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Abstract

In this paper, three approaches are presented for generating scenario trees for financial portfolio
problems. These are based on simulation, optimization and hybrid simulation/optimization. In
the simulation approach, the price scenarios at each time period are generated as the centroids
of random scenario simulations generated sequentially or in parallel. The optimization method
generates a number of discrete outcomes which satisfy specified statistical properties by solving
either a sequence of non-linear optimization models (one at each node of the scenario tree) or
one large optimization problem. In the hybrid approach, the optimization problem is reduced in
size by fixing price variables to values obtained by simulation. These procedures are backtested
using historical data and computational results are presented.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic programming requires a coherent representation of uncertainty. This is ex-
pressed in terms of a multivariate continuous distribution. Hence, a decision model is
generated with internal sampling or a discrete approximation of the underlying contin-
uous distribution. A method to obtain the discrete outcomes for the random variables
is referred to as scenario tree generation. In multistage models, at each time period,
new scenarios branch from old, creating a scenario tree.

The random variables are the uncertain return values of each asset on an investment.
The discretization of the random values and the probability space leads to a framework
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in which a random variable takes finitely many values. Thus, the factors driving the
risky events are approximated by a discrete set of scenarios, or sequence of events.
Given the event history up to a particular time, the uncertainty in the next period
is characterized by finitely many possible outcomes for the next observation. This
branching process is represented using a scenario tree.

The root node in the scenario tree represents the ‘today’ and is immediately ob-
servable from deterministic data. The nodes further down represent the events of the
world which are conditional at later stages. The arcs linking the nodes represent vari-
ous realizations of the uncertain variables. An ideal situation is that a generated set of
scenarios represents the whole universe of possible outcomes of the random variable.
Therefore, scenarios should include both optimistic and pessimistic projections.

Currently, there exist techniques to generate scenario trees for financial applica-
tions such as vector auto-regressive processes (Boender, 1997), approaches based on
principal component analysis, (Mulvey and Vladimirou, 1992) and stochastic simula-
tion of economic variables and asset returns (Dempster and Thorlacius, 1998; Carino
et al.,, 1994; Mulvey, 1996). Stochastic forecasting methods are used for global finan-
cial planning by considering problem specific economic factors. Pflug (2001) constructs
a scenario tree on the basis of a simulation model of the underlying financial process
by using a stochastic approximation technique.

Hoyland and Wallace (2001) develop a scenario generation technique for multivari-
ate scenario trees, based on optimization. This technique is also used for generating
scenario trees for hydro inflow (Vitoriano et al., 2001), and dynamic portfolio insur-
ance (Kouwenberg and Vorst, 1998). In these applications, different central moments
are matched by solving a non-linear optimization problem at each node of the scenario
tree. In Hoyland and Wallace (2001), a procedure to generate a scenario tree by solving
a large non-linear optimization problem was also suggested, but was not fully exploited.
Kouwenberg and Vorst (1998) compare random sampling, adjusted random sampling
and optimization-based (fitting the mean and covariances) approaches to generate the
scenario tree.

In this paper, we consider randomly generated scenarios as well as several variants
of the moment matching procedure and report on the implementation results of these
methods. Specifically, we investigate the basic overall optimization procedure and its
relaxed variants such as sequential optimization and a hybrid simulation—optimization
approach. Extensive out-of-sample backtesting on actual data of all these approaches are
used to evaluate their relative merits. We also consider simulation and clustering-based
approaches as possible alternatives to the optimization method. In this approach, the
price scenarios at each node of the scenario tree are obtained as the centroids of
randomly generated scenarios by clustering (e.g. Bratley and Fox, 1998; Christofides
et al., 1999; Hansen and Jaumard, 1997). Parallel and sequential methods for simulating
scenarios are investigated.

1.1. Multistage stochastic mean-variance model

Generating the scenario tree is important for the performance of multistage stochas-
tic programming (Kouwenberg, 2001; Klaassen, 1997; Nielsen and Zenios, 1996).
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Multistage stochastic programming is used to model the problem of financial port-
folio management with transaction costs, given stochastic data provided in the form of
a scenario tree. The mean or variance of total wealth at the end of planning horizon
can be optimized in view of transaction costs. Multiperiod discrete-time optimal port-
folio strategies are determined over a given finite investment horizon. In this section,
we present multistage mean-variance optimization model; for more details, the reader
is referred to Gilpinar et al. (2002, 2003).

We assume a portfolio of # risky assets and consider an investment horizon 7. The
portfolio is restructured over a period in terms of both return and risk. After the initial
investment (¢ = 0), the portfolio may be restructured at discrete times t =1,...,7 — 1,
and redeemed at the end of the period (¢=T). Let p’ = {p,,..., p,} be stochastic events
at t =1,...,T. Following Dupacova et al. (2000) and others, the decision process is
non-anticipative (i.e. decision at a given stage does not depend on the future realization
of the random events). Past information and the probabilistic specifications (Q, #,Z)
of the future uncertainty are used to determine the decision. In order to clarify the
latter, let #, C Z be the g-field generated by the observation p’ = {p,,...,p,}. The
dependence of the decision at ¢ on p'~! means that the decision at ¢ is .#,_; adapted
(i.e. it is measurable with respect to .7 ,_;). The constraints on a decision at each stage
involve past observations and decisions.

A scenario is a possible realization of the stochastic variables {p,,...,py}. Hence,
the set of scenarios corresponds to the set of leaves of the scenario tree, /"7, and
nodes of the tree at level # > 1 (the set .4°;) correspond to possible realisations
of p'.

The set of all interior nodes of the scenario tree is .4#";. A node of the tree (or
event) is denoted by e = (s,¢), where s is a scenario (path from root to leaf), and
time period ¢ specifies a particular node on that path. The ancestor (parent) of event
e=(s,¢) is denoted a(e)=(s,#— 1), and the branching probability p. is the conditional
probability of event e, given its parent event a(e). The path to event e is a partial
scenario with probability P, =[] pe along that path; since probabilities p, must sum
to one at each individual branching, probabilities P, will sum up to one across each
layer of tree-nodes A7; t=0,1,...,T.

At each node of time period ¢, decisions for weights of each asset, transactions for
buying and selling w,, b,, s,, respectively, must be determined. Due to the recourse
nature of the multistage problem, decision variables w,, b, and s, are influenced by
previous stochastic events p’, and hence w; = w;(p’), b; = b,(p"), and s; = s;(p").
However, for simplicity, we shall use the terms w,, b, and s, and assume their implicit
dependence on p’. Notice that p, can take only finitely many values.

Let the expected returns F,, and covariance matrix A' be given for ec./". The
transaction costs for buying and selling assets are denoted by ¢, and ¢, and the vector
p is the current portfolio position. Let o, denote the discount factor for the risk. o, is
allowed to decrease with ¢. Hence, the multistage portfolio reallocation problem can

'In the original formulation discussed in Giilpinar et al. (2003), we consider different A for each e. In
the present discussion, this is simplified to a common A.
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be expressed as follows:

T
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If o, = 1, then risk in each time period is weighted equally. The box constraints on
We, be, se for each event e € /" are to prevent short sales. The constant parameter 7~
is supplied to constrain final expected wealth to a particular value. The optimization
will find the lowest-variance (least risky) investment strategy to achieve that specified
expected wealth. Varying #" and reoptimizing will generate points along the efficient
frontier. Therefore, the efficient investment strategies which are not totally risk seeking
are calculated.

2. Simulation and randomized clustering approach

We describe a procedure based on simulation and randomized clustering to generate
the event tree which is the input to the financial optimization problem. The basic data
structure is the scenario tree node, which contains a cluster of scenarios (vectors in
R"), one of which is designated as the centroid. The final tree consists of the centroids
of each node, and their branching probabilities.

An approach similar to our clustering of parallel simulations (described below) is
introduced in Dupacova et al. (2000), but without a detailed clustering algorithm.
Instead of expending, effort to find clusterings which are optimal by some measures, we
introduce a randomized clustering algorithm which can be repeated until an acceptable
clustering is found. The main steps of our algorithm can be outlined as follows:

Step 1 (Initialization): Create a root node, with N scenarios. Initialize all the sce-
narios (including the centroid) with the desired starting point (‘today’s’ prices). Form
a job queue consisting of the root node.

Step 2 (Simulation): Remove a node from the job queue. Simulate one time period
of growth (from ‘today’ to ‘tomorrow’) in each scenario.
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=

Parallel simulation

Sequential simulation

Fig. 1. Two methods of simulating scenarios. Dotted lines represent simulation paths, ovals represent how
the scenarios are clustered, and the heavy lines depict the resulting scenario tree. The parallel simulation
uses root branching N =16 (with cluster size diminishing down the tree), and the sequential uses a constant
N =8 from every node.

Step 3 (Randomized seeds): Randomly choose a number of distinct scenarios around
which to cluster the rest: one per desired branch in the scenario tree.

Step 4 (Clustering): Group each scenario with the seed point to which it is the
closest. If the resulting clustering is unacceptable, return to step 3.

Step 5 (Centroid selection): For each cluster, find the scenario which is the closest
to its center, and designate it as the centroid.

Step 6 (Queueing): Create a child scenario tree node for each cluster (with proba-
bility proportional to the number of scenarios in the cluster), and install its scenarios
and centroid. If the child nodes are not leaves, append to the job queue. If the queue
is non-empty, return to step 2. Otherwise, terminate the algorithm.

2.1. Parallel and sequential simulations

There are two methods of scenario simulation, parallel and sequential, which are
illustrated in Fig. 1. Both methods rely on a probabilistic model which describes the
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probability density function, pdf, f(x;1]x;). Given this pdf, the process of simulating
a ‘tomorrow’ event, given ‘today’, will be called an update. In both methods, we
consider pseudo-random numbers and low-discrepancy quasi-random Sobol sequences
(e.g., Sobol, 1967; Bratley and Fox, 1998).

With parallel simulation, each of the scenarios belonging to the node is updated
from their current values. Although memory is saved by performing these updates only
as needed, the parallel method is equivalent to generating a number of linear scenar-
ios for the entire time horizon before the process of clustering them into a scenario
tree even begins. This is a common form of scenario generation, see also Dupacova
et al. (2000). The time O elements of all those scenarios (which will probably be the
same) form the root of the tree; the clusters of the time 1 elements formed by the first
iteration of the algorithm are the level one nodes; those clusters are then divided into
sub-clusters which represent level two nodes, etc. Thus, the total number of scenarios
in all nodes in the job queue is always equal to the original number of scenarios. The
other method is sequential simulation, in which all the scenarios of a node are initial-
ized to that node’s centroid before updating. Since this cannot be done until clustering
at the previous level determines the centroid, the scenarios cannot be generated out to
the time horizon before clustering (hence the designation as sequential).

The main practical difference between the methods stems from the following con-
trast: in parallel simulation, a large number of scenarios N (at least a multiple of
the number of leaves) is necessary at the root, and clusters become smaller and
smaller further down the tree. In sequential simulation, however, there is no need
to use more scenarios at the root than at the leaf, so the same number N of sce-
narios can be simulated from every node. Because, in parallel simulation, scenarios
must remain in memory for all jobs on the queue, whereas in sequential simula-
tion, only scenarios for the present node are necessary, the sequential method will
generally require less memory. However, the methods are largely incomparable in
terms of speed. For the same value of N, the parallel method has the tremendous
advantage of smaller descendants; on the other hand, with values of N adjusted to
achieve similar resolution at the leaves, the sequential method has the tremendous ad-
vantage of not having to use an exponentially (in the depth of the tree) larger root
value of N.

A comparison is more useful in terms of the character of the scenario trees produced
by either method: the sequential method will produce much more homogeneous trees,
and the parallel much more extreme, for two reasons. First, with N growing smaller
down the tree in the parallel method, the centroids that eventually represent the scenario
clusters are drawn from a smaller sample size; this can be justified by viewing forecasts
nearer the time horizon as less critical than those for the immediate future. Second, in
the sequential method, at every stage the simulated scenarios in all of the clusters are
discarded, and the next simulation restarted from the centroid, which will prevent any
extreme variation. If the user wants scenario trees that contain more realistic extreme
events, he should use the parallel method, setting N so that simulation at the leaves has
an appropriate level of resolution. If the number of scenarios needed at the leaves makes
N prohibitively large, then the sequential method should be used instead. Alternatively,
the methods could be mixed: begin with the parallel method with a smaller N, and
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generate more scenarios as they are needed — when clusters become too small to divide
into sub-clusters of appropriate sizes.

2.2. Randomized seeds

If k branches are desired from the current scenario tree node, then k clusters will need
to be formed. Initially the seed points around which the clusters are built might as well
be chosen to be the first k£ scenarios, since the scenarios are independently generated,
and are in arbitrary order. If the resulting clustering fails to meet the criteria applied
in the test stage, new seed points will have to be chosen, and the clustering process
repeated, until the criteria are met.

It is possible each time to choose k& completely new seed points, but that would
discard all of the information earned in the current iteration. If only seeds of problem
clusters are replaced, the next iteration will have an improved chance of success, and
total execution times improved in the long run, because of the reduction in long strings
of failures. Strategies for intelligent seed replacement would be tied to the constraints
that are violated. For instance, if the clusters are not uniform enough in size, effective
strategies could include replacing seeds for only the smallest and/or largest clusters,
or replacing seeds of some small clusters with scenarios randomly chosen from the
largest clusters.

2.3. Clustering

The distance measure to determine which seed each scenario is closest to can be cho-
sen with great flexibility. Possible choices include Euclidean, Manhattan, or any other
p-norm. In the implementation described in this paper, the square of the Euclidean was
chosen for efficient calculation. A number of criteria can be applied to the clustering
which results from the randomized selection of seeds. One of the most important is the
relative sizes of the clusters. Not only do they affect the character of the tree (allowing
smaller clusters will allow more extreme, low probability, events to be represented in
the scenario tree), but, with the parallel simulation method, it is necessary to ensure
that any cluster will contain enough scenarios to divide into sub-clusters in all future
levels. Bounds for the number of scenarios necessary for a node at any level can be
computed bottom-up, starting from a desired number of scenarios per leaf; from this the
minimum possible N at the root in a parallel simulation can be calculated. Practically,
considerably more scenarios will be needed, since the clusters are chosen randomly,
and cannot be expected to be uniformly the bare minimum in size.

Constraints can be placed on the sizes of the clusters in many ways: larger or
smaller than certain sizes, having a ratio of largest/smallest within a certain range, etc.
Constraints can also be set on the character of the clusters, not just the size. Bounds
can be placed on statistical properties such as the means of the assets, or the variances
within the clusters, etc. It is important to note that, the stricter the constraints, the
less likely they are to be satisfied by this random clustering process, so it could take
many iterations to reach an acceptable clustering. The user can adjust the acceptance
criteria to reach an acceptable tradeoff between speed of execution, and quality of the



1298 N. Giilpinar et al. | Journal of Economic Dynamics & Control 28 (2004) 12911315

resulting scenario tree, but if the necessary constraints make this randomized procedure
impractically slow, it would probably be more appropriate to apply a non-randomized
method that seeks more directly to satisfy those constraints, such as the other methods
in this paper, or Christofides et al. (1999).

2.4. Centroid selection

Once an acceptable clustering is found, it is necessary to represent each cluster with
a single point, which becomes the data in the scenario tree. In addition to a measure
of distance, a notion of ‘center’ needs to be fixed: mean, median, center of gravity,
etc. Although the points in each cluster are closer to their seed point than to any other,
there is no particular reason that a seed should be near the center of its cluster; it
could be an extreme outlying event that gathered a cluster of all the points that were
away from the center in a similar direction. Also, in a space of high dimension, even
a large cluster of points may be quite sparse, with no points actually near the center.
To prevent the scenario tree from containing scenarios that are not consistent with the
simulation parameters, the centroid should be taken to be not be the measured center
of the cluster, but rather the simulated scenario closest to the center.

3. Optimization approach

In an optimization approach to generate a scenario tree, the decision maker specifies
the market expectations by the statistical properties that are relevant for the problem
to be solved. The event tree is constructed so that these statistical properties are pre-
served. This is done by letting stochastic returns and probabilities in the scenario tree
be decision variables in a non-linear optimization problem where the objective is to
minimize the square distance between the statistical properties specified by the deci-
sion maker and the statistical properties of the constructed tree Hoyland and Wallace
(2001).

For the general description of the scenario generation approach, we assume a sym-
metric tree, meaning that the number of branches is the same for all conditional dis-
tributions in the same period. However, there is no theoretical restriction on the tree
topology we might wish to generate. Let S denote the set of all specified statistical
properties and SV; be the value of specified statistical property 7, i € S. If x and p denote
the price vector and the probability vector, respectively, the mathematical expression
of statistical property i can be defined as a function of these unknown random vari-
ables, fi(x, p). The objective is to construct x and p so that sum of square deviations
between the statistical properties of the constructed distribution and the specifications
is minimized. The scenario generation model, therefore, can be stated as follows:

: 2
min Zwi(fi(x,p) —SVi)

ies

s.t. Z pi=1, p=0,

where w; is the weight for statistical property i.
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Sequential Optimisation

Overall Optimisation

Fig. 2. Two procedures for generating scenarios based on optimization approach. For the sequential, solid
lines represent optimization problems previously solved, dotted lines future problems to be solved, and heavy
lines the current optimization problem. In overall optimization, the entire tree is optimized at once.

In general, this non-linear optimization problem is not convex, therefore the solution
might be a local optimum. However, it is satisfactory for our purposes to have a solu-
tion with distribution properties equal or close to the specifications of the continuous
distribution. An objective value equal to or close to zero indicates that distribution of
the scenarios has a perfect or good match with the specifications, respectively. In case
of the lack of a perfect match (because of non-convexities or inconsistent specifica-
tions), the weights w; can incorporate the relative importance of satisfying the different
specifications.

In this paper, we adopt the basic idea described above to generate the scenario tree
which is input to the financial portfolio allocation problem. The decision variables of
the optimization problem are the prices (or returns) of a set of assets and probabilities
of the event tree. Two alternative ways of applying the optimization approach are
investigated to construct the event tree, which are illustrated in Fig. 2. If the scenario
tree is constructed by considering the branching at each node separately, then we call
it sequential optimization. In this case, a small non-linear optimization problem is
constructed and solved at each node of the scenario tree. An alternative approach is to
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consider all nodes of the event tree and generate the whole tree in one large non-linear
optimization problem, which we call overall optimization.

3.1. Sequential optimization

Any central moments and co-moments can be part of the statistical specifications of
the distribution. We consider the first four central moments, namely expected value,
standard deviation, skewness and kurtosis, and covariances as co-moments. Let / =
{1,2,...,n} denote the set of n assets. Let My, for k = 1,2,3,4, be the first four
central moments of the current continuous distribution for the asset i. The covariance
of assets i and / (such that i,/ €/ and i < /) is denoted by Cj.

Let N; be the number of branches from a node at stage t =1,...,7 — 1. The price
scenarios x;; for asset i €/ and probabilities p; for j =1,...,N; of the continuous
distribution are decision variables in the following non-linear optimization problem:

n 4
min Z Z wir(mye — My, )2 + Z wi(cir — Cy )2

xp

i=1 k=1 nlel, i<l
N,
S.t. E Pj 1,
j=1
N,
mi| = E Xijpj, 1€L
j=1

N;
my =Y (g —ma)p;, i€l k=234,
j=1

N,
i = Z(xij —mp)(x;; —mp)pj, LI€l and i </,
=

pi=0, j=1L...,N,

where wj, :w,’{/Ml%{ and wy :wl{,/Cizl are weights in which w; for (k=1,...,4) are the
relative importance of the central moments and w/, for covariances of assets i,/ € 1.

In this formulation, the first constraint shows that probabilities must sum to one at
each individual branching, while the rest is the formulations of the first four central
moments and the co-moments. The last constraints ensure that probabilities are non-
negative. Notice that if the central moments of the current distribution my (k=1,...,4),
and co-moments ¢;; are substituted in the objective function, the problem becomes a
non-linear optimization problem with linear constraints.

3.1.1. Estimation of conditional moments
It is important to note that Mj; and C;; are computed conditional on past history and
associated path of the scenario tree. At the root node of the scenario tree, we consider
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the price history Hy = (Oj,...,0,) which is the list of n vectors corresponding to n
assets. The historical price data O; is observed for each asset 7 (i € /) monthly or weekly
from a specific date up to the present. Let A,y be number of historical observations.

At the node ec A7, for t =1,...,T — 1, the historical data set Hy is updated by
including the sequence of price vector scenarios from the root to the current node,
H.=HyU(Xy,...,Xe). Assume that the original historical data H, and the price sequence
(Xo, ..., Xe) have, respectively, Ay and ng,s number of observations. The new updated
price list H, has data of length Ag,s + nops. The price list H, is fit to an exponential
growth curve

yij :aieb[Zii: le]? ]: 19"'ah0bs +nobs: (1)

where y;; is a dependent variable (an observed price data), z;; is an independent variable
(time periods) and a; and b; are constant parameters to be estimated.

The residuals measure the vertical distance of estimated price values to the expo-
nential curve and are essentially calculated as difference between the estimated and
observed price values using the following the formula:

Yij _aiebiZi/a iel, j= L,..., hobs + Mobs- (2)
From the residuals obtained from the exponential fit of the historical price data H,, the

central moments and the co-moments can be calculated. For the projected first moment
from any node e € ./";, we use the following property:

Mije =€"xje, Vi€l (3)

where x;e is the last element of the historical data and r; denotes the growth rate for
asset i. For variance, skewness, kurtosis and covariances are computed by the following
formulae:

1 Bobs+obs

Mire = = Mie)s, Vi€l k=2,3,4 4
e hobs + Mobs — k + 1 Z (vij le) i€ )

j=1

and covariance between assets i and [/ is

1 Do +Nobs
Cire = i — M i — Miie),
le hrops + ops — Kk + 1 ; (yj le)()"IJ le)

Vi£lel k=234 (5)

3.1.2. Algorithm

At the root node, only one non-linear optimization problem is constructed and solved.
Therefore, Ny discrete realizations of the price scenarios and their probabilities (that
are consistent with the first four central moments and co-moments specified at the root
node) are obtained.

For each generated outcome at root node, we specify the conditional distribution
properties for the period =1 (by using the data H, = Hy U X,, e € ./"|). Therefore at
t=1, we have Ny non-linear optimization programs whose solutions give the outcomes
at ¢t = 2. Thus, for each scenario we obtain the solutions for consecutive stages after
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generating scenarios conditional on the previous outcome. The same procedure is car-
ried out until the last period. In general terms, the sequential optimization scenario
generation approach can be outlined as follows:

Repeat for ec A", and ¢t =0,...,7 — 1.

Step 1: Fit data H, to an exponential growth curve.

Step 2: Calculate the central moments and co-moments from the residuals of the
data H, from the fitted curve.

Step 3: Create and solve the optimization problem of finding new price vector sce-
narios and probabilities to fit the above moment data.

Step 4: Update the historical data.

The last issue we discuss in this section is the negative prices that can arise in the
solution of the non-linear optimization problem because of high volatility. To prevent
this, we can bound the price of an asset ‘today’ to at least % of the price of the
same asset ‘yesterday’. Hence, if the negative prices are encountered, the following
constraints are added to the above optimization problem and solved again

o . .
Xije = (m) Xige), VIEL, jEN;, (6)

where a(e) denotes the parent node of node e.

3.2. Overall optimization

Since the sequential optimization approach requires the distribution properties to be
specified only local to each node of the tree, the approach lacks direct control of
the statistical properties defined ‘overall’ outcomes in the later periods (¢ > 0). Also
the sequential optimization involves a more rigid optimization scheme. First period
trees might satisfy the first period specifications, but lead to conditional second period
specifications which make it impossible to obtain a perfect match. Therefore, we can
say that the sequential optimization procedure generates a suboptimal scenario tree. In
this aspect a model that generates the whole event tree in one large optimization is
more realistic than sequential optimization.

The main disadvantage of the overall optimization approach is that the degree of
non-convexity increases and a perfect match is difficult to compute. Also the size of
the non-linear optimization problem increases in terms of the number of variables and
constraints, depending on the number of assets, the depth and branching structure of the
scenario tree at each stage as well as the number of moments and co-moments matched.
Finally, sequential optimization allows easy updating of the statistical properties at each
node of the tree as input to the problem, whereas overall optimization includes an
updating procedure as a function in the optimization problem.

The overall optimization procedure follows the same idea explained in Section 3.1.
However, instead of generating tree node by node, the whole tree is generated by solv-
ing one large optimization problem. Thus, all possible nodes of the tree are considered
in order to model the optimization problem such that the structure of the event tree
matches with the properties of the historical data. Given the notation in the previous
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section, the non-linear programming model for the overall optimization procedure can
be formulated as follows:

T—1 n 4
min - 03| DD wikelmie = Mige(He))* + > wire(cite — Cie(He)?

t=0 ec. A, i=1 k=1 ilel, i<l

N
st. Y pe=1 eeN, t=01,..T—1,
j=1

Ny
Mie =Y Xijepje» 1€L €N, t=0,1,...T 1,
j=1

N,

mige =3 (e —mine) pie 1€L k=234, e N\, 1=0,1,....T — 1,
=1
N,

Cile = Z (xike - mile)(x/ke - m/le)pkea
k=1

nlel,b i<l ee Ny, t=0,1,....,T — 1,
Pie=0, j=1,...N,ec A, t=01,...T—1

The main steps of the computational procedure can be summarized in the following
algorithm:

3.2.1. Algorithm

Step 1: Fit data H, to an exponential growth curve.

Step 2: Calculate the central moments and co-moments from the residuals of the
data H, from the fitted curve.

Step 3: Model the non-linear optimization problem and solve it to generate price sce-
narios and probabilities of branches of the scenario tree. The estimation of conditional
moments are discussed below.

In order to ensure against negative prices, the inequalities in (6) are imposed as
further constraints and the model is reoptimized. Notice that now both x;;. and xjq)
are decision variables, so inequality (6) is a linear constraint, not simply a variable
bound.

3.2.2. Estimation of conditional moments

The statistical targets Mj; and Cj,. are no longer constant values computed prior
to the optimization problem in which they are used as in the sequential optimiza-
tion approach. Since they depend on the statistical measurement of the past, they are
functions of the history H,, which makes them dependent on the values of decision
variables from ancestor nodes. This functional dependence cannot be written as an
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expression, as the calculation of targets My, and Cje is not a simple function, but
rather an algorithmic process applying the following steps.
Repeat for ec A", and t =0,...,T — 1:

e fit asset histories to an exponential curve given in (1),

e calculate residuals as presented in (2),

e calculate higher central- and co-moment targets from residuals using formulae intro-
duced (3), (4) and (5).

This process has to be carried out for every statistical target: at every node, for
every asset, for every central- and co-moment, for every evaluation of the objective
function (including evaluations for the purposes of numerical gradient calculation). This
complicated objective function has a very high cost in time (as detailed in Section 5),
but without it, the overall optimization method could be nothing more than solving all
of the sequential optimization problems in one larger separable problem.

3.3. Arbitrage constraints

Some financial applications, such as option pricing, require scenario trees which are
free from arbitrage. An arbitrage opportunity is a self-financing trading strategy that
generates a strictly positive cash flow between 0 and 7 in at least one state and does
not require an outflow of funds at any date. It is clear that investors would engage in
such a trading strategy as much as possible if we assume that investors always prefer
more to less. Therefore, such a trading opportunity cannot exist if market is in equilib-
rium. Formally, it is said that there are no arbitrage opportunities in the market if and
only if there exists an unique risk-neutral (Martingale) probability measure; for further
details see, for instance Taqqu and Willinger (1987). The issue of an arbitrage-free
economic market is often neglected in stochastic programming models for financial
applications. There are few examples in the financial stochastic programming literature
which consider arbitrage constraints.

Klaassen (1998) analyses the effect of arbitrage in the case of asset liability man-
agement for banks by using internal sampling. He also illustrates that the presence of
arbitrage opportunities may cause substantial biases in the optimal investment strategy
in Klaassen (1997). Kouwenberg and Vorst (1998) generate an arbitrage-free scenario
tree while fitting the mean and variance of the underlying distribution.

In the optimization-based scenario tree generation approach, we can take into account
simultaneously both arbitrage opportunities and statistical properties of the event tree.
Therefore, not only do generated price scenarios at each time period have the statistical
properties which match the first four central moments and co-moments, but also they
are arbitrage-free. The following hard constraints, which we call arbitrage constraints,
can be imposed a priori to the non-linear optimization problem:

Xe=e " Z XMy, Vi€l e€ N, t=0,...,T —1, (7)
seS(e)

where S(e) is the set of successor nodes of e and 7 is the strictly positive probability
measure for s € S(e), see Kouwenberg and Vorst (1998).
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3.4. Discounted mean constraints

Let M,y be the mean of the historical data for each asset i at # = 0. The decision
variable x;, is the price of asset i€/ at node ec A", for t =1,...,T. The following
constraints, we call discounted mean constraints, for each asset are imposed into the
non-linear optimization model at time periods ¢ (¢ > 1) or only at the last period =T,

S Peve=c""My, Vi€l (8)

ec Ny

where P, denotes the probability of a partial scenario of event e. A partial scenario is
described by the path from the root to the event e and its probability P, is defined as
the product of the probabilities of branching along that path. Notice that probabilities
P, will sum up to one across each layer of tree-nodes N;, (¢t =0,1,...,T), since
probabilities p, must sum to one at each individual branching.

4. Hybrid approach

In the optimization approach, economic scenarios are generated to ensure that their
statistical properties match with the distribution of the returns while in the simulation
approach scenarios are the centroids of simulations. A hybrid approach combines the
main ideas of the simulation and optimization approaches. In this approach, prices
are obtained as the centroids of clustering of simulations and substituted for decision
variables in the optimization problem. The probabilities are then determined by solving
the optimization problem, whose size has been greatly reduced.

Consider an event e at time period 7 (=0,...,7—1). Let r;j. be the return simulated
for asset i €/, at node e and at branch j=1,...,N,. Probabilities pj. of the continuous
distribution at node e are variables of the optimization problem. The hybrid approach
for the sequential optimization procedure can be outlined as follows:

Repeat for ec A", and ¢+ =0,...,7 — 1.

Step 1: Fit data H, to an exponential growth curve.

Step 2: Calculate the central moments and co-moments from the residuals of the
data H, from the fitted curve.

Step 3: Simulate N, price vector scenarios with clustering, as described in Section
2.

Step 4: Fix price decision variables to the simulated values in the optimization
problem, and solve to find probabilities.

Step 5: Update the historical data.

For the hybrid approach with overall optimization, price scenarios are generated by
simulation procedures a prior and probabilities are calculated by solving the reduced
non-linear optimization problem. If the optimization problem does not have a feasible
solution, then simulation is repeated to obtain different scenarios which might match
the statistical properties of the historical data.
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5. Computational experiments
5.1. Implementation

The simulation-based scenario generation approach was coded in C++. For cluster-
ing and centroid selection, the distance measure is Euclidean 2-norm, and the center
of a cluster of scenarios is their vector mean. Two parameters, the number of scenario
simulations at the root N and the maximum ratio between largest and smallest cluster
sizes, are specifiable. If the parallel method is used, an additional parameter, m, the
minimum number of scenarios per leaf, can be specified to ensure no clusters will be
too small for subsequent division. With both simulation procedures, we apply the fol-
lowing rule to update. If today’s prices are x4, then tomorrow’s prices are simulated
from a multivariate lognormal distribution with mean exp{r} ® x4 and covariance
matrix A (where growth rate vector r and covariance matrix A are specified as data).

The optimization-based scenario generation approach was implemented in Fortran 77
and the NAG Library (2003) was used to solve non-linear optimization problems. The
following parameters need to be specified for the optimization approach:

e the number of stages,
e the number of successors per node branching at each stage.

For the hybrid approach, the number of scenario simulations at root node of the tree
needs to be specified. Scenarios at each node can be output either in terms of prices or
returns. In the latter case, rates of return are obtained by dividing the current node’s
price by the price of the parent scenario node. The resulting scenario tree is output in
the input format of multistage portfolio optimization program foliage, Giilpinar et al.
(2002). Thus, generated scenario trees can be easily optimized over, and backtested
with historical data.

5.2. Testing

The above implementation was tested by generating scenario trees from historical
price data, then using multistage portfolio optimization software foliage, Settergren
(2000), to determine optimal investment strategies (for specified levels of risk), and
measuring the success of those strategies by their performance with the historical data.
See Gilpmar et al. (2002), for more specific details of the backtesting procedures,
but a summary follows. The historical data consisted of monthly price data of 10
FTSE stocks through the 1990s. At any particular ‘present’ time, the previous 10 time
periods were fit to exponential growth curves yielding parameters r, and residuals
from that fit yielded covariance matrix A and the third and fourth central moments. A
scenario tree was generated, optimized over with foliage, and the resulting investment
strategy implemented at the ‘present’ prices, and portfolio value updated according
to ‘tomorrow’ prices. Then the present was moved forward one time period, and the
process repeated. Note that, for any given scenario tree, the optimizer can yield the
entire range of efficient strategies, from risk seeking to risk averse (in other words
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Fig. 3. Multiple randomized backtesting experiments, at low risk and high risk.

from the highest expected return to the lowest risk), so the desired risk level is another
parameter that needs to be specified during a backtesting experiment.

5.2.1. Backtesting with simulation

It is important to investigate the robustness of this procedure, since it involves ran-
domness. Fig. 3 illustrates backtesting Fig. 3 results at 20% and 80% risk for a number
of back-testing runs using randomly generated scenario trees (in this situation, using
a fixed price history and stochastic investment strategies can be viewed as kind of a
backwards perspective of market volatility). The parameters of the simulations are 10
time periods of past history, 3 time periods forecast, with branching of 4 (64 leaves
of the scenario tree) with N = 5000 simulations. Two contrasting features of the sets
of low- and high-risk curves are as they should be: simulations at 80% risk have both
a higher mean return, as well as a higher volatility. It is interesting to note that the
crash near month 120 in all of the backtesting reflects the crash in the FTSE in late
1998.

Although different randomized backtesting experiments do yield different results
(sometimes the randomized scenario trees perform better, sometimes they perform
worse) the trend is consistent. One way to combat this is to use, instead of pseudo-
random numbers, low-discrepancy Sobol sequences, Sobol (1967), and Bratley and
Fox (1998). In addition to being deterministic, the low-discrepancy property causes
the number of simulations N to be as effective as a much larger number of randomly
generated numbers. Fig. 4 plots backtesting performed using a deterministic Sobol se-
quences against eight experiments with random generation.



1308 N. Giilpinar et al. | Journal of Economic Dynamics & Control 28 (2004) 1291—-1315

8 T T T T T T

Index ——
7 L Pseudo-random -
Low-discrepancy ——

Portfolio Value

0 20 40 60 80 100 120 140

Time (months)

Fig. 4. Backtesting using deterministic low-discrepancy (Sobol) quasirandom sequences, vs. randomized
backtesting at 75% risk level.

Figs. 5 and 6 contrast the results of using sequential vs. parallel simulation at one
particular setting of the remaining parameters: 10 time periods of past history, 3 time
periods forecast, with branching of 4 (64 leaves of the scenario tree). N = 5000 simu-
lations were used for both the sequential and parallel methods; also, Sobol sequences
were used to reduce the effects of randomness. For each set of simulated scenario trees,
backtesting was performed at risk levels 25%, 50%, 75%, and 99%, and the results
plotted against an equally weighted index of the assets involved.

In Fig. 6, the performance is slightly better (except the 50% risk curve), perhaps
because the parallel simulation produces more extreme scenarios (see Section 2.1), and
with those in mind, the optimizer hedges against these extremes with more conservative
strategies. In both cases, however, there is a fairly clear ordering of the results of
the varying-risk strategies, with higher risk yielding higher return — on average, with
occasional violations due to inevitably higher volatility.

5.2.2. Backtesting with optimization

Figs. 7 and 8 are the results of using sequential optimization and overall optimization
with 10 time periods of past history, 3 time periods forecast, with branching of 3 (27
leaves of the scenario tree). Similarly, for each set of simulated scenario trees, back-
testing was performed at risk levels 25%, 50%, 75%, and 99%, and the results plotted
against an equally weighted index of the assets involved. Although, we can see a fairly
clear ordering of the results of the varying-risk strategies in sequential optimization pro-
cedure, this is not case for the overall optimization. The result in Fig. 8 indicates that
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Fig. 7. Backtesting using sequential optimization procedure.
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Fig. 9. Backtesting using hybrid approach with sequential optimization.

lower risk yields a better actual result. This shows that a risk-averse strategy performs
almost as well in these cases and would have been able to respond to various random
shocks, had they arisen. The reason for this is that the optimization-based scenario
generation procedure does not take care of the extreme negative or positive events
which influence the solution of the portfolio optimization problem.

5.2.3. Backtesting with simulation and optimization (hybrid)

Figs. 9 and 10 present backtesting results using the hybrid approach with sequential
and overall optimization with 10 time periods of past history, 3 time periods forecast,
with branching of 3. Price scenarios are generated by sequential simulations of N =
10000 branches with Sobol at each node. These results show that, for this set of data,
the hybrid approach with sequential optimization is superior to other approaches in
terms of the portfolio value.

5.3. Processing time

Since in terms of actual performance (backtesting) all scenario generation strategies
are reasonably similar, the efficiency of these approaches measured in terms of CPU
seconds spent for generating scenario trees is considered. For a fair comparison, 3- and
4-stages scenario trees with 2, 3 and 4 branchings are generated by all approaches using
the same historical data: 10 time periods of history for 10 assets. For the simulation
approaches, N = 10000 was held constant for all instances. This number was chosen
as appropriate for the problem which needs the largest number of simulations, which
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Fig. 10. Backtesting using hybrid approach with overall optimization.

Table 1
CPU time (s) taken to generate scenario trees by different approaches
Method Depth—branching
(Variant)

3-stage tree 4-stage tree

2 3 4 2 3 4
Sim. (parallel) 2.93 3.01 3.20 3.95 4.10 4.26
Sim. (sequential) 6.97 13.57 22.57 14.82 41.46 94.19
Hyb. (sequential opt.) 13.42 31.36 69.12 28.74 104.62 291.24
Hyb. (overall opt.) 48.30 1021.80 6732.85 334.00 — —
Opt. (sequential) 3.22 20.85 513.20 6.53 641.19 547.77
Opt. (overall) 422.30 2857.92 — 40860.20 — —

is parallel simulation on the largest tree (branching of for 4 time periods yields 256
leaves of the scenario tree, therefore the average simulations in each leaf’s cluster is
about 39). The scenario trees were all generated on a 200 MHz Sun Sparc I with
256 Mb of memory. The results of CPU time in seconds taken to generate scenario

trees by different approaches are presented in Table 1.

It is interesting to note that, since in parallel simulation the number of scenarios
processed per time stage is constant (V), the timings are almost exactly the same to
generate trees of the same depth. In addition, the time increase to generate trees of depth
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4 instead of 3 is approximately %. Sequential simulation, however, does increase in time
for larger trees; as expected, the amount of work per node is approximately invariant.
From 6.97/(1 +2 +4)=0.9957 s/node to 94.19/(1 +4+ 16 + 64)=1.1081 s/node, the
time to process N =10000 simulations remains similar to that in the parallel simulation,
about 1 s on this computer. It is also important to note that the time required by the
simulation methods can be quite variable: increasing or decreasing N will affect the
timing proportionately, and parameters affecting the clustering rejection rate (and thus
the number of re-clusterings necessary to generate the tree) can also have a significant
impact on timing.

The main factor affecting the efficiency of the optimization-based approach is the
size of the non-linear optimization problem (in overall optimization) or the number of
optimization problems to solve (in sequential optimization). The size of the problem
depends on the number of assets, depth and branching specifications of scenario tree.
Although the problem size is small at each node of the scenario tree for the sequen-
tial optimization, it is slow for large scenario trees compared to the simulation-based
approach. However, for moderate size scenario trees, it is still faster than other opti-
mization approaches.

The hybrid approach with sequential optimization requires less time than sequential
optimization to generate larger scenario trees, since the hybrid approach takes advan-
tage of the simulation procedure. In addition, this approach is comparable with the
simulation-based approach in terms of efficiency to generate the trees. It is difficult to
estimate the time spent to solve the non-linear optimization problem at each node; it
varies since the input to the optimizer, as well as the objective function, are changing
at each node of the scenario tree since the historical data and resulting exponential
fit are updated, even though the size of the problem is the same as long as the same
branching is specified at each time period.

The results show that the overall optimization is by far the slowest method, and the
added effort required does not seem to be justified by our backtesting results. Apart
from the size of the problem, the updating procedure for every statistical target — at
every node, for every asset, for every central- and co-moment, for every evaluation
of the objective function — slows down the overall optimization procedure. Because
of the extremely complicated objective function of overall optimization problems, even
reduction of the number of variables using the hybrid technique is not always enough to
allow problem solution. As can be seen in the table, the 3-stage, 4-branching problem
was solvable by the hybrid method (but not overall), but beyond that size, even the
hybrid problem was not solvable.

It is worthwhile to mention that the efficiency of optimization-based approaches also
depends on the relative weight for each asset’s central moments and co-moments. The
user must be aware of the input to the non-linear optimization problem and choose the
weights accordingly. If, for instance, the mean and variance have higher priority than
the other moments, then their relative weights must be higher than others.

As a result we can easily claim that, although there are timing differences between
the other approaches, they are all quick enough to be used for trees of moderate size;
for very large trees however, the speed advantage of simulation would become more
significant; for instance, a 11-stage tree with branching 2 (1024 scenarios) can be
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generated with sequential simulation (N = 1000) in 138.81 s, sequential optimization
in 2305.90 s and hybrid approach with sequential optimization in 375.12 s.

6. Conclusions

In this paper, three approaches for generating price scenarios for portfolio optimiza-
tion are investigated. For the simulation-based approach, scenarios are clustered from
simulations generated sequentially or in parallel, while in the optimization approach
scenarios are obtained by solving a non-linear optimization problem at each node or a
large non-linear programming problem. In the hybrid approach of simulation and opti-
mization, simulated prices are fixed in the optimization problem to find the probability
of branches in the scenario tree. These procedures are tested and their performances
are measured by backtesting in terms of the value of portfolio as well as the CPU time
spent on generating a scenario tree.

The results of this paper demonstrate clearly the diminishing returns of efforts to
predict the future. Although the overall optimization model is arguably the most theo-
retically sound way to accurately generate scenario trees, the immense effort expended
yielded no perceptible gains in backtesting over the faster heuristics of sequential op-
timization, simulation, and a hybrid simulation/optimization method.
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