
Deep Learning – VGG
Bernhard Kainz

Deep Learning – Bernhard Kainz

Lecture inspired by Alex Smola with add-ons

148

VGG

Deep Learning – Bernhard Kainz

Softmax
FC1 FC2 FC3

Let’s talk about a network architecture that you’ll probably use in practice as a backbone
for feature extraction.
The next step in the evolution of design came in the form of VGG.
VGG stands for the visual geometry group in Oxford
They read the Alexnet paper and learned that apparently bigger is better so they
decided to go even bigger.

149

• AlexNet = bigger than LeNet
• Bigger = better?
• Options

• More dense layers
(too expensive)

• More convolutions
• Group into blocks

Deep Learning – Bernhard Kainz http://d2l.ai/chapter_convolutional-modern/vgg.html

let's have a look at how this looks like in detail
If we compare this to Alexnet and Lenet
To make it bigger you can add even more dense layers.
well maybe not really because that's too expensive.
or you add more convolutions
You can do that but then at some point you start getting tired of having to define every
convolution separately so you might as well group them into blocks
once you go to 20 30 40 layers it gets quite annoying having to specify by hand
so the key innovation in VGG is actually this grouping into blocks which then turns into
parametretisable repeated blocks that we can use for learning tasks.

150

VGG blocks

• Deeper vs. wider?
• 13x13?
• 5x5?
• 3x3?
• Deep and narrow = better

• VGG block
• 3x3 convolutions (pad 1)

(n layers, m channels)
• 2x2 max-pooling

(stride 2)

Deep Learning – Bernhard Kainz

Let’s look at the VGG blocks

the first thing they had to solve is whether you should use fewer wide convolutions or
more narrow ones

[paper] did a good comprehensive analysis and it showed that more layers of narrow
convolutions were more powerful than a smaller number of whide convolutions

this tends to be a trend overall in the network designs that a larger number of
compositions of simple functions turns out to be more expressive and more able to fit
meaningful models than a small number of shallower and more complicated functions.

The VGG block has a bunch of 3x3 convolutions
if you padded them by one it didn't change the size of the input relative to the output
and then in the end you have max pooling of two by two with a stride of two which
halves the resolution.

now if you stack several of those things together and combine it with the same dense
layers as we had in Alexnet, then you get VGG.

151

you get actually entire family of different such architectures simply by varying the number
of such blocks that you will combine.

so you get eg VGG-16 or VGG-19 and so on.

If you think about the overall progress so far it basically boils down to bigger and deeper.

151

progress

• LeNet (1995)
• 2 convolution + pooling layers
• 2 hidden dense layers

• AlexNet
• Bigger and deeper LeNet
• ReLu, Dropout, preprocessing

• VGG
• Bigger and deeper AlexNet (repeated VGG blocks)

Deep Learning – Bernhard Kainz

Wouldn’t have been
possible without
compute power
progress (GPUs)

In LeNet you had 2 convolution and pooling layers
In AlexNet everything became bigger
Followed by VGG

152

Deep Learning – Bernhard Kainz

VGGs

AlexNet
https://cv.gluon.ai/model_z
oo/classification.html

Here is a block of throughput vs. accuracy.
VGG is a lot slower but also more accurate than AlexNet

following one people move back to smaller networks but with higher accuracy

153

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/mas
ter/torchvision/models/vgg.py

154

