
ASPO: Constraint-Aware Bayesian Optimization for
FPGA-based Soft Processors

Haoran Wu∗, Ce Guo†, Wayne Luk†, Robert Mullins∗
∗Department of Computer Science and Technology, University of Cambridge, Cambridge, UK

†Department of Computing, Imperial College London, London, UK
Emails: hw691@cam.ac.uk, {c.guo, w.luk}@imperial.ac.uk, robert.mullins@cl.cam.ac.uk

Abstract—Bayesian Optimization (BO) has shown promise in
tuning processor design parameters. However, standard BO does
not support constraints involving categorical parameters such
as types of branch predictors and division circuits. In addition,
optimization time of BO grows with processor complexity, which
becomes increasingly significant especially for FPGA-based soft
processors. This paper introduces ASPO, an approach that
leverages disjunctive form to enable BO to handle constraints
involving categorical parameters. Unlike existing methods that
directly apply standard BO, the proposed ASPO method, for
the first time, customizes the mathematical mechanism of BO to
address challenges faced by soft-processor designs on FPGAs.
Specifically, ASPO supports categorical parameters using a
novel customized BO covariance kernel. It also accelerates the
design evaluation procedure by penalizing the BO acquisition
function with potential evaluation time and by reusing FPGA
synthesis checkpoints from previously evaluated configurations.
ASPO targets three soft processors: RocketChip, BOOM, and
EL2 VeeR. The approach is evaluated based on seven RISC-V
benchmarks. Results show that ASPO can reduce execution time
for the “multiply” benchmark on the BOOM processor by up
to 35% compared to the default configuration. Furthermore, it
reduces design time for the BOOM processor by up to 74%
compared to Boomerang, a state-of-the-art hardware-oriented
BO approach.

Index Terms—FPGA design parameter optimization; Bayesian
optimization; Processor customization

I. INTRODUCTION

Soft processors are instruction processors whose architec-
ture and behavior are captured in software. They can be
deployed on reconfigurable fabrics such as FPGAs [1] and sup-
port different application programs without lengthy place-and-
route. A soft processor is a parametric hardware design where
the characteristics of microarchitectural components, such as
the number of cache lines and the choice of the division circuit,
are determined by a set of tunable configuration parameters
defining the design space for the soft processor. The design
process involves the selection of appropriate values for each
parameter, enabling it to be optimized for specific tasks.

Manually optimizing soft processors for enhanced perfor-
mance in specific tasks is impractical due to their vast and
complex design space. This complexity arises from the high
dimensionality of the parameter space and the non-linear
relationships between parameters and performance. Addition-
ally, many parameters are interdependent, requiring careful
coordination to achieve optimal configurations. The challenge

is further compounded by the lengthy evaluation process,
which involves FPGA synthesis and significantly limits the
number of configurations that can be tested during the tuning
process.

To address these issues, we introduce ASPO, Automated
Soft Processors Optimization, a soft processor parameter
optimization platform based on Bayesian Optimization (BO).
A critical insight of this study is that Bayesian optimization
cannot directly deal with categorical parameters, processor-
specific parameter constraints, and the slow design evaluation
procedure with FPGA synthesis. The key novelty is that we
modify the mathematical form of BO to cope with these
shortcomings rather than using BO directly. Compared with
existing BO approaches for soft processors, ASOP involves
the following new components: (i) customized BO covariance
kernel to consider categorical parameters, (ii) smooth func-
tions to encode parameter constraints, (iii) speed-aware BO
acquisition function to speed up evaluation.

The development of ASPO involves addressing several key
challenges.

• Challenge C1: The design space of FPGA-based soft
processors includes numerous categorical parameters, in-
cluding types of branch predictors and division circuits.
These categorical parameters are particularly hard to
optimize because they lack a natural order or continuity,
making them incompatible with standard BO methods [2]
and conventional constraint-handling techniques.

• Challenge C2: Various types of constraints need to be
imposed among the design parameters [3]. Allowing de-
signers to specify these constraints is particularly valuable
in FPGA designs, where strict resource limitations and
architectural requirements must be adhered to. While
these constraints are typically encoded as functions with
Boolean outputs, standard BO methods require constraint
functions with continuous and smooth ranges, making
direct integration of Boolean constraints difficult.

• Challenge C3: The optimization process requires eval-
uating numerous design parameter configurations, which
is particularly time-consuming due to the need for accu-
rate evaluation through FPGA synthesis. This exhaustive
process significantly increases computational overhead,
especially when configurations with minimal variations
are repeatedly generated and evaluated.



The key contributions of this work are outlined as follows:

• A BO workflow with a customized kernel for categorical
parameters, enhancing the efficiency of the optimization
process, addressing Challenge C1. This technique is dis-
cussed in Section III-A.

• An innovative method involving the disjunctive form to
enable BO to identify all types of constraints during
its generation phase, ensuring that the resulting soft
processor configuration complies with its specifications,
addressing Challenge C2. This method is elaborated in
Section III-B.

• A novel checkpoint reuse method that incorporates a
similarity-based matching function into the BO acquisi-
tion process, enabling dynamic selection of prior config-
urations to accelerate design evaluation. This approach
addresses Challenge C3 and is detailed in Section IV, as
shown in Figure 2.

The ASPO optimization platform, comprising the Bayesian
optimizer, evaluation framework, and scripts for replicating
the experiments presented in this paper, is made available as
open-source software1.

II. BACKGROUND

Optimizing soft processors increasingly relies on black-box
techniques such as Bayesian Optimization (BO) [3], [4]. This
section outlines the core principles behind these strategies.

Soft processor optimization is inherently a black-box prob-
lem, involving complex and opaque relationships between
design parameters, performance, power, and resource usage.
The lack of explicit models and gradient information makes
gradient-based methods impractical, requiring designers to rely
on and time-consuming simulation or expensive empirical
testing.

BO [5] addresses these issues using a probabilistic surrogate
model to approximate the objective function. Let x denote a
parameter configuration and f(x) a performance metric such
as execution time or clock frequency. A Gaussian Process
(GP) [6] is commonly used to provide probabilistic predictions
of f(x). An acquisition function then guides the selection
of the next configuration by balancing exploration and ex-
ploitation. This process repeats until convergence or a stopping
criterion is met.

BO has demonstrated significant potential in optimizing
processor design parameters. Table I summarizes and com-
pares the key features of Bayesian optimization methods for
tuning processor designs over the past five years, including
FIST [7], BOOM-Explorer (BE) [3], Boomerang [4], Orbit-
ML [8], RCBO [10], and our proposed method. Furthermore,
the workflows of four representative methods are illustrated in
Figure 1.

Besides processor optimization, BO has been applied be-
yond architectural parameter tuning to various aspects of

1https://github.com/GeorgeWu1204/Configurable-Processor-Design-
Platform-and-Dataset

hardware and software optimization on FPGA platforms. For
instance, BO has been employed to refine computational
modules, such as in [11], where it is used to generate
approximate multipliers that balance accuracy and hardware
efficiency. Similarly, [12] demonstrates the application of BO
to determine optimal layer sparsity in FPGA-based object
detectors, showcasing its adaptability across domains. Addi-
tionally, BO has been leveraged for automation at multiple
levels of FPGA design, including routing [13] and High-Level
Synthesis (HLS) code optimization [14], [15].

III. INTEGRATING CATEGORICAL PARAMETERS AND
PARAMETER CONSTRAINTS INTO OPTIMIZATION

Bayesian Optimization (BO) methods used in prior work
[3], [4], [10] do not support the parameter constraints defined
in the soft processor’s design specifications. Consequently,
the optimizer may produce invalid designs that fail during
configuration, simulation, or FPGA synthesis, or exceed re-
source limitations. Evaluating these invalid designs reduces
productivity and wastes computational resources. Examples of
such parameter constraints are presented in Table III.

To address this, we propose three types of parameter
constraint-checking functions, which are used to examine the
validity of configuration parameter sets against three classes of
constraints. These functions are integrated into the parameter
selection process of the BO method. This integration allows
the BO method to handle constrained optimization problems
by maximizing the acquisition function while satisfying fea-
sibility requirements [16].

Under this framework, gradient-based constrained optimiza-
tion solvers, such as Sequential Least Squares Programming
(SLSQP) [17] and trust-region algorithms [18], can be em-
ployed alongside the optimizer. However, the application of
these methods has two key requirements. First, the domain of
the constraint functions must be numeric. Second, the range of
the functions must be smooth to effectively guide the search
for feasible and optimal solutions.

In typical FPGA-based soft processor designs, parameter
sets often include categorical design parameters, which make
the domain non-numeric. Moreover, traditional constraint
functions output boolean values (true or false), indicating
whether a constraint is met, but these outputs lack the smooth-
ness required for gradient-based optimization. The following
two subsections address these challenges by adapting the
BO covariance kernel to better handle categorical parameters
and formulating constraint functions with smooth numerical
ranges, respectively.

A. Adaptation for Categorical Parameters

In ASPO, we introduce a domain-specific one-hot encoding
strategy tailored to soft processor design. This approach helps
the BO kernel avoid redundant sampling of previously evalu-
ated categorical configurations. Following the method in [2],
each categorical parameter is expanded into a one-hot encoded



TABLE I
BAYESIAN OPTIMIZATION TECHNIQUES FOR TUNING PROCESSOR DESIGN PARAMETERS

Method FIST BE Boomerang Orbit-ML VBO RCBO ASPO
Reference [7] [3] [4] [8] [9] [10] This paper
Year 2020 2021 2023 2023 2024 2024 2025
Target platform ASIC ASIC ASIC Generic ASIC FPGA FPGA
Surrogate model XGBoost GP GP GP GP GP Enhanced GP for categorical parameters
Acquisition function Standard Standard Standard Standard Standard Standard Penalized with FPGA synthesis speed
Number of out-of-box processors 1 1 1 1 2 1 3
Application-specific optimization No No No Yes No Yes Yes
Parameter constraint awareness No No No No No No Yes (Section III)
Interface for arbitrary FPGA-based processor Yes No No Yes No No Yes (Section IV, illustrated in Fig. 2)
Accelerated design evaluation for FPGA No No No No No No Yes (Section IV, illustrated in Fig. 3)
FPGA resource awareness No No No No No Yes Yes
Performance evaluation with physical layout No No Yes No No No Yes (Section V-C)
Open-source software No Yes No Yes No Yes Yes

Fig. 1. This comparison evaluates the workflows of ASPO, RCBO [10], BOOM-Explorer [3], and vanilla BO [9]. Compared to RCBO, ASPO incorporates an
additional categorical transformation within the customized covariance kernel, optimizing its handling of categorical parameters. Additionally, ASPO introduces
a parameter constraints-checking function to address inter-parameter constraints. In contrast, BOOM-Explorer is designed for multi-objective scenarios but
does not account for resource constraints or parameter dependencies and is not optimized for effectively handling categorical and integer parameters. Lastly,
ASPO also introduces a cost-aware Expected Improvement (EI) acquisition function, enhancing the efficiency of configuration selection during the BO process.

vector, with each element treated as an independent real-valued
variable bounded within [0, 1].

Unlike [2], ASPO further customizes the covariance ker-
nel K(x,x′) to handle categorical variables in a way that
reduces redundant design evaluations. In particular, we apply
a masking transformation that restores the one-hot structure
before computing the kernel, ensuring that all variants of
a previously evaluated category are treated as equivalent.
This customized kernel plays a critical role in computing
the covariance function σ2(x,x′), which measures similarity
between parameter configurations and guides the acquisition
function in selecting the next candidate [19].

The kernel customization is to introduce a categorical trans-
formation for the one-hot encoded vectors derived from cate-
gorical parameters before the covariance kernel computation.
This transformation sets the maximum value within each one-
hot encoded vector to one and all remaining elements to zero.
As a result, samples that map to the same one-hot vectors
share the same customized kernel function value K ′(x,x′).

Consequently, when a sample is evaluated, the covariance
function σ2(x,x′) for any sample that can be transformed to
the same one-hot vector becomes zero [10]. This causes the
acquisition function to exclude these regions from further sam-
pling, thereby effectively preventing the repetitive selection of
identical soft processor designs and enhancing the efficiency
of the BO process.

B. Constraint Functions with Smooth Numeric Ranges

There are three main types of parameter constraint, either
from the specification [3] or from the empirical experiment.
Some example constraints for the BOOM processor are listed
in Table III.

To formulate these three constraint-checking functions, we
define that a negative output from either function signifies
unmet constraints, while a non-negative output indicates that
the constraints are satisfied. For the inequality constraint-



TABLE II
PREDEFINED DESIGN SPACE FOR ROCKETCHIP AND BOOM PROCESSORS IN THE EXPERIMENT

Processor Parameter Description Values Default Config

EL2 VeeR

icache size Instruction Cache Size in KB {16, 32, 64, 128, 256} 16
lsu stbuf depth Number of store operations the LSU buffer can hold simultaneously {2, 4, 8} 4
btb enable Boolean parameter deciding whether to include BTB. {True, False} True
iccm size Instruction closely coupled memory size {4, 8, 16, . . . , 512} 64
dccm size Data closely coupled memory size {4, 8, 16, . . . , 512} 64

RocketChip
& BOOM

core num The number of cores. {1, 2, 3, 4} 1
icache nSets Number of sets in the set-associative icache. {2, 4, 8, 16, 32, 64} 64
icache nWays Number of ways in each set of the icache. {2, 4, 8, 16, 32, 64} 4
dcache nSets Number of sets in the set-associative dcache. {2, 4, 8, 16, 32, 64} 64
dcache nWays Number of ways in each set of the dcache. {2, 4, 8, 16, 32, 64} 4

RocketChip mul div config Configuration of the multiplication and division unit. {Fast, Default, Simple} Default
btb config Configuration of the branch target buffer. {Default, WithoutBTB} Default

BOOM

bpd config Configuration of the branch predictor. {TAGEL, Boom2, Alpha21264} TAGEL
FetchWidth The number of instructions the fetch unit can retrieve per cycle. {1, 4, 8} 4
DecodeWidth The number of instructions the decode unit can process simultaneously. {1, 2, 3, 4, 5, 6} 1
RobEntry The number of reorder buffer entries. {32, 64, 96, 128, 120} 32
FetchBufferEntry The number of entries in the instruction fetch buffer. {8, 16, 24, 32, 35, 40} 16

Note. Selected Design space sizes: 1,920 (VeeR), 31,104 (RocketChip), 8,398,080 (BOOM).

TABLE III
EXAMPLE CONSTRAINTS OF BOOM DESIGN SPECIFICATION

Classification Descriptions

Inequalities FetchWidth ≥ DecodeWidth
FetchBufferEntry > FetchWidth

Conditional
if icache nWays ∈ [64, 128], then nSets ∈ [2, 4]
{ if dcache nWays ∈ [16, 32], then nSets ∈ [2, 4];
or if dcache nWays ∈ [128, 256], then nSets ∈ [4, 8] }

Divisibility RobEntry | DecodeWidth
FetchBufferEntry | DecodeWidth

checking function, denoted as PCinequality(x), all inequality
constraints are generalized into the following format:

PCinequality(x) = kaxa − kbxb + t (1)

where ka, kb, and t are real-valued parameters that are
automatically assigned based on inequality constraints derived
from the processor’s specifications.

In addition to inequality constraints, ASPO also supports
non-linear conditional constraints. Their relationships can be
categorized as either conjunctive or disjunctive. A conjunctive
structure consists of multiple conditional constraints and is
satisfied only when all constraints are met. In contrast, a
disjunctive structure is satisfied if at least one of its conditional
constraints is true.

With minimal human effort, all the conditional constraints
in the processor’s specification can be systematically organized
into a hierarchical logical structure comprising conjunctive
and disjunctive components. At the top level, a conjunctive
constraint combines all the underlying conditional constraint
structures. This hierarchical organization serves as the target
for our proposed constraint-checking function, PCcond(x),
which evaluates the constraints as follows:

PCcond Cconj

Top Level

{ Cdisj...
Cconj Cb

Cb

Cb

{

The single basic conditional constraint example format
and the corresponding constraint-checking function, Cb are
illustrated below:

• If x1 lies within the interval [a1, b1], then x2 must lie
within the interval [a2, b2].

Cb(x) = min
m

cm(xm), ∀m ∈ {1, . . . , d} (2)

cm(xm) = −(xm − am)(xm − bm) (3)

Here, each cm(xm) is differentiable, ensuring sufficient
smoothness to support the Bayesian optimizer.

For a disjunctive structure of constraints, the constraint-
checking function, Cdisj , is defined as:

Cdisj = max
i

Ci(x), ∀i ∈ {1, . . . , k}, (4)

where each Ci(x) represents the i-th conditional constraint
of the k conditional constraints of the disjunctive structure.
It can be Cb, Cconj , or Cdisj . Given that these functions are
defined such that a nonnegative output indicates that the input
x satisfies the evaluated constraint, taking the maximum value
in Cdisj ensures that if at least one Ci(x) returns a nonnegative
value, the disjunctive constraint structure is satisfied.

Conversely, for a conjunctive structure of constraints, the
constraint-checking function, Cconj , is determined by taking
the minimum value among all conditional constraints within
the structure:

Cconj = min
i

Ci(x), ∀i ∈ {1, . . . , k} (5)

This approach ensures that if the smallest output is negative,
at least one of the conditional constraints is violated, indicating
that the conjunctive constraint is not satisfied.

For the third type of constraint, which involves checking
the divisibility between parameters, we propose the following
checking function:



Soft Processor Configured
with Design Parameters 

20 11

21 10

22 9

1

19

2

18

3

17

4

16

5

15

6

14

7

13

8

12

Hardware Description for
Soft Processor

Three Built-in Processors or
Designer-Specified Processors

Performance,
Power and

Resource Usage
Data

Synthesis Checkpoint
Database

Synthesis
Checkpoint

for New
Parameter

Configuraiton

Dynamically
Retrieved

Checkpoint
for

Incremental
Synthesis

Soft Processor
Configuration Interface 

Parameter
Configuration

Paramter Optimization Algorithm
Proposed Bayesian Optimizer or
Designer-Specified Algorithms

ASPO Evaluation Framework

Accelerated Soft Processor Evaluation with Dynamic Checkpoint Retrieval

FPGA Synthesis
and Simulation

Fig. 2. Overview of the proposed framework for accelerated soft processor
design and evaluation. The framework supports three built-in processors or
designer-specified processors, which can be configured using a parameter
optimization algorithm, such as the proposed Bayesian optimizer or alternative
designer-specified methods. Design parameters are iteratively optimized to
achieve desired performance objectives. The evaluation framework integrates
FPGA synthesis and simulation tools, using a dynamic checkpoint retrieval
system to reuse synthesis data from previously evaluated configurations,
significantly accelerating the evaluation process.

PCdivisibility(x) = − sin2
(
πxa

xb

)
(6)

The function PCdivisibility(x) returns zero only when xb is
divisible by xa; otherwise, it returns a negative value. The
use of a trigonometric function ensures differentiability for
the BO optimizer, while its periodic nature guarantees that the
function’s value depends solely on whether xa

xb
is an integer

and not on its magnitude.

IV. ACCELERATED SOFT PROCESSOR EVALUATION

The primary goal of our soft processor evaluation frame-
work is to provide a rapid and automated assessment of the
performance of specified soft processor configurations. Since
the FPGA synthesis process is often a significant bottleneck
in the optimization workflow, this framework adopts a data-
driven approach to accelerate the evaluation process. The
detailed workflow is illustrated in Figure 2.

A. Checkpoint Retrieval for Fast Design Evaluation

During the processor design process, design methods often
produce configurations that share several components with pre-
viously evaluated processors. This overlap allows us to store
key information from the evaluation of earlier configurations
and reuse it to expedite the evaluation of new designs.

While tools like Vivado and Quartus Prime support incre-
mental synthesis at a low level, they do not provide a mecha-
nism for checkpoint selection or reuse across diverse design ‘2.
Our proposed method includes a novel way that dynamically
constructs a checkpoint database and selects the closest prior
configuration using a weighted similarity metric. This enables
us to automatically identify optimal reuse opportunities across
the design space.

Fig. 3. Accelerated evaluation flow.

To take advantage of the incremental synthesis feature
for faster evaluation, two key components are required. The
first is a database of checkpoints to store designs that can
serve as starting points for incrementally synthesizing new
configurations. The second is a matching function to identify
an appropriate starting point from the database, minimizing
potential synthesis time by reusing previously synthesized
configurations.

We propose dynamically building the checkpoint database
during the optimization process. This database stores check-
point files generated from previously synthesized processor
configurations, allowing efficient reuse in subsequent synthesis
tasks. For reference checkpoint selection, we introduce a
configuration matcher that identifies the checkpoint file with
the highest overlap with the processor currently under eval-
uation. By minimizing the number of modified components
requiring re-synthesis, this approach significantly reduces syn-
thesis time. The flow of the accelerated evaluation process is
illustrated in Figure 3.

To implement the reference checkpoint selection, we de-
velop a configuration matching function that identifies the
most similar configuration in the dataset based on a weighted
Euclidean distance metric. The mathematical formulation of
the matching function is as follows:

MatchConfig(x,w, Q) = argmin
q∈Q

d−1∑
i=0

wi · (xi − qni)
2 (7)

In this equation, xi represents the i-th parameter of the con-
figuration x being evaluated, and qni denotes the i-th param-
eter of the n-th stored configuration q within the checkpoint
dataset Q. The weight vector w ∈ Rd quantifies the relative
importance of changes in each parameter for configuration
matching. We aim to compute the optimal weights w∗ by
solving the following optimization problem:

w∗ = argmin
w∈Rd

∑
q∈Q

Tsyn(q,MatchConfig(q,w, Q \ q)) (8)



Here, Tsyn(x,y) represents the synthesis time required to
process configuration x using the checkpoint from configura-
tion y. This optimization determines the optimal weight vector
w∗ by minimizing the total synthesis time across all config-
urations in the dataset Q. Given the substantial size of the
dataset and the lengthy synthesis time for each configuration,
an approximate solution is obtained by randomly sampling a
small subset of design configurations and applying heuristic
search techniques.

B. Warm Start

The evaluation process in our proposed framework becomes
increasingly efficient as more soft processor configurations are
evaluated. With each evaluated configuration, the checkpoint
database grows with an additional checkpoint file. This expan-
sion enables the configuration matcher to identify checkpoint
files from previously evaluated configurations with greater
overlap to the current configuration being tested, thereby
accelerating the evaluation process. Additionally, a larger
database increases the likelihood that the performance of a
new configuration has already been recorded, eliminating the
need for re-evaluation.

To achieve high evaluation speeds, implementing a warm-
start feature that strategically guides the sampling of processor
configurations is essential. This feature ensures that sampled
configurations are uniformly distributed across the entire de-
sign space, maximizing the chances that any new configuration
to be evaluated will have a closely matched configuration in
the database, thus improving evaluation efficiency.

Traditional sampling strategies, such as random sampling,
are avoided due to their inefficiency in achieving uniform
distribution across the design space. This inefficiency arises
because the design space is vast and consists of multiple
parameters, each with its own distinct range of possible values.
To address this challenge, the orthogonal array (OA) strategy
is adopted. The orthogonality of OA ensures that sampled
configurations are evenly distributed throughout the design
space [20]. Since the design space for the soft processor is
fixed within our framework, the OA can be pre-generated using
online methods, further simplifying implementation.

C. Incorporating Evaluation Time Cost Into Optimization

Due to the proposed accelerated soft processor evaluation
method, the evaluation time of a configuration depends on how
similar it is to previously evaluated configurations stored in the
checkpoint database. Therefore, we incorporate the consider-
ation of evaluation time in the BO to optimize configuration
selection and reduce the total evaluation time.

To achieve this, we incorporate a cost-aware cooling mech-
anism into the BO acquisition function, steering configuration
selection in the BO process for optimized overall evaluation
time. The cost function, ĉ(x), is defined as the minimum
weighted Euclidean distance between the candidate configura-
tion and all previously evaluated configurations stored in the

checkpoint database, same as Equation 7. Inspired by [21], the
modified cost-aware acquisition function is defined as:

αcool(x, t) =
α(x)

λ(t) · ĉ(x)
(9)

where α(x) is the original acquisition function (Expected
Improvement in this project), and λ(t) denotes a cooling
schedule that evolves over the current BO iteration t. In
this work, we adopt a simple decaying schedule designed to
impose a high penalty on distant configurations in the early
optimization stages. This encourages the algorithm to remain
in regions that are quick to evaluate. As the optimization
progresses, the penalty is gradually reduced, allowing the
algorithm to explore more distant, potentially expensive but
promising configurations. The cooling schedule is defined as:

λ(t) = λ0 · exp(−kt) (10)

where λ0 is the initial cost sensitivity, and k is the decay
rate; both are determined empirically through experiments.

TABLE IV
RISC-V BENCHMARKS USED IN THIS PROJECT.

Benchmark Focus minstret
coremark [22] Basic operations 282995
dhrystone [23] Integer arithmetic and string handling 186031

rsort [24] Memory access 171154
qsort [24] Branching, recursion and memory access 123506

multiply [24] Multiplication 42503
spmv [24] Floating point and memory access 34466
mm [24] Cache and memory access 24744

V. EVALUATION

We conducted two experiments to assess the performance
of ASPO. The first experiment aims to evaluate the acceler-
ation improvements offered by the automated soft processor
evaluation framework in Section IV. The second experiment
focused on evaluating the overall performance of our proposed
soft processor design platform that combines all features in
Sections III and IV.

A. Experiment Setup

Our experimental implementation of the proposed frame-
work supports three soft processors out-of-box: Rock-
etChip [25], BOOM [26], and EL2 VeeR [27]. These pro-
cessors were selected for their high performance, extensive
design flexibility, and support for FPGA deployment. With
minor modifications, the implementation can be extended to
support other configurable RISC-V soft processors, such as
Ibex [28] and CVA6 [29].

All experiments were conducted on a desktop workstation
equipped with an Intel Xeon E5-1650 v3 CPU and 32GB of
DDR4 RAM, without utilizing a GPU. GPU acceleration was
deemed unnecessary, as the Bayesian optimizer contributes
only a small portion of the total runtime and would not



benefit significantly from GPU usage. The evaluation phase,
primarily involving processor simulation using Verilator and
FPGA hardware synthesis using Vivado, is the most time-
consuming step and cannot be accelerated by a GPU.

The evaluation includes simulation results for multiple
RISC-V benchmarks supported by soft processors, such as
dhrystone and coremark, as listed in Table IV. These bench-
marks are designed to evaluate the processor’s performance
across various processing aspects. The complexity of each
benchmark is measured by the machine instructions retired
(minstret) [30], representing the total number of instructions
executed by the processor.

The results for resource utilization, power, and timing met-
rics are derived from the report generated from the synthesis
process. The timing metric is assessed by manually configuring
the processor’s clock input to a default reference frequency
of 50MHz and extracting the worst setup slack and worst
hold slack values from the Vivado timing report. These two
values offer insights into the timing performance of the soft
processor at this default frequency and can be used to estimate
its maximum operating frequency.

B. Experiment for Soft Processor’s Evaluation Framework

This experiment focuses on evaluating the time required
to assess a set of soft processor configurations using three
different frameworks. The evaluation time is defined as the
duration from receiving the configuration parameters to the
completion of all performance metrics, including execution
time, resource utilization, power consumption, and timing
performance.

We compare three evaluation approaches. The first, direct
evaluation, reflects the standard flow used in methods such
as RCBO [10], where each configuration is synthesized and
evaluated independently from scratch. The second, evaluation
with a fixed checkpoint, uses a single checkpoint derived from
the default soft processor configuration for all evaluations, dis-
abling both the configuration matcher and checkpoint dataset;
the default parameters are listed in Table II. The third is our
proposed framework, which dynamically builds a checkpoint
database and uses a similarity-based configuration matcher
with a sufficiently diverse pool, enabling efficient reuse of
prior synthesis results to accelerate evaluation.

To ensure a fair comparison, all three evaluation frame-
works are provided with an identical set of soft processor
configurations. In this experiment, ten randomly generated
configurations were created for each supported soft processor,
serving as the candidate experiment set. Experimental results
are presented in Figure 4, and the quantitative comparison
among the three frameworks is shown in Table V.

C. Experiment for Overall Design Platform

To rigorously evaluate the design platform’s performance,
this experiment outlines a series of application benchmarks.
These tasks involve configuring the three supported soft pro-
cessors within the predefined design space outlined in Table II,

0.0

2.5

5.0

7.5

10.0

12.5

15.0

E
va

lu
at

io
n 

Ti
m

e 
(m

in
s) 8.8%

20.2%

EL2 VeeR

0

10

20

30

40

50

60

E
va

lu
at

io
n 

Ti
m

e 
(m

in
s)

17.0% 27.1%

RocketChip

0

20

40

60

80

100

E
va

lu
at

io
n 

Ti
m

e 
(m

in
s)

19.7%
33.4%

BOOM

Direct Evaluation Evaluation with Fixed Checkpoint Evaluation with Checkpoint Retrival (Ours)

Fig. 4. The two frameworks employing acceleration during the logic synthesis
stage can significantly enhance evaluation speed by reusing existing evalua-
tion data. Additionally, our proposed framework achieves faster evaluations
through a strategic selection of checkpoint files, in contrast to frameworks
that consistently utilize the same checkpoint file.

TABLE V
EVALUATION TIME FOR DESIGN EVALUATION (IN MINUTES)

Processor Evaluation Method Avg Min Max

EL2 VeeR
Direct evaluation 11.4 11.2 11.5
Evaluation with fixed checkpoint 10.4 8.5 11.1
Our framework 9.1 8.4 10.1

RocketChip
Direct evaluation 45.4 44.7 46.2
Evaluation with fixed checkpoint 37.7 24.0 43.9
Our framework 33.1 18.0 37.5

BOOM
Direct evaluation 81.2 80.1 81.9
Evaluation with fixed checkpoint 65.2 57.5 71.2
Our framework 54.1 42.5 63.4

optimizing their performance using selected RISC-V bench-
marks listed in Table IV, and ensuring deployability on the
target FPGA boards. The Zynq UltraScale+ XCZU3CG FPGA,
offering 70,560 available LUTs, is selected as the target plat-
form for EL2 VeeR, while the Zynq UltraScale+ XCZU6CG,
with 214,604 available LUTs, is chosen for BOOM.

The performance comparison of our design platform with
other methods focuses on design productivity and design
quality. The design productivity is evaluated using two metrics:
Invalid Design Rate (IDR) and Total Design Time (TDT).
IDR quantifies the proportion of designs that fail to meet either
the processor’s parameter constraints or the FPGA’s resource
constraints during the design process. TDT measures the total
time, in hours, required for the design method to converge
to the final processor configuration. While valid processors
typically undergo longer evaluations, invalid processors may
trigger errors at various stages, leading to variability in evalua-
tion times. To ensure practical feasibility, an upper limit of 35
hours is set for TDT, and the experiment is terminated upon
reaching this time bound. This limit is selected based on the
observation that most experiments are completed within this
limit, and it is used to ensure fair comparison across different
design configurations or strategies.

Design quality is assessed using Estimated Execution
Time (EET) [4], which serves as the optimization objective in
this experiment. EET estimates the processor’s execution time
for the designated tasks on FPGA fabric, providing an accurate
reflection of the processor’s physical layout performance [4].
It is computed by dividing the simulated number of execution
cycles by the maximum operating frequency, as reported in
the timing performance section of the synthesis report.



During the experiment, if a processor design method does
not support parameter constraint awareness or FPGA re-
source limitations and generates invalid designs, such designs
are discarded without being used to update the surrogate
model, preventing the optimizer from being misled. Addi-
tionally, to ensure fair comparison, the initial points are
fixed and selected from the sampled configurations obtained
using the orthogonal array, as described in Section IV-B.
Furthermore, due to the significant evaluation time and the
large design space, methods requiring extensive evaluations,
such as brute-force exhaustive search algorithms, acquisition-
free surrogate optimization [31], genetic algorithms [32], and
reinforcement learning [33], are excluded from considera-
tion. The design methods selected for comparison include
Hill Climbing (HC) [34], Vanilla Bayesian Optimiza-
tion (VBO) [9], BOOM-Explorer (BE) [3], and Resource-
Constraint Bayesian Optimization (RCBO) [10], as dis-
cussed in Section II.

TABLE VI
DESIGN PRODUCTIVITY

TDT: Total Design Time in Hours IDR: Invalid Design Rate
Processor Task Metric HC VBO BE RCBO ASPO

EL2 VeeR

coremark TDT 0.56† 2.61 2.18 1.93 1.04
IDR 0% 14% 11% 0% 0%

dhrystone TDT 0.61† 3.98 2.12 1.88 1.63
IDR 17% 0% 14% 0% 7%

rsort TDT 0.81† 1.14 3.46 0.98 1.01
IDR 13% 0% 22% 0% 0%

qsort TDT 0.53† 3.43 1.33 1.02 0.92
IDR 0% 0% 12% 0% 0%

multiply TDT 1.01 1.41 2.13 1.15 0.72
IDR 20% 0% 13% 11% 14%

spmv TDT 0.44† 2.65 1.50 1.11 1.13
IDR 0% 18% 11% 0% 0%

mm TDT 0.64† 1.43 1.98 1.15 1.08
IDR 40% 0% 18% 0% 0%

RocketChip

coremark TDT 3.56† 27.11 22.08 18.13 11.24
IDR 75% 52% 38% 33% 21%

dhrystone TDT 3.00† 20.12 23.41 14.12 11.25
IDR 88% 42% 48% 37% 31%

rsort TDT 4.00† 8.43 16.33 15.12 10.12
IDR 71% 40% 52% 36% 21%

qsort TDT 5.30† 27.64 23.32 16.12 11.30
IDR 67% 31% 39% 48% 25%

multiply TDT 3.57† 17.41 12.30 21.05 9.71
IDR 71% 30% 33% 61% 34%

spmv TDT 6.02† 22.01 15.20 9.34 8.11
IDR 67% 52% 31% 38% 28%

mm TDT 9.31† 21.73 24.98 16.75 9.18
IDR 60% 51% 48% 54% 23%

BOOM

coremark TDT 9.56† 32.11 27.48 35.00 24.14
IDR 54% 63% 42% 47% 32%

dhrystone TDT 11.90† 35.00 24.92 22.18 19.63
IDR 64% 57% 38% 43% 21%

rsort TDT 7.56† 35.00 29.90 26.10 14.71
IDR 71% 63% 45% 50% 25%

qsort TDT 6.17† 32.13 22.13 28.12 18.71
IDR 71% 72% 52% 36% 15%

multiply TDT 7.21† 31.61 35.00 16.43 18.23
IDR 83% 52% 33% 10% 17%

spmv TDT 4.42† 28.15 35.00 27.96 9.12
IDR 83% 58% 39% 36% 36%

mm TDT 9.31† 21.73 24.98 16.75 10.18
IDR 60% 51% 48% 54% 23.5%

†TDT for HC is not compared with BO methods due to poor design quality

TABLE VII
DESIGN QUALITY MEASURED BY ESTIMATED EXECUTION TIME (EET)

IN MILLISECONDS

Processor Task HC VBO BE RCBO ASPO Default

EL2 VeeR

coremark 9.17 9.09 9.62 9.39 9.18 10.17
dhrystone 8.76 8.68 8.48 8.35 7.91 9.06

rsort 6.48 5.98 6.35 5.96 5.82 6.42
qsort 5.34 5.14 5.23 5.05 5.16 5.35

multiply 1.80 1.68 1.56 1.52 1.35 1.83
spmv 1.55 1.52 1.47 1.42 1.35 1.57
mm 1.31 1.23 1.29 1.15 1.16 1.31

RocketChip

coremark 8.09 8.01 7.61 7.61 7.02 8.09
dhrystone 7.96 7.68 7.48 7.45 7.41 7.96

rsort 5.60 5.34 5.29 5.50 5.09 5.61
qsort 4.35 4.43 4.33 4.12 4.05 4.35

multiply 1.33 1.30 1.26 1.05 1.08 1.33
spmv 1.17 1.02 0.97 1.02 0.93 1.17
mm 0.91 0.88 0.84 0.88 0.82 0.91

BOOM

coremark 7.17 6.89 6.62 6.79 6.28 7.20
dhrystone 7.06 6.68 6.48 6.45 6.11 7.06

rsort 3.55 3.45 3.45 3.46 3.42 3.56
qsort 3.35 3.30 3.12 3.27 3.12 3.35

multiply 1.07 0.86 0.79 0.74 0.70 1.07
spmv 0.87 0.78 0.80 0.73 0.74 0.89
mm 0.73 0.75 0.66 0.72 0.63 0.75

Table VI highlights the productivity of the processor design
methods. Except for the HC method, which converges quickly
but does not optimize the processor, ASPO achieves the best
performance with the smallest Total Design Time (TDT) and
lowest Invalid Design Rate (IDR) in most tasks. For the
EL2 VeeR processor with fewer parameter constraints, ASPO
achieves a comparable IDR to other methods while still attain-
ing optimal Total Design Time (TDT) thanks to its accelerated
evaluation framework. For the more complex RocketChip and
BOOM processors with multiple constraints, ASPO signifi-
cantly lowers IDR, showing its strength in generating valid
configurations. As evaluation time increases, ASPO’s TDT
advantage becomes more pronounced. For BOOM’s optimiza-
tion on certain benchmarks like “spmv”, it saves 67.4% TDT
compared with RCBO, 74% with BE and 67.6% with VBO.

Table VII focuses on design quality. Processors optimized
using ASPO outperform those designed by other methods in
17 out of 21 tasks. In the remaining tasks, ASPO achieves
performance comparable to other methods, demonstrating that
it consistently identifies high-performance designs. Results
show that with ASPO, the optimized BOOM design reduces
execution time by 34.6% on the “multiply” benchmark.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents ASPO, an automated design platform
for efficiently optimizing soft processors for specified work-
load while adhering to FPGA constraints. Future work includes
extending ASPO to support additional architectures and opti-
mizations, such as System-on-Chip designs, custom instruction
processors, and application-specific multi-cores.

VII. ACKNOWLEDGMENT

The support of the United Kingdom EPSRC (grant number
UKRI256, EP/V028251/1, EP/N031768/1, EP/S030069/1, and
EP/X036006/1), Altera, Intel, and AMD is gratefully acknowl-
edged.



REFERENCES

[1] J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid, “Soft-core
processors for embedded systems,” 2006 International Conference
on Microelectronics, pp. 170–173, 2006. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5876189

[2] E. C. Garrido-Merchán and D. Hernández-Lobato, “Dealing with
categorical and integer-valued variables in Bayesian Optimization with
Gaussian processes,” Neurocomputing, vol. 380, p. 20–35, Mar. 2020.
[Online]. Available: http://dx.doi.org/10.1016/j.neucom.2019.11.004

[3] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. F. Wong,
“BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space
Exploration,” ACM Trans. Des. Autom. Electron. Syst., vol. 29, no. 1,
dec 2023. [Online]. Available: https://doi.org/10.1145/3630013

[4] Y.-F. Liu, C.-Y. Hsieh, and S.-Y. Kuo, “Boomerang: Physical-Aware De-
sign Space Exploration Framework on RISC-V SonicBOOM Microar-
chitecture,” in 2023 IEEE 34th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2023, pp. 85–93.

[5] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[6] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[7] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany, S.-Y.
Fang, J. Hu, Y. Chen, and E. C. Barboza, “FIST: A feature-importance
sampling and tree-based method for automatic design flow parameter
tuning,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2020, pp. 19–25.

[8] J. G. Coutinho, C. Guo, T. Todman, and W. Luk, “Exploring machine
learning adoption in customisable processor design,” in International
Conference on ASIC (ASICON). IEEE, 2023, pp. 1–4.

[9] Y. Gao, D. Luo, C. Bai, B. Yu, H. Geng, Q. Sun, and C. Zhuo, “Is
Vanilla Bayesian Optimization Enough for High-Dimensional Architec-
ture Design Optimization?” in ICCAD, 2024.

[10] C. Guo, H. Wu, and W. Luk, “Resource-Constraint Bayesian Optimiza-
tion for Soft Processors on FPGAs,” in 14th International Symposium on
Highly Efficient Accelerators and Reconfigurable Technologies (HEART
’24). Porto, Portugal: ACM, June 19-21 2024, pp. 1–13.

[11] Z. Li, H. Zhou, L. Wang, and X. Zhou, “AMG: Automated Efficient Ap-
proximate Multiplier Generator for FPGAs via Bayesian Optimization,”
in 2023 International Conference on Field Programmable Technology
(ICFPT), 2023, pp. 294–295.

[12] D. T. Nguyen, H. Kim, and H.-J. Lee, “Layer-Specific Optimization for
Mixed Data Flow With Mixed Precision in FPGA Design for CNN-
Based Object Detectors,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 31, no. 6, pp. 2450–2464, 2021.

[13] S. Zheng, J. Qian, H. Zhou, and L. Wang, “Graebo: Fpga general routing
architecture exploration via Bayesian optimization,” in 2022 32nd In-
ternational Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 2022, pp. 282–286.

[14] H. Kuang and L. Wang, “Multi-objective design space exploration for
high-level synthesis via Bayesian optimization,” in 2023 International
Symposium of Electronics Design Automation (ISEDA). IEEE, 2023,
pp. 150–155.

[15] H. Kuang, X. Cao, J. Li, and L. Wang, “Hgbo-dse: Hierarchical gnn
and Bayesian optimization based hls design space exploration,” in 2023
International Conference on Field Programmable Technology (ICFPT).
IEEE, 2023, pp. 106–114.

[16] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning,” CoRR, vol.
abs/1012.2599, 2010. [Online]. Available: http://arxiv.org/abs/1012.2599

[17] D. Kraft, “A software package for sequential quadratic programming,”
DLR German Aerospace Center – Institute for Flight Mechanics, Köln,
Germany, Tech. Rep. DFVLR-FB 88-28, 1988.

[18] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An Interior
Point Algorithm for Large-Scale Nonlinear Programming,” SIAM
J. Optim., vol. 9, pp. 877–900, 1999. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16293345

[19] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the Human Out of the Loop: A Review of Bayesian Optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[20] D. Li, S. Yao, Y.-H. Liu, S. Wang, and X.-H. Sun, “Efficient design
space exploration via statistical sampling and AdaBoost learning,” in
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
2016, pp. 1–6.

[21] E. H. Lee, V. Perrone, C. Archambeau, and M. Seeger,
“Cost-aware Bayesian optimization,” 2020. [Online]. Available:
https://arxiv.org/abs/2003.10870

[22] S. Gal-On and M. Levy, “Exploring coremark a benchmark maximizing
simplicity and efficacy,” The Embedded Microprocessor Benchmark
Consortium, 2012.

[23] R. P. Weicker, “Dhrystone: a synthetic systems programming
benchmark,” Commun. ACM, vol. 27, no. 10, p. 1013–1030, Oct. 1984.
[Online]. Available: https://doi.org/10.1145/358274.358283

[24] T. Newsome, “riscv-software-src/riscv-tests risc-v,”
https://github.com/riscv-software-src/riscv-tests, May 2019, [Online;
accessed January 17, 2025].

[25] K. Asanović, R. Avižienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, P. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar,
H. Mao, M. Moreto, A. Ou, D. Patterson, B. Richards, C. Schmidt,
S. Twigg, H. Vo, and A. Waterman, “The Rocket Chip Generator,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, April 2016, if used for research, please cite Rocket Chip by
the technical report.

[26] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable, Parameter-
ized RISC-V Processor,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2015-167, Jun 2015. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-167.html

[27] Chips Alliance, “Cores-VeeR-EL2: A RISC-V Core,”
https://github.com/chipsalliance/Cores-VeeR-EL2, 2024, available
online: https://github.com/chipsalliance/Cores-VeeR-EL2.

[28] lowRISCC.I.C., “Ibex: An embedded 32-bit risc-v cpu core,”
https://ibex-core.readthedocs.io, 2021, documentation.

[29] F. Zaruba and L. Benini, “The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640,
2019.

[30] V. M. Weaver and S. A. McKee, “Can hardware performance counters
be trusted?” in 2008 IEEE International Symposium on Workload
Characterization, 2008, pp. 141–150.

[31] M. Kurek, T. Becker, T. C. P. Chau, and W. Luk, “Automating Optimiza-
tion of Reconfigurable Designs,” in Proceedings of the 2014 IEEE 22nd
International Symposium on Field-Programmable Custom Computing
Machines, ser. FCCM ’14. USA: IEEE Computer Society, 2014, p.
210–213.

[32] S.-C. Kao and T. Krishna, “Gamma: Automating the HW mapping of
DNN models on accelerators via genetic algorithm,” in International
Conference on Computer-Aided Design, 2020, pp. 1–9.

[33] C. Bai, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “Towards automated risc-
v microarchitecture design with reinforcement learning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 38, no. 1, 2024,
pp. 12–20.

[34] J. Alastruey, T. Monreal, F. Cazorla, V. Viñals, and M. Valero, “Selection
of the Register File Size and the Resource Allocation Policy on SMT
Processors,” in 2008 20th International Symposium on Computer Archi-
tecture and High Performance Computing. Washington, DC, United
States: ACM, 2008, pp. 63–70.


