efficient models and higher up are more accurate.

The lines show the reproduction by other researchers. This is the difference between the 
published results and reproduction. So lot’s of results are actually due to better training. 

Interpolate… ensembles etc. 
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What do we learn from that?

• Dense layers are computationally and memory intensive. Real-world 
problems with big input tensors and many classes will prohibit their 
use.

• Again: 1x1 convolutions act like a multi-layer perceptron per pixel.
• Scientists are humans and need a while to understand the power of 

new approaches. Eventually they do but a lot of vanity is involved in 
the process. 

• If not sure, just take all options and let the optimization decide or 
even learn this through trial and error (genetic algorithm, 
AmoebaNet)

Deep Learning – Bernhard Kainz
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