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Abstract—Conditional independence (CI) testing is a criti-
cal statistical method that determines conditional independence
between variables using data. It is useful for various data
mining applications, such as causal discovery, Bayesian inference,
and agent-based model validation. However, the high volume
of CI test queries and the large data sizes make CI testing
computationally intensive. This paper proposes a hardware-
oriented residual-based CI testing algorithm, co-designed with an
FPGA accelerator, to address this issue. Our system accelerates
CI tests by skipping least-squares computations algorithmically,
enabling fixed-point operations in correlation evaluation and
parallelization of permutation tests. Our experimental evaluation
demonstrates that our method is as accurate as state-of-the-art CI
testing approaches. Furthermore, our experimental implementa-
tion on an Intel Arria 10 FPGA delivers up to 32 times higher
performance compared to state-of-the-art CI test tools running
on eight Intel Xeon Silver 4110 CPU cores.

Index Terms—conditional independence test, causal discovery,
causal inference, graphical model, structural equation model

I. INTRODUCTION

Conditional independence (CI) testing is an important task
in many data mining and information retrieval applications,
such as causal inference, feature selection, and model selec-
tion. However, the computational complexity of these tests
can be prohibitive, particularly for high-dimensional data. A
promising way to accelerate CI testing is to use specialized
hardware on Field-Programmable Gate Arrays (FPGAs) which
can be programmed to perform complex computations in
parallel. Unlike GPUs, FPGAs offer great flexibility in terms
of the types of computations, making them well-suited for
tasks that require custom algorithms. This paper explores the
benefits of using FPGAs for conditional independence testing
by co-designing an algorithm and an FPGA-based hardware
accelerator.

CI tests are known to be computationally demanding. For
example, the CI tests for a causal inference task on the
DREAM5-INSILICO expression data set can take up to 168
seconds using 40 Intel Xeon Gold 6148 CPU cores [1].
However, there are currently no FPGA designs available to
accelerate CI testing.

Our study aims to address this issue by developing an
FPGA-based system that accelerates the execution of residual-
based CI tests. The main challenge is that the linear regression
procedure used in these CI tests has hardware-unfriendly
operations.

We propose using a k-nearest neighbors (kNN) method,
specifically tailored for hardware implementation, to substitute
the linear regression operation used in residual-based CI test-
ing to remove information from the controlling set. Although
kNN-based approaches are highly parallelizable on FPGAs,
there has been no research on designing a kNN-based method
for residual extraction on algorithm or hardware. Therefore, we
co-design a kNN-based residual extraction algorithm, permuta-
tion testing facilities and the corresponding hardware, resulting
in a highly efficient CI testing system. The contributions of this
paper include the following:

• Co-design of algorithm and hardware for a kNN-based
residual extractor that is optimized for fast execution on
FPGA. (Section III)

• FPGA design for on-the-fly permutation generation and
permutation testing that collaborate with the residual
extractor to conduct CI testing. (Section IV)

• Comparative evaluations of our approach against other
parallel CI testing tools, including experiments to assess
speed and accuracy. (Section V)

To our knowledge, this paper presents the first FPGA-based CI
testing accelerator. The organization of the paper is as follows.
Section II discusses the background of CI tests, permutation
testing and residual-based CI tests. Sections III and IV present
the proposed co-design approach for residual-based CI testing,
including a novel residual extractor and permutation testing
facilities. Sections V and VI cover evaluation and conclusion.

II. BACKGROUND

A. Conditional Independence Test

The conditional independence (CI) test determines whether
two variables are conditionally independent of each other
given the values of one or more additional variables. In other
words, it tests whether two variables are correlated when
additional variables are taken into consideration.

A CI test is in the form I(u,v|Z) where u and v are two
random variables; Z is a set of other random variables known
as the controlling set of the test. This function tests if u and v
are conditionally independent given the information in Z and
gives a Boolean output. Note that the size of the controlling
set in a CI test cannot be too large, because including too
many variables in the controlling set can increase the risk of



false positives, where a significant relationship is detected even
though there is no true relationship between the variables of
interest. A typical setting for the maximum controlling set size
is 5 [2].

Conditional independence tests are commonly used in many
areas of statistics, including causal inference, machine learn-
ing, and exploratory data analysis. The most commonly used
CI test for continuous variables is the Fisher’s Z-test [3].
Other methods for CI testing include residual-based methods,
kernel-based methods [4], model-driven methods [5], binning
methods [6] and feature ordering methods [7].

Despite the fact that CI tests can be time-consuming for
various applications, there is currently no viable solution to
speed up these tests using FPGAs. In contrast, CI tests are
circumvented rather than accelerated on FPGA. For example,
the FPGA-based Bayesian network structural learning system
[8] employs a learning algorithm based on goodness-of-fit
scores, whereas algorithms based on CI tests can be much
faster and more accurate [9]. Similarly, [10] uses the FPGA
to reduce the number of CI tests, but the tests themselves
are computed on the CPU platform, making this approach
unsuitable for CI test applications other than causal discovery.

B. Residual-based CI Test

Residual-based CI testing works as follows. A regression
function takes the residuals from the two test variables x
and y and returns two predicted vectors x′ and y′. Then,
the residual vectors for the test variables r(x) = x − x′ and
r(y) = y−y′ are calculated. In other words, a residual vector
is difference between the actual target value and the predicted
target value. Then, a correlation score s0 is calculated based
on r(x) and r(y). This procedure is repeated to compute
the correlation scores, s1, s2, s3, . . . , sM−1, for M different
permutations of y. The final decision is made based on the
relative rank of s0 among the M correlation scores. Major
residual-based CI testing methods include the Kernel Condi-
tional Independence Permutation Test (KCIPT), the Residual-
based Conditional Independence Test (ReCIT) and the Fast
residual-based Conditional Independence Test (FRCIT).

The Kernel Conditional Independence Permutation Test
(KCIPT) [11] tests conditional independence by simplifying
the problem into a two-sample test using permutation testing.
The permutation preserves the joint distribution only when the
null hypothesis of CI is valid. This approach allows for the
incorporation of prior knowledge during the permutation step
and shows competitive accuracy power even if the dimension-
ality of the controlling set grows to |Z| = 5.

The Residual-based Conditional Independence Test (ReCIT)
[12] is the first method that directly uses the residuals to
determine conditional independence. A critical theoretical
foundation is a proof that if x, y, and Z are generated by
a linear structural equation model with all external influences
following Gaussian distributions, then I(x,y|Z) if and only
if r(x) and r(y) are independent. In other words, the CI test
can be relaxed to an unconditional independence test between
r(x) and r(y). The experimental results show that ReCIT

outperforms the kernel-based method in [4] with linear non-
Gaussian data.

The Fast residual-based Conditional Independence Test
(FRCIT) [13] explores the independence between two linear
combinations. This method is based on the conjecture that the
first to fourth moments of the two linear combinations contain
sufficient information to determine conditional independence.
In the experiments, the FRCIT method outperforms kernel-
based methods in terms of both speed and accuracy.

Residual-based conditional tests have been found to offer
greater accuracy than conventional methods, such as Fisher’s
Z-test. However, the computational demands of residual-based
CI tests, which involve linear regression and permutation
testing, have limited their practical utility. For example, al-
though residual-based CI tests have demonstrated significant
advantages in terms of result quality in causal discovery,
major causal discovery tools, such as pcalg [14], have not
incorporated them due to their prolonged execution time, even
for small datasets. Therefore, the development of efficient
computational tools for residual-based CI tests is crucial for
their application to large datasets in practical settings.

III. CO-DESIGN OF ALGORITHM AND FPGA FOR
RESIDUAL EXTRACTION

The first phase of residual-based CI testing involves residual
extraction, wherein a linear regression algorithm removes the
information provided by the controlling set from a target
variable. Since the residual extraction process is computa-
tionally intensive in CI tests, it is essential to design an
appropriate residual extractor for an accelerated CI testing
system. This section presents our co-design approach for the
residual extractor, outlining both the rationale and the specifics
of creating a k-nearest neighbors residual extraction algorithm.
This algorithm is amenable to FPGA implementation and
can replace the linear regression algorithm in conventional
residual-based CI tests.

A. Residual extraction on FPGA

A primary challenge in residual-based CI testing on FPGAs
is the lack of suitable FPGA implementations for the linear
regression operation in residual extraction. For instance, exist-
ing methods proposed in [15], [16], and [17] require storage
and inversion of an n × n sketch matrix for each permuta-
tion of the dataset using on-chip memory. The high on-chip
memory usage makes it challenging to leverage parallelism in
permutation testing. Also, the architecture presented in [18],
[19] offers a low-latency least squares solver for regression
models with kernel functions. However, this architecture does
not meet our requirements because residual extraction does
not involve kernel transformation.

We find that, although linear regression is used in all the
residual-based CI tests that we know, it is not the only option.
Therefore, instead of trying to design hardware for linear
regression, we seek an alternative residual extraction approach
that can replace linear regression with considerations on al-
gorithmic soundness and hardware-friendliness. Specifically,
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Fig. 1. Hardware design for low-precision kNN-based residual extraction

we find that a carefully designed k-nearest neighbors (kNN)
method can meet both algorithm and hardware requirements.
In the remainder of this subsection, we present our kNN
algorithm and its hardware mapping for residual extraction.

A top-level view of the proposed residual extractor is shown
in Fig. 1. The residual extractor takes the data vector for
the target variable u and the data matrix for the controlling
set Z. It produces the residual vector r(u) by removing
information related to the controlling set Z. This residual
extractor calculates the residual for ui ∈ u with four steps:

1) When an element of the data vector ui and its cor-
responding assignment of the controlling variables Zi

are available, distance evaluators, shown as ‘distance
function’ blocks in the figure, compute the distance
between Zi and all other assignments in a prototype
database in parallel according to a distance metric.

2) A top-k element finder, denoted by the ‘top-k’ block in
the figure, collects the target variable values of the k
nearest assignments in the prototype database, namely
u◦
t0 , u

◦
t1 , u

◦
t2 , . . . , u

◦
tk−1

.
3) An average calculator, shown as the ‘average’ block in

the figure, calculates the average value ûi of the top-k
values u◦

t0 , u
◦
t1 , u

◦
t2 , . . . , u

◦
tk−1

.
4) A subtractor, shown as a combination of a ‘neg’ block

and an ‘add’ block in the figure, delivers the residual
r(ui) by calculating the difference between the data
value ui and its estimate ûi. In other words, the i-th
element of r(u) is calculated as follows:

r(ui) = ui − ûi (1)

The framework of the kNN design is similar to a conven-
tional kNN method for regression, which is not the main focus
of this study. Instead, our main focus is on the following two

aspects that decide the algorithmic and hardware properties of
the kNN based residual extractor:

• Prototype database. The prototype database is not a part
of conventional kNN designs for regression, because the
data points in the training set are naturally prototypes for
conventional regression. In contrast, there is no training
set in residual extraction. We design the following equa-
tion for data labels to collect a sub-sample from the data
matrix:

jq = argmin
j

∣∣uj −minu− q(maxu−minu)

|Q| − 1

∣∣ (2)

where jq is a data index and q ∈ [0..Q− 1].
• Distance metric. The distance metric for our design is as

follows:

d2(z†, z‡) =

L−1∑
l=0

(
ϕ(z†l ,mdata)− ϕ(z‡l ,mdata)

)2
(3)

where L is the common length of the two low-precision
vectors z† and z‡, which also equals the number of
variables in the controlling set. The function ϕ(x,m)
maps a data element x in any representation to an m-
bit fixed-point number.

In the remaining two subsections, we discuss our considera-
tions behind the design of prototype database and the distance
metric.

B. Pre-computation of prototype database

This subsection discusses how the sub-sampling method in
Equation 2 is designed. Our kNN-based residual extraction
works by finding the nearest neighbors of a given data point,
and then taking the average of the target values of those
neighbors as the predicted value for the data point. This
method is different from linear regression, which uses a
parametric formula to predict the target value.

It is important to recognize that the goal of regression anal-
ysis in this scenario is not to maximize regression accuracy,
but to strip off information from the controlling set. Therefore,
accurate modern regression techniques including Gaussian
processes [20], deep regression networks [21], and boosted
regression trees [22] are not appropriate for our objective,
as they may underestimate the regression residual [23] and
compromise the evaluation of correlation coefficients. In the
extreme case, where the regression algorithm perfectly predicts
a data vector, the residual vector becomes a zero vector, which
can completely confuse the correlation estimator.

We propose to pre-compute the prototype database to track
behavior of linear regression. Linear regression has a strong
theoretical foundation and consistently produces reliable re-
sults in residual-based CI tests. Therefore, if a method for
estimating residuals can mimic the behavior of linear models,
it may inherit their statistical reliability [24].

Our sub-sampling method, as presented in Equation 2, aims
to promote the tracking of linear behaviors by the model.
In particular, to control the error when interpolating a linear
function, it is common to take interpolation points at regular



intervals from the domain of the function. We adopt a similar
principle, but note that the domain of our problem may be
multi-dimensional. Fortunately, the linearity we wish to track
suggests that we can sample points at regular intervals on
the range of the function, instead of the domain. Since the
range of our kNN problem is one-dimensional, we can set |Q|
observation points u∗

0, u
∗
1, . . . , u

∗
|Q|−1 across [minu,maxu]

by:

u∗
q = minu+

q(maxu−minu)

|Q| − 1
(4)

where q ∈ [0..|Q − 1|]. However, the assignments in the
controlling set may not cover these points. To resolve this
issue, we find the nearest point in u for each point, resulting
in the method based on Equation 2.

Even though the quality of the residuals is difficult to
measure and reliant on the data, the proposed pre-computation
approach can provide useful residuals. In general, regression
algorithms inherently make mistakes because the true residual
vector cannot be obtained due to the unknown or difficult-to-
model nature of the causal relation. Fortunately, the error in
residual vectors may not negatively impact the final decision
because the statistical correlation is robust to outliers.

C. Optimization of distance metric
This subsection explains how the distance metric in Equa-

tion 3 is obtained. Unlike conventional hardware design for
kNN, we have an upper bound for the dimensionality in kNN
search. Specifically, the dimensionality of the kNN problem
in residual extraction is equal to the size of the controlling
set. An important property in CI testing is that the size of the
controlling set must be small. Otherwise, the result of the CI
test can be statistically invalid.

We focus on saving FPGA resources and not on the math-
ematical strength of the distance metric, because the low-
dimensional nature of CI tests avoids the curse of dimensional-
ity for nearest neighbor methods. In general, nearest-neighbors
methods rely on the distance between neighboring points to
make predictions, which can become increasingly difficult as
the number of dimensions increases [25]. As a result, nearest-
neighbors method can become less accurate and less efficient
in high-dimensional spaces. To cope with the high dimen-
sionality, a general-purpose kNN design needs to consider
algorithmic issues when dealing with high dimensionality. One
common technique used in conventional kNN designs is to
employ sophisticated distance measures. However, since we
only need to deal with low-dimensional kNN problem, we
tend to keep the complexity of the distance metric as simple
as possible.

To develop a mathematically simple and FPGA-friendly
distance metric, we start from the standard Euclidean distance:

d(v†,v‡) =

√√√√L−1∑
l=0

(v†l − v‡l )
2 (5)

This distance metric has been demonstrated to work well
on low-dimensional data, which is beneficial for residual

extraction in CI tests. Additionally, the algorithm complexity
of a CI test is low with this distance metric. Assuming
that the permutation test involves the residual vectors for M
permutations of N data points, the time complexity for a CI
test is O(M · N · |Z| · |Q|), while the space complexity is
O(|Z| · |Q|).

The square root operation in the Euclidean distance in
Equation 5 can be resource-consuming on FPGAs, but we can
eliminate it. The goal of kNN residual extraction is to select
the k nearest neighbors. In this case, whether a controlling set
assignment c◦q is a near neighbor only depends on is relative
position among c◦0, c

◦
1, . . . , c

◦
Q−1. Therefore, if we consider the

computation of the k nearest neighbors of ci as a procedure
that repetitively takes away the minimum element from c◦q
without replacement for k times, we only need to ensure the
correctness of the index of the controlling set assignment
with the minimum distance rather than the distance value.
On the other hand, the square root function f(x) =

√
x is

monotonically increasing on the domain of real numbers. As
a result, instead of using the standard Euclidean distance in
Equation 5, we can safely omit the square root calculation
without losing any accuracy in kNN regression.

d2(z†, z‡) =

L−1∑
l=0

(z†l − z‡l )
2 (6)

We propose to further optimize the distance metric for
low-precision computation for efficient implementation on
FPGAs. In general, lower-precision arithmetic operations are
faster and more resource-efficient than their higher-precision
counterparts on FPGAs. In particular, since we are targeting
large data sizes with limited on-chip memory resources, we
hope to use low-precision data types to reduce the memory
footprint of intermediate values to leave more space to store
the prototype set. In addition to hardware considerations,
low-precision algorithms can be more robust to noise and
errors in data. Therefore, they may be advantageous with the
applications where noise and errors are inevitable such as
causal discovery.

We enable low-precision computation by rounding the data
matrix into mdata-bit fixed-point numbers, we obtain the
function in Equation 3. Let each element in the data matrix
be an mdata-bit fixed-point number. The maximum number
of bits for all intermediate variables, including distance values
and residuals, can be predetermined. Regarding the distance,
the difference vector from the subtraction is an L dimen-
sional vector where each element can be represented with
an (mdata + 1)-bit fixed-point number. Since the square of
each element can fit into 2(mdata+1) bits, the corresponding
number of bits required by the distance is

mdist = ⌈log2 L⌉+ 2(mdata + 1) (7)

Accordingly, an element in the residual vector must be the dif-
ference between two data elements, which requires (mdata+1)
bits.



IV. PARALLEL PERMUTATION TEST ON FPGA

Even with efficient residual extraction using FPGAs, per-
forming CI testing using the extracted residuals on FPGAs
is still challenging. The permutation test involves a strict
sequence where the upstream permutation generation process
is also time-consuming. Although there are hardware modules
available that can speed up these two procedures, effective
load-balancing strategies must be implemented to prevent data
starvation. Unfortunately, load-balancing in this scenario is
exceptionally challenging because the relative duration of the
two procedures depends on the data distribution.

This section presents a permutation testing method that
avoids the load-balancing problem. Section IV-A presents a
method to generate permutations for the target variable y
on the fly, eliminating the need for load-balancing between
permutation generation and residual extraction. Section IV-B
explains how the permutation generator and residual extractor
work together for permutation testing. Finally, Section IV-C
showcases our experimental implementation of the CI testing
system on an Intel Arria 10 FPGA.

A. On-the-fly permutation generation on FPGA

The generation of random permutations is straightforward.
Given an array, it is as simple as applying a random shuffling
algorithm to the array that contains the data vector. For
example, the Fisher-Yates shuffling algorithm [26], [27] can
finish shuffling an array with N elements in O(N) time with
O(1) additional space.

We propose to permute a vector of indices instead of values.
In other words, we use integers 0..(N − 1) to produce a
permutation ι0, ι1, ιN−1 so that the elements in uιk constitute
a permutation of u. When a permutation index vector ι is pre-
computed, the proposed approach allows the permutation of u
to be generated on the fly.

The proposed approach is hardware-oriented. Index permu-
tation requires the storage of permutation indices, in addition
to the values themselves, which takes up extra memory of
O(n), while value permutation can be applied to the vector
in an in-place manner, requiring only O(1) additional mem-
ory. Furthermore, index permutation requires random traversal
compared to value permutation, where the values are already
in the expected order after the main permutation operation,
making it easier for the residual evaluator to visit them
sequentially. However, with index permutation, only the index
vector is in the expected order by the end of the permutation
procedure, and every time the residual evaluation unit needs an
element from the reordered vector, it requires random access to
the memory for the value for the value in addition to sequential
access for the index.

B. Permutation testing on FPGA

Permutation testing can be parallelized well in general.
However, the calculation of the residual r(x) requires special
attention, particularly since the residual r(x) is involved in
the correlation evaluation for y and y′

0,y
′
1...y

′
M−1. To avoid

repetitive computation, an optimization is to compute the
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Fig. 2. Hardware execution for permutation testing

residual r(x) before all correlation computation, and store
r(x) in memory. In this case the correlation algorithm is free
to access any part of r(x) to compute statistics on the whole
residual vector.

To realize the optimization for r(x), we design the hardware
to work in batches as shown in Figure 2. The two parts
of the figure refer to the same hardware architecture. The
architecture contains H data pipelines. Each data pipeline
contains a permutation generator discussed in Section IV-A,
residual extractor discussed in Section III-A, and a correlation
evaluator which computes the correlation coefficient. These
pipelines compute the coefficient scores for permutations of
y in batches. In Batch 0, one residual unit is in charge of
the residual of the vector x. The other residual units are in
charge of residuals for the permutations of y. Whenever the
residual unit for x delivers one residual vector element, the
element is broadcasted to the residual memory as well as the
correlation estimators for other variables. By the end of this
batch, a complete copy of the residual vector r(x) is available
in the residual memory rx. In Batch b for b > 0, all residual
units are in charge of computing the residuals for permutations
of y. At this time, the residual vector of x is taken from
the residual memory and broadcasted to all the correlation



TABLE I
RESOURCE USAGE FOR LARGEST DESIGN (|Z| = 6)

Resource ALUT RAM FF DSP
Total 854400 2713 1708800 1518
Used 405110 1821 1284534 1392

Used(%) 47% 67% 75% 92%

estimators.
The computational efficiency of an implementation scales

up with the number of fixed-point multipliers. For example,
the number of multipliers required by a fully-pipelined imple-
mentation is

N× = |Z| · |Q|+N×
coef (8)

where N×
coef is the number of multipliers used by the corre-

lation coefficients. Thus, the number of multipliers for each
pipeline grows linearly with the product of the size of the con-
trolling |Z| and the size of the prototype set |Q|. The residual
extractor uses in each pipeline uses most of the multipliers due
to the parallel computation of the distance metric following
Equation 3. Additionally, the space complexity of CI testing is
independent of the number of permutations M or the number
of data points N , implying no theoretical limit for the data
size if the data matrix is not stored in the on-chip memory.

Given an implementation with fixed |Z| and |Q|, the time
spent on each CI test grows linearly with the number of data
points N . This is because the permutation generator produces
the permutations on the fly and do not block the pipeline. The
residual extractor delivers residual vectors at a consistent pace
for each data element since the size of the prototype set keeps
unchanged.

C. Experimental Implementation

We implemented an experimental setup using an Intel
Arria 10 GX 10AX115S2F45I1SG FPGA with 1150K logic
elements. The FPGA technology used is TSMC 20nm, and the
design power consumption of the FPGA is 66W. The hardware
design is described in OpenCL and compiled with the Intel
FPGA SDK for OpenCL 19.4. The frequency of the FPGA is
set to 240MHz.

The design parameters we use in the implementation are as
follows. (i) The number of prototypes |Q| is set to 64. We take
this value to avoid the extreme case where all attributes in the
low-precision representation of the data take a unique value.
(ii) The number of neighbors k is set to

√
|Q| = 8 following

[28]. (iii) The number of bits for data elements mdata is set
to 16. We assume that data are stored in fixed-point format
so that the mapping function in Equation 3 simply takes
the most significant 16 bits from the data without numerical
computation. (iv) The number of pipelines H is set to 32, 16,
8, 6, 5 and 5 respectively for |Z| = 1..6. The resource usage
for the largest design when |Z| = 6 is shown in Table I.

The major concern of our implementation is to take ad-
vantage of the hardware resources by deploying as many
permutation-residual pipelines as possible. Therefore, we tend

to use a small prototype database in each pipeline. Note
that this strategy is opposite to conventional kNN design
in classification and regression. A conventional kNN design
requires a search through a large dataset of prototypes. As
a result, a common optimization to exploit available FPGA
resources is to compute the distances with as many prototypes
as possible in parallel. This approach is not ideal for our
problem, as we are more focused on removing information
rather than making predictions, which means that the high
degree of parallelism of distance computation is not useful
and can reduce the number of pipelines H .

We implement the one-pass Pearson coefficient design de-
veloped in [29] as the correlation estimator. This calculation
can be fully pipelined, which can avoid a potential load-
balancing problem. Specifically, in a straightforward hardware
design, a load-balancing problem arises when one residual
computation unit is busy while other residual units are idle
because they do not have enough data.

V. EVALUATION

This section presents a comparative evaluation of our ap-
proach against other parallel CI testing methods running on
CPUs and GPUs, assessing both accuracy and computational
efficiency.

A. Experiment Setup

The CPU platform is equipped with an Intel Xeon Silver
4110 CPU, which operates at 2.1GHz and is based on 14nm
technology. It features eight physical cores that support sixteen
threads. The platform has 192GB of DDR4 memory. In
contrast, the GPU platform has an NVIDIA GeForce RTX
3060 Ti, which runs at 1665MHz and is fabricated with
8nm technology. The GPU has 4864 CUDA cores and 8GB
GDDR6x memory.

We conduct tests by generating 1000 datasets for each con-
trolling set size from |Z| = 1 to |Z| = 6 using the linear non-
Gaussian structural equation model (SEM) proposed in [2] and
[13]. These generated datasets serve as reliable benchmarks as
the CI testing algorithm that performs well with them is likely
to perform well with real-world data. Each dataset comprises
10000 data elements. The CI testing implementations that
we compare include (i) the proposed approach running on
one CPU core, eight CPU cores, and the FPGA; (ii) the
Fisher’s Z-test in cuPC running on the GPU [30]; (iii) two
residual-based approaches with linear regression, SCIT [2]
and FRCIT [13], running on eight CPU cores. All the CPU-
based tools are written or rewritten in the C programming
language and compiled with LLVM/Clang version 14 with the
O2 optimization flag.

B. Results and discussion

The trade-off between accuracy and speed for |Z| = 1..6 is
shown in Fig. 3. The horizontal axis represents the speed of CI
tests measured by the number of tests per second. We use the
log scale for the horizontal axis because the speed differences
between implementations are too significant. The vertical axis
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Fig. 3. Speed-accuracy trade-off for CI tests for different controlling set size |Z|

corresponds to the CI test accuracy. Since a higher value on
the two axes represents a better speed or accuracy, a superior
overall design tends to be close to the top-right corner. We
have the following observations from the results.

1) Regarding accuracy, residual-based methods, such as
the one proposed, have significantly higher accuracy
compared to the traditional Fisher’s test. However, there
is no significant difference in accuracy between different
residual-based methods. In contrast, the Fisher’s Z-test,
although fast on the GPU, gives inferior accuracy. The
GPU implementation utilizes double-precision floating-
point numbers for the Z-test, limiting the potential
for accuracy improvement through increased numeric
precision.

2) The experimental FPGA implementation is much faster
than all other residual-based CI test tools, including
the CPU implementation of the proposed kNN-based
algorithm. The proposed approach is respectively 29–32
times and 17–22 times faster compared with SCIT and
RCIT. The FPGA implementation is also 2.4–5 times
faster than the multi-core CPU version of the proposed
approach.

3) The proposed algorithm scales poorly with the number
of threads when implemented on a multi-threaded CPU.
The multi-threaded version only provides a speedup of
about 3.3–3.7 times compared to the serial version. This
is consistent with the findings from [1] where causal

discovery, an application that heavily relies on CI tests,
also does not provide more than 4 times speedup over
the serial version regardless of the number of CPU cores.

4) The speed advantage over the CPU version is modest
when the size of the controlling set |Z| = 1, with only
2.4 times speedup. We note that the CPU implementation
is particularly fast in this case. This is probably because
all the operations can be element-wise parallelized when
|Z| = 1, facilitating vectorization in CPU execution.

Furthermore, we have two anticipations based on the results.
First, we anticipate that the existing designs for linear regres-
sion will not exhibit high efficiency for residual extraction on
FPGAs. For instance, we predict that under the same experi-
mental conditions, the linear regression design in [19] would
result in a slowdown of at least 150 times compared to our
design. Second, we anticipate that if the acceleration achieved
by our proposed approach for CI testing is comparable to the
acceleration achieved by CI-based causal discovery, then it can
be integrated into existing causal discovery software, such as
pcalg [14]. This integration would lead to higher quality causal
inference for applications such as gene-expression analysis
without sacrificing computational speed.

Although the proposed FPGA implementation shows
promising experimental results, it has two potential limita-
tions. First, as the statistical properties of kNN-based residual
extraction require further exploration, there is a possibility of
encountering scenarios where the kNN model fails to extract



sufficiently informative residual vectors. In such scenarios,
the accuracy of the proposed implementation may be com-
promised. Second, when considering the hardware costs, the
FPGA implementation can be less cost-effective than CPU and
GPU implementations.

VI. CONCLUSION

Conditional independence (CI) testing is the statistical pro-
cess of determining whether variables are dependent on each
other using data. It is an essential method for various data min-
ing applications such as causal discovery, Bayesian inference,
and agent-based model validation. However, the computation
required for CI testing can be challenging, especially when
dealing with large datasets and numerous CI test queries. To
overcome these challenges, we developed a CI testing system
that utilizes the residual-based approach, which accelerates
the execution of CI tests by eliminating the least-squares
problem, parallelizing permutation tests, utilizing fixed-point
operations in correlation evaluation, and taking into account
FPGA performance constraints. Our experimental evaluation
demonstrated that our method is equally accurate as current
state-of-the-art CI testing approaches, but with significantly
faster execution speed. Future work includes enhancing accu-
racy, performance and energy efficiency of our approach, and
deploying it in various real-life applications.
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