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Abstract—Causal discovery is a data mining approach that
finds causal relations between variables from data. Causal dis-
covery algorithms are computationally demanding when the data
set has a high dimensionality or a large sample size. A promising
way to expedite causal discovery is by utilizing FPGAs, but a
significant drawback is that FPGA designs become inefficient
when the on-chip memory cannot store the entire data set. This
paper proposes Conditional Independence Test Prioritization
(CITP), a novel approach that overcomes this limitation and
enables fast FPGA-based causal discovery for large datasets
with comparable speed and adequate accuracy to state-of-the-art
methods. The main idea behind CITP is to design a workflow that
allows a small subset of data to be stored in on-chip memory for
prioritizing conditional independence tests. The paper provides
experimental results that demonstrate the effectiveness of CITP
in terms of both accuracy and speed. Our experiments show that
for specific datasets, the proposed approach can respectively be
79 times, 2.6 times and 2.1 times faster than current CPU, GPU
and FPGA designs.

I. INTRODUCTION

For a long time, scientists and engineers have struggled with
understanding how random variables are related to each other.
To tackle this problem, a method called causal discovery has
been developed, which uses data to identify causal relation-
ships between variables. Causal discovery is a crucial means
for data analysis and knowledge discovery, and it has been
applied to a variety of fields, including biomedical science
and economics. However, the process of causal discovery is
computationally expensive. For instance, pcalg [1], a well-
known software tool for causal discovery that operates on
CPUs, takes up to three days to complete the causal discovery
process for a gene expression dataset with 1643 dimensions
on an 8-core Intel Xeon CPU running at 2.5GHz [2].

This paper focuses on constraint-based causal discovery
methods where the most computationally expensive calcula-
tion is the conditional independence (CI) test. To accelerate
this calculation, existing approaches utilize multi-core CPUs
and GPUs to enumerate and execute CI tests in parallel. While
this approach has been successful with CPUs and GPUs, it
is challenging to apply a similar approach to FPGAs due to
difficulties in efficient on-chip CI test execution. An FPGA-
accelerated solution for causal discovery is Conditioning Set
Filtering (CSF) [3]. Instead of speeding up CI tests, CSF runs
a computationally expensive procedure on the FPGA to reduce
the number of CI tests so that the remaining tests no longer

create a speed bottleneck. However, CSF cannot function if
the on-chip memory capacity of the FPGA is insufficient to
hold the entire data matrix.

This paper proposes Conditional Independence Test Prior-
itization (CITP), a novel FPGA-based causal discovery ap-
proach. Unlike CSF, CITP has a critical feature that the data
size is not limited by the on-chip memory capacity. Our main
contributions include the following:

1) An acceleration strategy for CITP including a subgraph
selection method, a priority score and an optimized
CPU–FPGA collaboration workflow (Section III).

2) Design and implementation of CITP including a hard-
ware block for priority score evaluation and software for
subgraph selection (Section IV).

3) A comparative evaluation of CITP against state-of-the
art causal discovery methods on CPUs, GPUs and FP-
GAs regarding accuracy and speed (Section V).

II. BACKGROUND

This section provides a brief overview of the problem
settings, commonly used algorithms, and acceleration methods
for causal discovery.

A. Causal Discovery

A causal discovery algorithm is used to extract causal
relations between random variables using data. Given an
N ×D data matrix containing N data points sampled from D
variables, the algorithm extracts causal relations between the
D variables and encodes them into a directed acyclic graph
with D nodes.

This paper focuses on a type of causal discovery methods,
constraint-based methods, because they offer advantages in
terms of quality, speed, and ease of modularization [4], [5],
[6]. The Peter-Clark (PC) algorithm and its variants [7] are
representative techniques for constrained-based causal discov-
ery. These techniques work in two stages. The first stage is
skeleton discovery, where the algorithm builds an undirected
causal graph from the data. The second stage is direction
discovery, where the algorithm derives the direction of edges.

The skeleton discovery stage takes up most of the execution
time. In this stage, the algorithm iteratively removes edges
from a graph. At the beginning of each iteration, a CI test



enumerator produces a CI test I(va, vb|C), which is a test in-
dicating whether random variables va and vb are conditionally
independent given a set of random variables C. The random
variable set C is usually referred to as the conditioning set [8]
or the conditional set [9]. Then, a CI test executor runs the
test using data to obtain a Boolean conclusion as to whether
va and vb are conditionally independent given C. If so, the
edge remover deletes the edge (va, vb) from the graph.

B. Accelerated Causal Discovery

Constraint-based techniques for discovering causal relation-
ships are typically computationally expensive because of the
large number of conditional independence (CI) tests involved.
For example, the Munin causal graph [10] has 1041 nodes.
The maximum number of CI tests executed during causal
discovery is 1.012 × 1014 assuming that the maximum size
of the conditioning set is 4. To speed up this process, a
common and straightforward approach is to perform CI tests in
parallel. For instance, ParallelPC [11], [12] is the first method
to achieve parallel causal discovery, where CI tests with the
same conditioning set size are run simultaneously on multiple
CPU cores. Similarly, cuPC [2] utilizes multiple GPU cores to
map the CI test generator and executors, optimizing memory
access. gpuPC [13] also follows a similar approach to cuPC but
is capable of handling discrete data. The main optimization of
gpuPC is focused on the storage and updating of contingency
tables, rather than the parallelization strategy.

To the best of our knowledge, Conditioning Set Filtering
(CSF) [3] is the sole method that utilizes FPGAs to accelerate
causal discovery. Unlike approaches that employ CPUs and
GPUs for acceleration, CSF uses FPGAs to compute scores
for conditioning sets. By setting a threshold to the scores,
the algorithm can limit the number of CI tests instead of
accelerating them. Consequently, the computation of the score
becomes the new speed bottleneck. A major drawback of CSF
is that the method fails to work for high-dimensional data sets
that are too big to fit into the on-chip memory of the FPGA.
In contrast, some modern problems require causal discovery
from very high dimensional data. For instance, a popular way
to validate agent-based models is the the structural comparison
method [14]. The key procedure is to run causal discovery on
a dataset on transformed time series whose dimensionality can
go beyond 104.

III. CONDITIONAL INDEPENDENCE TEST PRIORITIZATION

This section presents a new approach to speed up causal
discovery using FPGAs called Conditional Independence Test
Prioritization (CITP) in this section. We first examine the
issues that arise when trying to accelerate causal discovery
using FPGAs. Then, we outline the acceleration strategy used
in CITP.

A. Challenges in FPGA-Accelerated Causal Discovery

In FPGA acceleration of causal discovery, a major prob-
lem is the restricted capacity of on-chip memory. A typical
constraint-based causal discovery algorithm needs to access

two key pieces of information: the data matrix and the draft
graph. To ensure adequate data bandwidth, it is essential to
employ fast on-chip memory resources on the FPGA device,
like block RAM (BRAM). Nevertheless, both the data matrix
and the draft graph demand significant memory space. If a
dataset has high dimensionality or a large number of data
points, it is improbable that it can fit into the on-chip memory
of a conventional FPGA chip.

If we use FPGAs to decrease the quantity of CI tests instead
of attempting to speed up the tests, the issue at hand remains
quite difficult. Specifically, while we can circumvent FPGA-
unfriendly operations in CI testing, we are confronted with the
following three challenges:

Challenge of local CI test prioritization. To reduce the
number of CI tests, it is necessary to pick up promising CI tests
that are most likely to remove edges. The only approach we
know, CSF, needs to use the on-chip memory to store global
data related to all nodes in the graph to identify promising
CI tests efficiently. However, if the data is too big to fit into
the on-chip memory, we need to design an alternative CI test
quality control method to use local data on a subset of nodes.

Challenge of data partitioning. Assuming that we have
a CI test selection mechanism to address the previous chal-
lenge, we can transfer partial data to the FPGA. Nonetheless,
transferring different subsets of data to the FPGA may result
in varying degrees of statistical accuracy and computational
efficiency. As a result, identifying a methodology to partition
the data such that the most pertinent subsets are sent to the
FPGA becomes a challenging task.

Challenge of serial dependency. A constraint-based causal
discovery method requires updating the draft causal graph
continually. It is challenging to start the computation for
the next iteration until the current iteration finishes updating
the draft graph since the next iteration necessitates an up-
to-date draft graph. Also, the calculations in each iteration
have distinct natures. For example, the enumeration of CI tests
primarily involves memory and logical operations, while the
execution of CI tests primarily involves numerical operations.
Therefore, poor resource management or load balancing can
result in significant resource underutilization.

B. Conditional Independence Test Prioritization

We propose a new technique called Conditional Indepen-
dence Test Prioritization (CITP) to address the challenges
noted in Section III-A. This approach requires close collabora-
tion between a CPU and an FPGA platform. The CPU platform
maintains a draft causal graph in its memory and iteratively
removes edges. Initially, the draft graph is fully-connected.
Each CITP iteration attempts to remove a set of edges from
the causal graph. The algorithm stops when it cannot remove
any edge in a CITP iteration.

A CITP iteration works as follows. First, the CPU platform
partitions the draft graph into subgraphs and sends the most
promising subgraph to the FPGA. Second, the FPGA platform
evaluates a score for each CI test using only the subgraph
data. The score indicates the likelihood that the CI test can



remove an edge when executed. Third, the FPGA platform
sends the score to a priority queue on the CPU platform,
which prioritizes tests with the highest scores. Finally, the CPU
platform removes edges by executing CI tests in the priority
queue. These steps can occur out of order to reduce resource
idleness.

The computational procedures in each CITP iteration in-
clude priority scoring, subgraph selection, and CPU–FPGA
collaboration. Each procedure addresses a challenge noted in
Section III-A.

1) Priority score evaluation on FPGA: To avoid the on-
chip memory limit, the FPGA platform should be able to
evaluate priority scores using the data for a small subgraph.
For any given CI test I(va, vb, C), we propose to compute the
following priority score on the FPGA:

ϕ(va, vb, C) = 1− |pearson
(
ϵ(va, C), ϵ(vb, C)

)
| (1)

where pearson(u†, u‡) is the Pearson correlation coefficient
between two vectors u† and u‡; ϵ(u,C) is the error vector
defined by

ϵ(u,C) = XC × w∗ − xu (2)
w∗ = argminw||XC × w − xu|| (3)

In other words, we eliminate the information contained in the
conditioning set like [3], [15], [16] and use the correlation
between the two error vectors as a heuristic to determine
the possibility of the two variables being conditionally in-
dependent. high score implies that va and vb are likely to
be independent given the information in C and the execution
of the corresponding CI test I(va, vb, C) should take place
relatively early. It is important to note that our priority score in
Equation 2 exclusively uses the data of a subgraph to calculate
the scores, which addresses the challenge of local CI test
prioritization.

2) Subgraph selection on CPU: At the start of each CITP
iteration, the CPU platform selects a subgraph from the draft
graph so that all scores can be computed using the data in
the subgraph. When a subgraph is chosen, the data vectors
corresponding to the selected nodes are sent to the FPGA
platform. In this case, we aim to use the data vectors to
compute scores for as many edges as possible. Therefore, we
aim to choose a subgraph with the maximum number of edges
interconnecting the nodes in the subgraph. In other words, we
aim to select a subgraph G′ = (V ′, E′) as follows:

V ′ = argmaxV+
|E ∪ V+ × V+| (4)

E′ = E ∪ V ′ × V ′ (5)

The problem formulation in Equation 4 and 5 provides a
way to address the challenge of data partitioning using
combinatorial optimization algorithms. We have proved that
this optimization problem cannot be solved in polynomial
time, but it is unnecessary to compute the optimal solution
in practice. In Section IV, we design a greedy algorithm for
this optimization problem.

3) Efficient collaboration between CPU and FPGA: The
collaboration workflow depicted in Figure 1(a) is a straightfor-
ward collaboration plan resulting from the two aforementioned
procedures. However, this workflow has a serial dependency in
each iteration. To improve the efficiency of the collaboration
workflow, we propose to make the following arrangements:
First, the FPGA platform employs a ping-pong buffer in the
on-chip memory. This buffer consists of two parts, each of
which stores a subgraph. At any given time, only one part is
active, and the FPGA uses this active part to compute CITP
priority scores. After evaluating all scores of the active part,
the active and inactive parts swap, and the CPU begins com-
puting the subgraph for the next batch. Once the CPU finishes
the computation, it sends the subgraph data to the inactive part
of the ping-pong buffer. Second, the CPU platform performs
CI tests without the goal of emptying the priority queue. As
a result, the execution of the tests can be suspended when the
FPGA updates the priority queue.

By putting these settings into practice, we obtain the work-
flow shown in Figure 1(b). This workflow eliminates the issue
of resource idleness caused by the serial data dependency. The
time required to transfer data from the CPU to the FPGA is
amortized for by the computation time, and the priority queue
update only briefly pauses the CPU platform. Consequently,
the updated workflow addresses the challenge of serial
dependency.

IV. DESIGN AND IMPLEMENTATION

This section delves into CITP by presenting the hardware
and software designs for CITP iterations and an experimental
implementation.

A. Hardware and Software Design

Our hardware design for FPGA-based CITP priority score
evaluation is illustrated in Figure 2. This design is based on
the CITP priority score from Equation 1. The design works as
follows. First, the subgraph data containing the data vectors
and candidate CI tests are received from the CPU platform and
stored in on-chip memory. Then, for each candidate CI test,
two least-squares solvers remove the information provided by
the conditioning set from the two test variables and calculate
the two error vectors using Equation 2. Finally, a Pearson
correlation coefficient evaluator computes the score following
Equation 1, which is then sent back to the CPU platform.

On the FPGA side, the acceleration strategy discussed
in Section III reduces the complexity of the hardware and
simplifies the design space, allowing major operations to
be supported by well-optimized hardware implementations
in existing research. In particular, our acceleration strategy
allows the hardware to focus on only two calculations: (i)
least-squares and (ii) evaluation of the Pearson’s correlation
coefficient. Both calculations have efficient FPGA designs,
which we will discus in Section IV-B.

On the CPU side, the only major problem to solve is the
optimization problem defined by Equation 4. To solve the
optimization problem, we adapt a greedy algorithm originally
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Fig. 2. FPGA-based hardware design for CITP priorty score evaluation

designed for the maximum clique problem [17]. The algorithm
starts with a subgraph that consists of only one edge and then
adds nodes to the subgraph iteratively. At each iteration, the
algorithm expands the subgraph by adding a node that maxi-
mizes the number of edges to the subgraph. To account for the
fact that different starting edges can lead to different numbers
of edges in the final subgraph, we repeat the procedure with
every edge in the draft graph and choose the subgraph with
the most edges.

B. Implementation

We use 16-bit fixed-point numbers for data and 32-bit
floating-point numbers for intermediate variables on the FPGA
platform. We conduct experiments and find that 16-bit fixed-
point numbers are reliable enough for computing priority
scores. However, we use floating-point numbers for interme-
diate variables because we observed that fixed-point numbers

TABLE I
RESOURCE USAGE ON INTEL ARRIA 10 FPGA

Resource ALUT RAM FF DSP
Total 854400 2713 1708800 1518
Used 635946 2468 957620 1282

Percentage Used 74% 91% 56% 84%

can cause numerical instability issues in the least-squares
solver.

On the FPGA platform, we implement the hardware for
score evaluation using a least-squares solver and a Pearson’s
correlation coefficient evaluator. To evaluate Equation 1, we
implement the FPGA-based least-squares solvers proposed in
[18]. The calculations in the Pearson correlation coefficient
are mainly the calculation of the sample covariance. We
implement the FPGA-based sample variance calculator in [19]
for this calculation.

To improve the collaboration efficiency between the FPGA-
based hardware accelerator and CPU-based software, we im-
plement two optimizations in our design. The first optimization
is warm starting, where the CPU conducts an unconditional
independence test on the initial graph before the first iter-
ation to eliminate unconditionally independent edges. This
optimization is meant to give the causal discovery algorithm a
head start, allowing the edge subgraph selection routine to be
effective from the beginning. The second optimization is early
stopping. When the FPGA has not finished solving the least
squares problem, the residuals may be inaccurate. However,
since the accuracy of residuals does not directly determine the
score, we terminate the least-squares solver early when the
norm of the residual vector stops changing.

The FPGA design is programmed as an Intel DPC++ kernel
and compiled using the oneAPI DPC++/C++ Compiler [20].
The source code is available at https://github.com/ceguo/citp.
The compiled bitstream is intended for use with the Intel PAC
card with the Intel Arria 10 GX FPGA, and the FPGA’s clock
speed is 240MHz. The resource usage is listed in Table I.



V. EVALUATION

This section assesses the accuracy and speed of CITP by
comparing the accuracy and speed of CITP with existing
methods on CPUs and GPUs.

A. Experiment Setup

We compare CITP against the three other causal discovery
techniques including pcalg [1] running on multi-core CPUs,
cuPC [2] running on GPUs and CSF [3] running on FPGAs.
We do not compare with bnlearn [21] or ParallelPC [12]
because they do not demonstrate accuracy or speed advantages
compared with pcalg in the experiments in [3] and [22].

TABLE II
HARDWARE PLATFORMS

Platform CPU GPU FPGA
Vendor Intel NVIDIA Intel
Series Core GeForce Arria
Model i5-9500 RTX 3060 10 GX

Lithography 14nm 8nm 20nm
Cores 6 3584 N/A

Base Frequency 3.00 GHz 1.32 GHz 240 MHz
Max Frequency 4.40 GHz 1.78 GHz 240 MHz
Used in pcalg ✓ × ×

Used in cuPC [2] × ✓ ×
Used in CSF [3] ✓ × ✓

Used in CITP (Proposed) ✓ × ✓

Our hardware platforms are shown in Table II. Regarding
compilation, the C++ software code for pcalg, is compiled
with LLVM/Clang version 14.0.0 using the -O2 optimization
flag. We attempt to use the -O3 optimization flag, but the code
runs slower than the version with -O2. We use the NVIDIA
CUDA compiler 11.1 to compile the GPU code for cuPC with
the -O3 optimization flag following the settings in [2].

TABLE III
CAUSAL GRAPHS USED IN EXPERIMENTS

Name Nodes Edges Application
Hailfinder 56 66 Severe weather forecasting [23]
Hepar2 70 123 Liver disorder diagnosis [24]
Win95pts 76 112 Printer troubleshooting [25]
Pathfinder 109 195 Lymph node disease diagnosis [26]
Andes 223 338 Intelligent tutoring [27]
Diabetes 413 602 Diabetes diagnosis [28]
Pigs 441 592 Pedigree inference [29]
Link 724 1125 Human genetics [30]
Munin 1041 1397 Electromyography analysis [10]

Our focus is on testing both discovery speed and accuracy,
we only use datasets with ground truths. However, the avail-
ability of these causal graphs in the public domain is limited.
In the experiments, we use the largest real-world causal graphs
we can find, as listed in Table III. These graphs have been
considered very challenging in previous studies [1], [3], [7],
[12], [22]. Based on the size classification scheme of causal
graphs in [21], Hepar2, Hailfinder, and Win95pts are classified
as large causal graphs with 50-100 nodes, while Pathfinder,
Andes, Diabetes, Pigs, and Link are classified as very large
causal graphs with 100-500 nodes; Munin is classified as a
massive causal graph with 1041 nodes.

Regarding data sampling, we adopt the structural linear
model to generate data samples from the tested graphs, as
suggested in [3], [31]. Another sampling model for contin-
uous data is the Gaussian model [11]. However, we do not
use this model because it assumes that the data follows a
Gaussian distribution, which is not applicable to various causal
discovery scenarios [32]. We generate a dataset consisting of
10000 data points for each causal graph. This sample size
is considered adequate for typical applications in genomic
analysis [12] and validation of agent-based models [14]. As
the size of the data increases, the accuracy of all algorithms
is expected to improve, but the speed of causal discovery may
decrease. Moreover, causal discovery tools like CSF, which
have limitations on the data size may no longer function when
the data is too large.

We evaluate the accuracy and speed of the skeleton discov-
ery stage in causal discovery for each dataset, while ignoring
the computation of directions of edges, as suggested in [33].

B. Accuracy

The CITP method has a different computational routine
from existing methods, which may lead to different causal
discovery accuracy. Fortunately, accuracy evaluation process
of causal discovery algorithms is straightforward. Given the
ground truth of the causal causal graph, the accuracy can be
calculated as the number of edges correctly identified divided
by the total number of edges.

TABLE IV
DISCOVERY ACCURACY

Existing Approaches Proposed Approach
pcalg [1] cuPC [2] CSF [3] CITP Ratio/Best

Hailfinder 0.7576 0.7576 0.7879 0.8030 100.00%
Hepar2 0.2846 0.2846 0.2683 0.2602 91.43%
Win95pts 0.7143 0.7143 0.6875 0.6964 97.49%
Pathfinder TLE TLE 0.8667 0.8872 100.00%
Andes 0.7781 0.7781 OCMLE 0.7751 99.61%
Diabetes 0.7907 0.7907 OCMLE 0.8040 100.00%
Pigs 0.6571 0.6571 OCMLE 0.6453 98.20%
Link 0.4693 0.4693 OCMLE 0.4489 95.65%
Munin 0.5140 0.5140 OCMLE 0.5125 99.71%

TLE: time limit exceeded (cannot finish in 7200 seconds).
OCMLE: on-chip memory limit exceeded (cannot start).

Table IV presents the accuracy results of various methods
for causal discovery. The accuracy levels of all the imple-
mentations are comparable, and particularly, pcalg and cuPC
demonstrate the same accuracy due to the equivalence of their
algorithms. For each test case, the accuracy values for all
methods are within a narrow range. Although CITP’s accuracy
is slightly lower than that of pcalg and cuPC, the variation
is less than 0.03 across all test cases, which is regarded as
negligible in the context of causal discovery according to [4].

Our observation that all implementation gives similar ac-
curacy is different from the one in [3], where CSF has a
small advantage. The reason for this difference is that the data
sizes used in our study are larger than those used in the CSF
paper, allowing for more accurate CI test results even if the
test algorithms are statistically simple. In this case, simpler



Fisher’s CI tests used in pcalg and cuPC can achieve similar
accuracy to the kernel-based CI test in CSF. Our observation
is another instance where more data outperforms smarter
algorithms, which is a common occurrence in data mining
[34], [35]. This observation further supports our opinion that
the ability to handle large data sizes is a crucial feature in
causal discovery tools.

C. Discovery Speed

We measure the causal discovery speed of different methods
by taking the total execution time. Using the execution time
record, we also calculate the speedup of the proposed approach
over other methods.

TABLE V
DISCOVERY TIME IN SECONDS

Existing Approaches Proposed Approach
pcalg [1] cuPC [2] CSF [3] CITP-CPU CITP

Hailfinder 6.4 3.0 4.9 15.0 5.5
Hepar2 2.8 1.3 2.7 14.3 3.3
Win95pts 2.7 1.7 5.5 14.0 3.8
Pathfinder TLE TLE 20.1 87.2 9.5
Andes 12.5 3.3 OCMLE 56.3 4.5
Diabetes 3078.2 354.1 OCMLE 1489.8 139.0
Pigs 3424.1 219.6 OCMLE 662.4 84.9
Link 65.0 12.7 OCMLE 200.6 21.2
Munin 695.7 14.6 OCMLE 77.0 8.8

TABLE VI
SPEEDUP OF FPGA-BASED CITP OVER OTHER METHODS

pcalg [1] cuPC [2] CSF [3] CITP-CPU
Hailfinder 1.2 0.5 0.9 2.7
Hepar2 0.8 0.4 0.8 4.3
Win95pts 0.7 0.4 1.4 3.7
Pathfinder N/A N/A 2.1 9.2
Andes 2.8 0.7 N/A 12.5
Diabetes 22.1 2.5 N/A 10.7
Pigs 40.3 2.6 N/A 7.8
Link 3.1 0.6 N/A 9.5
Munin 79.1 1.7 N/A 8.8

Table V shows the speed of different approaches measured
by the execution time in seconds. The CITP-CPU column
corresponds to a multi-core CPU implementation of CITP. We
do not show the speed of the single-core CPU implementation
of CITP for brevity. The CPU version of CITP runs on
six cores provides around 3 times speedup over the single-
core serial version. This observation is similar to [22], where
multiple causal discovery algorithms cannot provide more than
4 times speedup over the serial version, regardless of the
number of CPU cores.

While a large causal graph with more nodes can result
in longer discovery time, the discovery time is not solely
determined by the graph size. The problem complexity also
relies on the graph topology and data distribution. For instance,
if the causal graph is small, but the topology and data make
it challenging to eliminate edges with small conditioning sets,
the causal discovery process can still be time-consuming.

CITP is the overall fastest for large causal graphs. It is
respectively up to 79 times, 2.6 times and 2.1 times faster than

pcalg, cuPC and CSF. The test cases where CITP provides the
highest speed include Pathfinder, Diabetes, Pigs, and Munin.
These causal graphs are among the largest causal graphs in
the test cases with 109–1041 nodes. In contrast, the test cases
where CITP is less than half speed of cuPC include Hailfinder,
Hepar2 and Win95pts. These causal graphs are relatively small
with only 56–76 nodes.

The higher performance of CITP over pcalg and cuPC for
large causal graphs is likely due to the computational overhead
of the priority score. In general, a graph with more nodes tends
to have a larger number of CI tests. Proper prioritization can
reduce the number of CI tests since early execution of critical
CI tests can significantly simplify the draft graph. However,
when the graph is small, the reduction in the number of CI tests
is limited, and the computation for CI prioritization becomes
a significant overhead. The time saved by the reduction in the
number of CI tests can offset the time spent on priority score
evaluation.

Our experiment results indicate that CITP has the potential
to be applied to more challenging causal graphs, such as the
one with 1643 nodes in [2] which took three days to run on
a CPU. Unfortunately, we have no access to the data, and
therefore have limited knowledge about the network topology
and data distribution. However, we estimate that using our
proposed technique, the causal discovery for the 1643-node
graph in [2] can be completed within 10 minutes.

VI. CONCLUSIONS AND FUTURE WORK

Accelerating causal discovery using FPGAs is a challenging
task. The only solution we know, conditioning set filtering
(CSF), has a major drawback: it cannot work when the on-
chip memory capacity is insufficient to hold the entire data
matrix. This paper addresses the on-chip memory issue by
proposing a new approach called conditioning independence
test prioritization (CITP). CITP allows the data to remain in
off-chip memory, hence removing the data size limit. In the
experimental evaluation, CITP achieves similar accuracy with
state-of-the-art causal discovery methods running on CPUs and
GPUs. CITP is also faster than the CPU-based pcalg and GPU-
based cuPC on large causal graphs.

Future work includes optimizing our approach to further
improve its performance, power consumption, accuracy, and
the scalability for larger data using cloud-based systems that
combine CPUs, GPUs, and FPGAs, and applying the approach
to demanding applications such as those in biomedical science
and agent-based modeling.
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