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Abstract—Sim-to-real robot learning has been used in various
applications, but its implementation in software may not provide
the best performance. This tutorial describes how hardware
acceleration based on Field-Programmable Gate Array (FPGA)
technology for deep reinforcement learning can improve sim-
to-real robot control policy learning. A novel architecture for
the Deep Deterministic Policy Gradient (DDPG) algorithm is
developed for a full-stack sim-to-real development platform
to learn control policies for robotic arms. The capability of
our development platform is illustrated by transferring learned
policies encoded as fixed-point numbers from our implementation
to a miniature robotic arm.

Index Terms—FPGA, acceleration, robotic arms, sim-to-real,
robot learning, reinforcement learning

I. INTRODUCTION

The traditional approach to robot development involves
manually programming predefined action policies, suitable
for straightforward environments. However, robots today of-
ten face complex and unpredictable settings, where manual
programming becomes labor-intensive and error-prone. En-
hancing programming quality and efficiency can be achieved
by training robots using reward-based reinforcement learning
[1]. Yet, applying reinforcement learning directly to physical
robots presents drawbacks: there are risks of harm to humans,
the environment, and the robots themselves, especially during
the early stages of policy development. Furthermore, training
with physical robots is time-consuming, as reinforcement
learning algorithms require extensive interaction history to
develop effective policies.

A viable alternative is sim-to-real robot learning [2], [3],
where the reinforcement learning algorithm initially trains
using virtual robots in simulated environments before ap-
plying the learned policy to physical robots. Simulations
effectively reduce the risks associated with physical dam-
age and allow for rapid data collection in a digital realm.
However, the computational demands of policy learning can
still be a bottleneck, even with efficient data collection. Our
research employs Field-Programmable Gate Arrays (FPGAs)
to accelerate the reinforcement learning process for robotic
arms. FPGAs are adept at accelerating both training and
inference algorithms in machine learning, particularly useful
given the typically smaller neural networks used in robot
policy learning compared to those in supervised learning.
This allows FPGA-accelerated training to exploit fine-grained
parallelism in compact models efficiently. Moreover, FPGA
accelerators, being more power-efficient than CPUs and GPUs

of equivalent performance, are particularly suited for battery-
powered devices, facilitating on-site retraining to quickly adapt
to changing environments [4].

This tutorial paper builds upon previous work [5], featur-
ing an improved physical robotic arm, simulator, software
reference, and policy quality tests. While focusing primarily
on a 4-DoF (4 Degrees of Freedom) robotic arm for a
simplified demonstration, the sim-to-real method and FPGA-
based accelerator are applicable to a wider range of robotic
systems. For more information, please refer to [2] and [6].

The following sections of this tutorial are organized as
follows: Section II provides relevant background information.
Section III introduces the policy learning platform. Section IV
details the FPGA accelerator for policy learning. Section V
evaluates training time and policy quality in an object manip-
ulation task. Finally, Section VI offers concluding remarks and
future research directions.

II. BACKGROUND

Sim-to-real policy learning in robotics involves two stages:
training in simulations and policy transfer. Initially, robots
are trained in simulated environments, where they safely learn
diverse and complex policies without real-world risks. This
phase is crucial for developing adaptable and robust action
strategies. The second stage transfers these policies to real
settings, ensuring their effectiveness and practicality. Key ap-
plications, as detailed in [7], [8], and [9], range from touching
to grasping. Sim-to-real learning effectively merges simulated
learning’s safety with the realism of physical deployment,
significantly enhancing robotic training and deployment ef-
ficiency.

The sim-to-real learning system presented in this paper is
built upon the Deep Deterministic Policy Gradient (DDPG)
approach [10]. DDPG stands as a robust algorithm in the field
of reinforcement learning, building upon the capabilities of
Deep-Q-Networks (DQNs) [11], [12]. This method utilizes an
actor-critic architecture, combining elements from both value-
based and policy-based approaches. Within this framework,
the actor network determines the optimal policy—specifying
actions in given states—while the critic network assesses this
policy by estimating the expected cumulative reward.

The DDPG algorithm functions as follows: It begins with
the data collection phase, where interaction data between
the simulated robot and its environment are gathered and
stored in a replay buffer. This data forms the training set for
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the neural networks. Following data collection, the algorithm
undergoes an iterative process. In each iteration, the gradient
computation step calculates gradients for both the actor and
critic networks. Subsequently, the model update step occurs,
where an optimizer adjusts the weights of these networks
based on the calculated gradients. This process of weight
adjustment and network refinement continues across multiple
cycles. Detailed information on the algorithm’s specific steps
can be found in [10] and [13]. Applications of DDPG in sim-
to-real learning have been demonstrated in tasks such as object
pushing [14] and the manipulation of deformable objects [15].

The gradient computation step in the DDPG algorithm poses
a significant computational challenge. To address this, we
propose the use of Field-Programmable Gate Arrays (FP-
GAs) to accelerate the process. Leveraging FPGA-accelerated
machine learning offers remarkable advantages in speed and
energy efficiency [16], making it a compelling option in
robotics applications. Recent advancements in design automa-
tion techniques [17], [18] further enhance the feasibility and
attractiveness of developing FPGA-based machine learning
accelerators.

The body of research on FPGA-based reinforcement learn-
ing is diverse, covering accelerators designed for various
algorithms. This includes deep Q-Learning [19], [20], Asyn-
chronous Advantage Actor-Critic (A3C) [21], Trust Region
Policy Optimization (TRPO) [22] along with its advancements
in 2018 [23], and Proximal Policy Optimization (PPO) [24].
Additionally, our publication [5] is pioneering in two signifi-
cant aspects. Firstly, it represents the first instance of applying
FPGA acceleration to the DDPG algorithm. Secondly, it is
notable for being the initial study to successfully implement
policies learned through FPGA-accelerated learning in the
control of a physical robotic arm. This breakthrough en-
ables the orchestration of object movements within a three-
dimensional space through continuous actions.

III. FPGA-ACCELERATED SIM-TO-REAL POLICY
LEARNING PLATFORM

This section introduces a sophisticated policy learning plat-
form tailored for robotic arms. Our platform distinguishes it-
self from those discussed in [23] and [5] in terms of kinematics
and action space.

The platform, illustrated in Fig. 1, encompasses six main
components. The robot control software, operating on a mi-
crocontroller, handles the actions of the physical robotic arm.
In parallel, another computer runs dedicated control software
for simulation that controls a simulated robotic arm. This
control software leverages a policy from the policy learning
software, which orchestrates control signals for the simulated
robot and collects feedback. A pivotal component is the policy
learning software, tasked with gathering interaction data from
the simulation control software. This data is converted into
training material for the reinforcement learning algorithm. A
key innovation in the platform is the learning accelerator,
built on an FPGA platform. This accelerator is designed for
rapid gradient computation within the reinforcement learning
model’s networks. These gradients are critical for the rein-
forcement learning algorithm to improve the policy.
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Fig. 1. Design of policy learning platform including a physical robotic arm
and its simulated counterpart.

Fig. 2. A snapshot of the experiment when the simulated robot and its physical
counterpart are in the same state while executing an identical policy.

The simulator, periodically updated with the refined policy
from the policy learning software, continues to accumulate
interaction records. Once the policy reaches an adequate level
of development, it is implemented into the robot control
software. Consequently, the microcontroller can utilize the
policy to govern the physical robotic arm’s movements.

Our platform utilizes a 4-DoF (Degrees of Freedom) phys-
ical robotic arm, as depicted in Fig. 2 alongside its simulated
counterpart. This robotic arm comprises four solid links con-
nected by three joints, with an electromagnet serving as the
end effector. In our experiments, this electromagnet is designed
to lift an iron cylinder. The simulator replicates the behavior
of the robotic arm in discrete time steps. At each time step’s
start, the arm selects an action from a predefined action space,
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which the simulator then executes in the virtual environment,
providing feedback on the resulting state at the time step’s
end.

The action space of the robotic arm includes five signals.
Four signals correspond to the rotation rate of each motor,
where the sign of these signals indicates the rotation direction.
The fifth signal is dedicated to the electromagnet’s activation
status.

IV. FPGA-ACCELERATED DDPG DESIGN
FOR POLICY LEARNING

A crucial element of the policy learning platform is the
FPGA-based learning accelerator. Working in tandem with the
policy learning software on the CPU host, this accelerator
significantly enhances the efficiency of policy learning. In
this setup, the CPU sends training data to the FPGA for the
computation of network parameter gradients. These gradients
are then relayed back to the CPU. On the CPU platform, an
optimization algorithm utilizes these gradients to update the
network parameters.

The actor and critic networks in the DDPG model, consid-
ering the defined action and state spaces, both utilize fully-
connected layers. This structure primarily involves numeri-
cal calculations for gradient computation, which include the
propagation of activation and error signals. With the ReLU
activation function employed in both networks, the signal
propagation can effectively be described as a series of dot
product operations.

We organize gradient calculations into two distinct compu-
tational patterns: the distributive pattern and the collective
pattern. For each pattern, we design specialized hardware
processing elements (PEs) for each pattern.

• The distributive pattern is used when all N input signals
of a layer are accessible at the start of computation. In
this scenario, a specific PE, called a distributive PE, con-
ducts computations across multiple cycles. Specifically,
it works by initializing the dot product calculation for
K pairs of M-dimensional vectors during each cycle. In
other words, within one cycle, the PE takes information
from all M signals and distributes it to produce K
output signals. After the pipeline overhead of dot product
calculation, K output signals are available in each cycle.
Therefore, emitting all the M output signals requires
⌈M/K⌉ consecutive cycles.

• The collective pattern emerges when the N input signals
of the layer become available gradually over multiple
cycles. A different type of hardware, the collective PE,
accumulates partial results for all output signals using the
information of K newly available input signals in each
cycle. In other words, this PE collects information from
K input signals during every cycle. The M accumulated
results cannot be treated as output signals during the accu-
mulation process since they have incomplete information
from the input signals. However, these results become
valid at the same time after ⌈N/K⌉ cycles when the PE
finishes collecting information from all N input signals,
resulting in complete output signals.
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Fig. 3. A chain of distributive and collective PE to accelerate gradient
computation for a 3-layer actor network. Each layer of the network maps
to two PEs controlling the signal propagation in two directions.

The initiation of signal propagation commences from the
input layer of the network, where the initial activation signals
correspond to the training data. This known training data
prompts the computation to follow the distributive pattern.
Consequently, as the activation signals within the subsequent
layers become incrementally available, the network transitions
to the collective pattern. The output derived from the collective
pattern then feeds into the successive layer, thereby reinstating
the distributive pattern. Upon the activation signal’s culmina-
tion at the network’s terminus, the error signal can be com-
puted in a pipelined manner, commencing error propagation
that differs from the final activation signal pattern.

To accelerate signal propagation for gradient calculations,
we design an architecture with a chain of PEs. The choice
between the two types of PEs depends on parity of the
layer’s position in the sequence of signal propagation. By
interconnecting these PEs in accordance with the layout of
the actor and critic networks, gradient computation can be
accelerated. For example, Fig. 3 illustrates a design example
for an actor network comprising three layers.

V. EVALUATION

This section presents an empirical evaluation to demonstrate
the potential of the proposed policy learning platform based
on the DDPG algorithm.

A. Experiment Setup

The primary goal of this experiment is to relocate an
iron cylinder from its initial position to a predefined target
position. This task represents a standard relocation challenge
in robotic manipulation, as outlined in [25]. To guide the
policy optimization process with greater accuracy, we have
customized the reward function in line with the methodol-
ogy described in [26]. The task is segmented into discrete
components, with each component receiving a relative weight.
These weights are fine-tuned through numerous iterations of
simulated trials, ensuring optimal task performance. Formally,
the reward function for a state S is represented as follows:

R(S) = −
4∑

i=1

wiri(S) (1)

where w1 . . . w4 are the weights of the reward components.
r1(S) represents the Euclidean distance between the end
effector and the iron cylinder. r2(S) is the inclination angle of
the end effector. r3(S) equals 0 if the electromagnet is close
to the iron cylinder; otherwise, r3(S) equals 1. Lastly, r4(S)
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TABLE I
POLICY QUALITY AND LEARNING EFFICIENCY

Task Initial Target TRPO DDPG Training Time Training Time Speedup Gradient Time Gradient Time Speedup
Position Position [23] PyTorch (sec) C+FPGA (sec) (times) PyTorch (sec) C+FPGA (sec) (times)

A (200,0) (200,100) Success Success 1102.86 71.16 15 1062.05 30.11 35
B (200,0) (100,100) Failure Success 1114.83 78.86 14 1074.02 37.96 28
C (100,0) (100,50) Success Success 1213.11 77.75 16 1168.59 32.48 36
D (100,50) (100,0) Success Success 1016.77 70.36 14 979.67 31.43 31
E (100,0) (50,50) Failure Success 1539.11 95.02 16 1483.46 39.13 38
F (50,50) (100,0) Failure Success 1119.90 75.82 15 1079.09 34.67 31

TABLE II
RESOURCE USAGE ON INTEL STRATIX-V FPGA

Resource Utilisation Available Percentage
Logic utilisation 143569 262400 54.71%
- Primary FFs 304025 524800 57.93%
- Secondary FFs 14221 524800 2.71%
Multipliers (18x18) 3769 3926 96.00%
DSP blocks 1913 1963 97.45%
Block memory (M20k) 1913 2567 74.52%

quantifies the Euclidean distance between the iron cylinder and
the target position, serving also as the termination condition.

In the learning efficiency experiments, all training time
measurements for the CPU platform are derived from a
Python implementation of the identical DDPG model utilizing
PyTorch 2.0. The 8-thread software operates on a workstation
equipped with an Intel Core i7-6700 CPU (14nm, 4 cores, 3.4
GHz). We do not measure the CPU time for the simulator
because it can be amortized. In particular, the simulation
time to produce a data set is far shorter than the spent on
DDPG training using the data set. Therefore, while the training
procedure is consuming a data set, the simulator has sufficient
time to collect another one.

The proposed learning accelerator is realized on the Maxeler
MAX4 platform, housing an Intel Stratix-V FPGA (28nm, 200
MHz). Each network is composed of a solitary hidden layer
featuring 108 ReLU nodes. The actor network has an output
layer with 5 TanH nodes, while the critic network’s output
layer comprises only one linear node. The input batch size is
set at 8. On the FPGA platform, all multiplications employ 32-
bit fixed-point numbers with 8 integer bits and 24 fractional
bits.

B. Results and Discussion

We apply the policies acquired within the simulated envi-
ronment to our physical robotic arm to assess their quality.
Following the completion of training within the simulation,
the parameters of the actor network are saved locally. These
parameters, extracted from different episodes of training, are
preserved every 100 episodes thereafter, reaching up to 2000
episodes. This experiment encompasses the evaluation of six
distinct tasks. In each task, the robotic arm is tasked with
relocating an object from a designated initial position to a
specified target position. For a task to be deemed successful,
the robotic arm must place the iron cylinder within a range of
10mm from the target position.

The results on policy quality and learning efficiency are
shown in Table I. The resource utilization of the FPGA

design is shown in Table II. The comparative analysis encom-
passes the conventional DDPG method in PyTorch, the FPGA-
accelerated design of the DDPG algorithm, and the FPGA-
based design for Temporal Difference Policy Optimization
(TRPO) methodology developed in [23].

Columns 1–3 in Table I show the task settings. Columns
4 and 5 show whether the TRPO design in [23] and the
proposed DDPG design can successfully finish each task.
Given the disparate algorithmic underpinnings, a direct com-
parison between TRPO and DDPG in terms of training time
is unfair. Accordingly, we focus on whether TRPO can suc-
cessfully accomplish each task. Columns 6 and 7 present the
overall training time, covering gradient computation, gradient
transmission, and model update. Less training time means
faster convergence within the policy search process. Column
8 shows the speedup of the FPGA-accelerated DDPG design
over the PyTorch design. We can see that the DDPG designs
are able to find usable policies in all six tasks, while the TRPO
design can only succeed in tasks A, C, and D. Regarding the
two DDPG designs, it is anticipated that the PyTorch-based
design attains convergence with marginally fewer training
episodes than its FPGA-accelerated counterpart, primarily due
to its higher numeric precision. Nonetheless, since the FPGA-
accelerated design spends less time on each training episode
than the PyTorch design, the FPGA-accelerated design still
demonstrates 14–16 times speedup.

We notice that the FPGA does not demonstrate its full
potential in the learning procedure for two reasons. First,
gradients computed on the FPGA need to go back to the
CPU software, and there is an IO bandwidth bottleneck in the
PCIe interface for this data transmission operation. Second,
the model update operation in the software is not accelerated
on the FPGA since it does not constitute a performance
bottleneck. To estimate the full potential of the FPGA chip,
we record the execution time spent on gradient computation
in Column 9 and 10 for the two DDPG designs. Column 11
shows the corresponding speedup. The isolation of data trans-
mission and model update enables us to gauge the speedup
afforded by the computation kernel. The execution time un-
der this setting corresponds to the FPGA chip’s theoretical
maximum acceleration, assuming infinite bandwidth with the
host computer and zero execution time for model updates.
The results show that the maximum speedup of the FPGA-
accelerated design can reach 28–38 times, which is higher
than the speedup for the whole training procedure. As the
model size increases with the complexity of the robotic system,
gradient computation tends to consume a larger proportion of
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the learning time. In such cases, the speedup of the entire
training process is likely to approach this theoretical upper
bound.

Besides the FPGA, our evaluation involves the use of
an NVIDIA GeForce RTX 4090 GPU with PyTorch CUDA
support. To maintain brevity, we omit the results, as the
training acceleration with the GPU was consistently slower
than that achieved with the FPGA in all tested scenarios. This
observation aligns with findings from a previous empirical
study [27].

VI. CONCLUSIONS AND FUTURE WORK

This tutorial paper presents a reinforcement learning frame-
work uniquely designed to execute the Deep Deterministic Pol-
icy Gradient (DDPG) algorithm on Field-Programmable Gate
Arrays (FPGAs). Our platform integrates a physical robotic
arm and its corresponding virtual simulator. The FPGA-
accelerated DDPG architecture is specifically developed to
facilitate efficient policy learning through the use of the virtual
robotic arm simulation. Despite facing input-output (IO) band-
width limitations between the CPU host and the FPGA, our
approach achieves significant acceleration while maintaining
the integrity of the learned policies. These policies, represented
in fixed-point numerals, effectively direct the physical arm’s
maneuvers within a three-dimensional environment.

Looking ahead, our study will focus on two main areas of
future work. Firstly, we aim to explore the potential of FPGAs
in enhancing the learning process by leveraging data from low-
precision simulations. Secondly, we plan to conduct a thorough
analysis and optimization of energy consumption during both
the simulation and training phases.
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