
ResBench: Benchmarking LLM-Generated FPGA Designs with
Resource Awareness

Ce Guo
Imperial College London

United Kingdom
c.guo@imperial.ac.uk

Tong Zhao
Imperial College London

United Kingdom
tong.zhao24@imperial.ac.uk

Abstract
Field-Programmable Gate Arrays (FPGAs) are widely used in mod-
ern hardware design, yet writing Hardware Description Language
(HDL) code for FPGA implementation remains a complex and time-
consuming task. Large Language Models (LLMs) have emerged as
a promising tool for HDL generation, but existing benchmarks for
LLM-based code generation primarily focus on functional correct-
ness while overlooking hardware resource usage. Furthermore, cur-
rent benchmarks offer limited diversity and do not fully represent
the wide range of real-world FPGA applications. To address these
shortcomings, we introduce ResBench, the first resource-focused
benchmark explicitly designed to distinguish between resource-
optimized and inefficient LLM-generated HDL code. ResBench con-
sists of 56 problems across 12 categories, covering applications
from finite state machines to financial computing. Our open-source
evaluation framework automatically tests LLMs by generating Ver-
ilog code, verifying correctness, and measuring resource usage. The
experiments, which primarily analyze Lookup Table (LUT) usage, re-
veal significant differences among LLMs, demonstrating ResBench’s
capability to identify models that generate more resource-optimized
FPGA designs.

CCS Concepts
• Hardware→ Board- and system-level test; Reconfigurable
logic applications; Functional verification; Physical verification;
• Software and its engineering→ Source code generation.

Keywords
Large Language Models (LLMs), Hardware Description Languages
(HDLs), Verilog Code Generation, FPGA Resource Utilization, Au-
tomated Benchmarking, Empirical Evaluation of LLMs

ACM Reference Format:
Ce Guo and Tong Zhao. 2025. ResBench: Benchmarking LLM-Generated
FPGA Designs with Resource Awareness. In The International Symposium
on Highly Efficient Accelerators and Reconfigurable Technologies 2025 (HEART
2025), May 26–28, 2025, Kumamoto, Japan. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3728179.3728192

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HEART 2025, Kumamoto, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1432-0/25/05
https://doi.org/10.1145/3728179.3728192

1 Introduction
Field-Programmable Gate Arrays (FPGAs) are widely used in re-
configurable computing, providing flexible and high-performance
hardware implementations for applications such as artificial intel-
ligence acceleration, financial computing, and embedded systems.
However, FPGA development traditionally requires manual cod-
ing in hardware description languages (HDLs), a process that is
both time-consuming and prone to errors. Large Language Models
(LLMs) have recently shown potential in automating HDL genera-
tion, offering a way to improve FPGA design productivity.

While studies such as VeriGen [32] and RTLLM [23] have exam-
ined the feasibility of generating Verilog with LLMs, most existing
benchmarks focus primarily on functional correctness while pay-
ing little attention to resource constraints, which is an essential
consideration in FPGA design.

FPGA designs are subject to strict hardware resource constraints.
Even when HDL code passes functional correctness tests, its effi-
ciency in utilizing these resources can vary significantly depending
on how logic is optimized and mapped to FPGA hardware. In recon-
figurable computing, resource-aware optimizations play a crucial
role in determining whether a design can be practically deployed
and the degree of parallelism achievable. However, existing bench-
marks for LLM-generated hardware designs typically evaluate the
generated code based only on syntax and functional correctness,
overlooking resource-related issues.

To address this limitation, we introduce ResBench, the first
FPGA-resource-focused benchmark specifically designed to eval-
uate LLM-generated designs based on resource usage. Unlike pre-
vious benchmarks that focus primarily on syntax and functional
correctness, ResBench highlights how well LLMs generate Verilog
code optimized for FPGA resource utilization. Our key contribu-
tions are:

• A resource-focused benchmark featuring 56 problems across
12 categories, covering real-world FPGA workloads such as
combinational logic, state machines, AI accelerators, and
financial computing applications. (Section 3)

• An open-source automated evaluation framework that per-
forms LLM querying, functional correctness testing, FPGA
synthesis, and resource measurement1. The framework auto-
matically generates Verilog code using LLMs and evaluates
its correctness and resource usage. (Section 4)

• A detailed study of nine LLMs, comparing their performance
in functional correctness and FPGA resource usage. The
results reveal substantial differences in how various models
generate resource-conscious designs. (Section 5)

1Code repository: https://github.com/jultrishyyy/ResBench

https://doi.org/10.1145/3728179.3728192
https://doi.org/10.1145/3728179.3728192
https://github.com/jultrishyyy/ResBench


HEART 2025, May 26–28, 2025, Kumamoto, Japan C. Guo and T. Zhao

By integrating FPGA resource awareness into benchmarking,
ResBench provides a practical evaluation of LLM-generated HDL.
This benchmark establishes a foundation for advancing AI-driven
FPGA design, encouraging the development of more resource-
efficient models optimized for FPGAs.

2 Background
This section explores the evolution of large language models (LLMs)
from general code generation to hardware design generation using
hardware description languages (HDLs). We examine their capa-
bilities and limitations, as well as existing benchmarks for LLM-
generated hardware design.

2.1 Code-specialized and HDL-specialized LLMs
Language models have seen significant advancements, particularly
with the introduction of Transformers [36]. Large-scale pre-trained
models such as BERT [8], the GPT series [5, 28, 44], and PaLM 2
[7] have expanded their capabilities across various tasks, including
code generation.

Code-specialized LLMs are models designed to generate com-
puter programs based on human-language prompts. Surveys such
as [16, 39, 45] review the latest techniques and model architectures
developed for this purpose. In general, a code-specialized LLM can
be created using two different approaches.

• The first approach trains models from scratch on large-scale
open-source code datasets spanning multiple programming
languages, as demonstrated by CodeGen [26], InCoder [9],
and StarCoder [19]. These code-first LLMs excel at code
completion and multi-language generation. However, this
method demands extensive computational resources and
high-quality datasets. Additionally, these models may strug-
gle with instruction-driven tasks due to their limited ability
to process human language instructions.

• The second approach fine-tunes general-purpose LLMs for
coding tasks, as seen in Codex [6], which is derived from
GPT-3, and Code Llama [30], which builds on Meta’s Llama.
Fine-tuning incorporates the linguistic knowledge of general
LLMs, allowing them to handle natural language prompts
while maintaining strong coding capabilities. This method
is more computationally efficient than training from scratch,
but it may lack the precision of code-first models in under-
standing programming language syntax.

While significant research has explored the use of language mod-
els for general software code generation, the application of LLMs
to HDL code has not received comparable attention. Existing work
on HDL code generation primarily focuses on improving general-
purpose or software-code-specialized LLMs. In particular, these
studies aim to improve these LLMs’ understanding of hardware
description tasks by training them on HDL datasets and bench-
marking frameworks. Notable efforts in this area include VeriGen,
MEV-LLM, and AutoVCoder.

• VeriGen [33] fine-tunes CodeGen (2B, 6B, 16B) on a Verilog
dataset collected from GitHub repositories and textbooks.
It employs supervised fine-tuning with problem-code pairs,
validating functional correctness using a benchmark problem
set and problems from HDLBits tutorials [31].

• MEV-LLM [25] trains on 31,104 source code files fromGitHub,
labeled by GPT-3.5, to fine-tune CodeGen (2B, 6B, 16B) and
GEMMA (2B, 7B) models. This approach yields an improve-
ment of up to 23.9% in the Pass@k metric [6] over VeriGen.

• AutoVCoder [10] also uses Verilog code from GitHub, fil-
tering high-quality samples with ChatGPT-3.5. It applies
a two-stage fine-tuning process to improve generalization,
with final evaluation conducted on a real-world benchmark.

Beyond direct fine-tuning, reinforcement learning approaches
like Golden Code Feedback is used to refine models iteratively using
user feedback [40]. Similarly, multi-modal techniques such as VGV
[41] integrate circuit diagrams with textual data during training,
allowing models to understand spatial and parallel aspects of circuit
design.

2.2 Benchmarks for LLM-Generated Software
The research community has recognized the need for standardized
benchmarks to rigorously evaluate LLM-generated code in terms
of design correctness.

Most existing benchmarks for code generation are tailored for
software development rather than hardware design. For instance,
HumanEval [6] and MBPP (Mostly Basic Python Problems) [20]
are widely used to evaluate LLMs for software code generation.
HumanEval consists of 164 Python programming tasks, each with
a function signature and a set of test cases to validate correct-
ness. While relatively small in scope, this benchmark is carefully
designed, making it well-suited for quick functional correctness
evaluations of Python-based code generation. Several extensions
have expanded its coverage, including HumanEval+ [20], which
increases the number of test cases by 80 times, and HumanEvalPack
[24], which extends the benchmark to six programming languages.

Similarly, MBPP comprises approximately 974 short Python pro-
gramming tasks, each including a task description prompt, a code
solution, and three automated test cases. It emphasizes both correct-
ness and clarity. Its enhanced version, MBPP+ [20], refines flawed
implementations and expands the number of test cases to improve
robustness.

While HumanEval and MBPP provide fundamental benchmarks,
they primarily focus on entry-level programming tasks and do
not always reflect the complexity of real-world software develop-
ment. To address this limitation, benchmarks with more intricate
problem sets have been introduced. For example, DSP-1000 [18] con-
tains 1,000 science-related programming tasks from seven Python
libraries, covering a diverse set of topics and incorporating multi-
criteria evaluation metrics to provide a more realistic assessment
of code generation models.

2.3 Benchmarks for LLM-Generated Hardware
Existing benchmarks for hardware design generation in HDL are
often based on experiences and lessons learned in software code
benchmarking, particularly in designing diverse problem sets and
developing automated evaluation frameworks. Similar to their soft-
ware counterparts, performance metrics for hardware design gen-
eration frequently focus on design correctness measures such as
Pass@k. However, benchmarking hardware designs typically in-
volves simulation-based hardware verification [27].



ResBench: A Resource-Aware Benchmark for LLM-Generated FPGA Designs HEART 2025, May 26–28, 2025, Kumamoto, Japan

Table 1: Benchmarks for LLM HDL Generation

Benchmark Size PL Type Features

VerilogEval [21] 156 Verilog Verilog code generation
tasks

Covers a wide range of tasks from simple combinational cir-
cuits to finite state machines; includes automatic functional
correctness testing.

HDLEval [17] 100 Multiple Language-agnostic HDL
evaluation

Evaluates LLMs across multiple HDLs using standardized test-
benches and formal verification; categorizes problems into
combinational and pipelined tests.

PyHDL-Eval [4] 168 Python-embedded DSLs Specification-to-RTL tasks Focuses on Python-embedded DSLs for hardware design; in-
cludes Verilog reference solutions and testbenches; evaluates
LLMs’ ability to handle specification-to-RTL translations.

RTLLM [22] 50 Verilog, VHDL, Chisel Design RTL generation Supports evaluation across multiple HDL formats; spans var-
ious design complexities and scales; includes an automated
evaluation framework.

VHDL-Eval [37] 202 VHDL VHDL code generation
tasks

Aggregates translated Verilog problems and publicly available
VHDL problems; utilizes self-verifying testbenches for func-
tional correctness validation.

GenBen [38] 351 Verilog Fundamental hardware de-
sign and debugging tasks

Evaluates synthesizability, power consumption, area utiliza-
tion, and timing performance to ensure real-world applicabil-
ity.

Unlike software benchmarks, which evaluate correctness by di-
rectly executing code, hardware designs require dedicated testbench
scripts to simulate hardware behavior and validate functionality.
A typical evaluation process involves querying the LLM for HDL
code, executing the generated HDL within a hardware simulation
environment, and comparing the outputs to determine correctness.

Some benchmarks have emerged to address these challenges,
as presented in Table 1. Among them, VerilogEval, HDLEval, and
PyHDL-Eval are widely recognized.

• VerilogEval [21] is a widely adopted benchmark for evaluat-
ing LLMs in Verilog code generation [1, 10, 43]. It consists
of 156 problems taken from the HDLBits tutorial website
[31], covering a range of Verilog tasks from combinational
circuits to finite state machines. The framework automates
functional correctness testing by comparing the simulation
outputs of generated designs against predefined golden so-
lutions.

• HDLEval [17] follows a language-agnostic approach. In par-
ticular, this benchmark allows the same set of problems,
formulated in plain English, to be evaluated across different
HDLs. The benchmark consists of 100 problems systemati-
cally categorized into combinational and pipelined designs,
covering fundamental hardware components such as logic
gates, arithmetic operations, and pipelined processing units.
A prominent feature of this benchmark is the use of formal
verification instead of unit tests. This feature ensures that the
generated HDL code is functionally correct and maintains
logical equivalence with reference implementations.

• PyHDL-Eval [4] is a framework for evaluating LLMs on
specification-to-Register Transfer Level (RTL) tasks within
Python-embedded domain-specific languages (DSLs). It in-
cludes 168 problems across 19 subclasses, covering combi-
national logic and sequential logic. The evaluation process

involves executing the generated code in Python-embedded
HDLs (e.g., PyMTL3, PyRTL) and measuring functional cor-
rectness based on pass rates.

2.4 Challenges in LLM Benchmarking for FPGA
Design

Despite advancements in LLM-driven Verilog generation, existing
models primarily focus on producing syntactically and functionally
correct HDL but fail to address critical hardware constraints essen-
tial for FPGA deployment, such as resource efficiency, timing con-
straints, and power consumption. Unlike ASIC design, FPGA-based
development demands careful consideration of resource usage, in-
cluding lookup tables (LUTs), flip-flops (FFs), block RAM (BRAM),
and digital signal processing (DSP) blocks. However, current LLMs
for Verilog generation lack an understanding of FPGA-specific re-
quirements, often producing designs that are functionally correct
but inefficient and impractical for real-world FPGA deployment.

The inability to evaluate and optimize LLM-generated Verilog
for FPGA resource constraints highlights the need for advancing
resource-aware Verilog generation and motivates this study. To
establish LLMs as a practical solution for HDL automation, it is
essential to equip them with a deeper understanding of FPGA de-
sign constraints. Achieving this requires developing new training
datasets, designing robust evaluation frameworks, and refining LLM
training strategies to enhance their capability in hardware-aware
code generation. This paper focuses on constructing a benchmark
that provides an evaluation of LLMs’ performance in generating
HDLs that are both functionally correct and optimized for FPGA-
specific resource constraints.



HEART 2025, May 26–28, 2025, Kumamoto, Japan C. Guo and T. Zhao

3 Design of ResBench
This section presents the design of ResBench, outlining its guiding
principles and structured problem set for evaluating LLM-generated
Verilog code. Additionally, we compare ResBench with existing
benchmarks for LLM-generated HDL code.

3.1 Design Principles and Benchmark Problems
ResBench is designed to evaluate LLM-generated Verilog across a di-
verse range of FPGA applications, with a primary focus on resource
optimization awareness. The benchmark consists of 56 problems
categorized into 12 domains, each representing a key area of FPGA
applications. The problems in ResBench are carefully structured
to evaluate both functional correctness and resource efficiency.
The benchmark covers a wide range of FPGA design tasks, from
fundamental digital logic and mathematical computation to more
complex, application-driven domains such as machine learning,
cryptography, and financial computing. By spanning these diverse
categories, ResBench ensures that LLMs are tested on both low-
level design problems and high-level algorithmic implementations
for real-world applications.

The design of ResBench is guided by two key principles:

• The Principle of Resource Usage Differentiation aims to
highlight differences in how LLMs optimize FPGA resource
usage. The benchmark includes problems that allow multiple
resource-aware optimization strategies and require mathe-
matical transformations. This approach makes it possible to
distinguish between models that generate resource-efficient
Verilog and those that do not.

• The Principle of FPGA Application Diversity recog-
nizes the wide range of FPGA applications, particularly in
computational acceleration and edge computing. ResBench
spans various domains, including financial computing, cli-
mate modeling, and signal processing, allowing LLMs to be
tested across a broad set of real-world FPGA workloads.

Table 2 provides an overview of the problem categories along
with representative examples. The problems in the benchmark
are designed to align with the two guiding principles. Specifically,
ResBench addresses the principles as follows:

• ResBench addresses resource usage differentiation by in-
troducing problems that require optimization techniques
beyond simple code-level improvements. Fig. 1 illustrates
this with a polynomial evaluation problem from the bench-
mark. Algebraic simplification in this case enables a more
efficient Verilog implementation using fewer LUTs. LLMs
that fail to apply this optimization generate designs with
excessive LUT consumption.

• ResBench addresses FPGA application diversity by cover-
ing both foundational and application-driven workloads.
Foundational problems include combinational logic, finite
state machines, arithmetic operations, pipelining, polyno-
mial evaluations, and mathematical functions. Application-
driven problems span machine learning, encryption, and
financial computing, emphasizing the role of FPGAs in AI
acceleration, security, and high-speed data processing.

By adhering to these principles, the benchmark evaluates not
only an LLM’s ability to generate syntactically correct Verilog code
but also its capability to produce hardware-efficient designs suited
for FPGA deployment.

3.2 Comparison with Existing Benchmarks
Table 3 highlights key differences between ResBench and existing
HDL benchmarks. The differences are particularly significant in
FPGA resource optimization awareness and problem diversity:

• FPGA resource optimization awareness. Most existing bench-
marks, such as VerilogEval, HDLEval, and GenBen, focus
primarily on functional correctness and HDL syntax quality
but do not explicitly account for FPGA resource usage. Con-
sequently, these benchmarks cannot distinguish between
functionally correct designs that differ significantly in hard-
ware resource utilization. In contrast, ResBench introduces
optimization-aware problems specifically designed to expose
variations in resource usage. This enables a more practi-
cal comparison of LLMs based on their ability to generate
resource-efficient designs for FPGAs.

• Problem diversity. Existing benchmarks primarily focus on
fundamental HDL constructs such as basic logic, state ma-
chines, and arithmetic operations, with limited diversity in
FPGA applications. For example, VerilogEval emphasizes
control logic and arithmetic, while HDLEval mainly evalu-
ates digital circuits and state machines. In contrast, ResBench
encompasses a significantly broader range of FPGA appli-
cations, including machine learning, encryption, financial
computing, and physics-based modeling. These domains rep-
resent real-world FPGA workloads where resource efficiency
is crucial for minimizing device cost and maximizing paral-
lelism. By incorporating a diverse set of tasks, ResBench pro-
vides a more comprehensive evaluation of LLM-generated
HDL in practical FPGA design scenarios.

4 Evaluation Framework for ResBench
To evaluate LLM-generated designs for FPGA design with Res-
Bench, we implement a structured framework that examines both
functional correctness and hardware efficiency.

We build the software for the evaluation framework based on
the lessons learned in testing LLM-based software code generation.
The benchmarks for LLM-based software share a common eval-
uation framework aimed at assessing whether generated code is
both syntactically valid and functionally correct. In particular, each
benchmark generally includes four key components:

(1) Prompts, which can be presented as a natural language de-
scription [11, 35] or both description and function signature
[6, 20], guiding the model on what to generate.

(2) A reference solution, which serves as the correct implemen-
tation for comparison.

(3) Test cases, which are predefined inputs and expected outputs
used to validate correctness

(4) Performance metrics, like Pass@k [6] and Code Similar-
ity Scores [29], which estimates how effectively an LLM-
generated solution satisfies the given problem constraints. A
widely used metric is Pass@k, which measures the likelihood



ResBench: A Resource-Aware Benchmark for LLM-Generated FPGA Designs HEART 2025, May 26–28, 2025, Kumamoto, Japan

Table 2: Summary of benchmark categories, including the number of problems and representative examples.

Category # Problems Example Problems

Combinational Logic 8 parity_8bit, mux4to1, bin_to_gray
Finite State Machines 4 fsm_3state, traffic_light, elevator_controller
Mathematical Functions 5 int_sqrt, fibonacci, mod_exp
Basic Arithmetic Operations 5 add_8bit, mult_4bit, abs_diff
Bitwise and Logical Operations 4 bitwise_ops, left_shift, rotate_left
Pipelining 5 pipelined_adder, pipelined_multiplier, pipelined_fir
Polynomial Evaluation 5 (𝑥 + 2)2 + (𝑥 + 2)2 + (𝑥 + 2)2, (𝑎 + 𝑏)2 − (𝑎 − 𝑏)2
Machine Learning 5 matrix_vector_mult, relu, mse_loss
Financial Computing 4 compound_interest, present_value, currency_converter
Encryption 3 caesar_cipher, modular_add_cipher, feistel_cipher
Physics 4 free_fall_distance, kinetic_energy, wavelength
Climate 4 carbon_footprint, heat_index, air_quality_index

Total 56 –

(a) Design Generated by Qwen-2.5 (213 LUTs) (b) Design Generated by GPT-4 (0 LUT + 1 DSP)

Figure 1: Benchmark example illustrating HDL optimization capability using the expression (𝑎 + 𝑏)2 − (𝑎 − 𝑏)2. (a) Qwen-2.5
computes the full expression directly, leading to high LUTusage. (b) GPT-4 simplifies the expression to 4𝑎𝑏, significantly reducing
resource usage by using a single DSP unit instead of LUTs. This example demonstrates ResBench’s ability to differentiate LLMs
based on resource optimization.

Table 3: Comparison of Benchmarks for LLM HDL Evaluation

Benchmark Year Hardware Optimization Problem Diversity
Awareness

VerilogEval [33] 2023 General HDL No Logic, FSMs, arithmetic
HDLEval [17] 2024 General HDL No Digital circuits, control logic
PyHDL-Eval [4] 2024 General HDL No Python-based HDL, small designs
RTLLM [23] 2024 General HDL No RTL, bus protocols, DSP
VHDL-Eval [37] 2024 General HDL No VHDL logic, sequential circuits
GenBen [38] 2024 General HDL No Application-driven tasks

ResBench (This paper) 2025 FPGA Resource Usage Optimizations 56 problems across 12 domains

that at least one of the top-k generated solutions passes all
test cases.

Different from the evaluation of software code generation, our
framework uses the resource usage count as a keymetric to quantify
the quality of resource-oriented optimization. The framework also



HEART 2025, May 26–28, 2025, Kumamoto, Japan C. Guo and T. Zhao

Figure 2: Overview of the software workflow. The process begins with Verilog generation using an LLM, followed by functional
verification through testbenches. Functionally correct designs undergo FPGA synthesis to extract resource usage metrics, and
the framework compiles performance reports comparing functional correctness and resource usage.

uses an automated benchmarking system that automates Verilog
code generation, functional correctness testing, FPGA synthesis,
and resource usage extraction.

The open-source software for ResBench automates the evalu-
ation of LLM-generated Verilog, systematically measuring both
functional correctness and FPGA resource usage with minimal
manual intervention. An overview of the software’s workflow is
shown in Fig. 2.

The software accepts a user-specified LLM and generates Ver-
ilog solutions based on structured problem definitions. It produces
detailed evaluation reports, indicating whether each design passes
synthesis and functional correctness checks, along with a resource
utilization summary. By automating the full evaluation pipeline, the
framework facilitates large-scale benchmarking and comparative
studies of different LLMs for HDL code generation.

To maintain consistency, each problem follows a structured for-
mat consisting of three components: a natural language problem
description in plain English, a Verilog module header, and a pre-
defined testbench. The problem description specifies the expected
input-output format and functional constraints, ensuring that LLM-
generated code aligns with real-world design requirements. The
module header provides a consistent Verilog interface with de-
fined input and output signals but leaves the internal logic for the
LLM to fill. The testbench validates functional correctness through
simulation by applying predefined test cases in the testbench and
comparing outputs against a manually verified reference solution.

The evaluation framework follows a structured process to evalu-
ate LLM-generated designs. The evaluation of an LLM on a bench-
mark problem consists of the following three steps:

(1) The framework queries the selected LLM to generate multi-
ple Verilog code snippets for a given problem. These gener-
ated snippets are stored in text format along with references
to their corresponding problem descriptions. Functional cor-
rectness is then verified using predefined testbenches. De-
signs that pass all test cases proceed to FPGA synthesis,
while those that fail have their errors recorded for further
analysis.

(2) FPGA synthesis is performed to determine resource usage
metrics such as LUT count, DSP utilization, and register
count. For designs that fail synthesis, the resource count is
set to∞, ensuring a consistent comparison framework.

(3) The framework generates structured reports summarizing
pass rates, synthesis success rates, and resource usage statis-
tics. Users can visualize model performance through auto-
matically generated comparisons of functional correctness
and resource usage.

By following this structured evaluation process, the framework
provides a fully automated benchmarking solution that evaluates
LLM-generated Verilog across all benchmark problems, focusing
on both design correctness and resource usage.



ResBench: A Resource-Aware Benchmark for LLM-Generated FPGA Designs HEART 2025, May 26–28, 2025, Kumamoto, Japan

5 Evaluation
This section presents our evaluation of LLM-generated FPGA de-
signs using ResBench. The evaluation focuses not only on functional
correctness but also on FPGA resource usage.

5.1 Experimental Setup and Metrics
Our experiments evaluate the capability of LLMs to generate both
funtionally correct and resource-efficient Verilog code by examining
the number of functionally correct designs. Also, we examine how
well different models optimize FPGA resources.

We run the software proposed in Section 4 with all benchmark
problems. For each LLM-generated design, we compile the test-
bench and simulate it to verify the functional correctness of the
generated Verilog modules. If the simulation confirms that the de-
sign is correct, we use the Vivado synthesis tool to generate a
resource report and assess resource usage.

To evaluate functional correctness, we generate the same number
of designs from each LLM and count how many designs pass for
each problem. In cases where two LLMs produce the same number
of passing designs, we break the tie by considering the number of
designs that pass synthesis but fail the functional correctness test.
We do not use the Pass@k metric, which is commonly applied to
LLM-generated software code, because we intend to distinguish
designs that fail hardware synthesis from those that successfully
synthesize but do not meet functional correctness requirements.

In this study, we quantify the capability of resource optimization
by minimizing the LUT count. LUTs serve as the primary logic
resource for implementing combinational operations and small
memory elements. While FPGAs also provide other resources, these
tend to be application-specific. For instance, DSPs and BRAMs are
crucial for arithmetic-intensive and memory-heavy designs but are
not universally required across all FPGA applications. In contrast,
LUTs are a fundamental component in nearly every design, making
them a consistent and reliable metric for evaluating different HDL
implementations.

Each LLM-generated design 𝑑𝑖 is evaluated based on its LUT
usage. If a design successfully passes both synthesis and functional
correctness testing, its LUT count is recorded as LUT(𝑑𝑖 ). Oth-
erwise, it is assigned ∞ to indicate that the design is either non-
synthesizable or functionally incorrect:

LUT(𝑑𝑖 ) =
{
LUT count, if 𝑑𝑖 is synthesizable and correct
∞, otherwise

(1)

LUTmin = min (LUT(𝑑0), LUT(𝑑1), . . . , LUT(𝑑𝑛−1)) (2)

By using ∞ for failed designs, our approach naturally excludes
non-functional implementations. This setting maintains computa-
tional consistency and eliminates the need for explicit filtering in
the evaluation of Equation 2. Note that while this study focuses
on minimizing LUT usage, our framework is capable of extracting
and analyzing other resource metrics with a different optimization
objective.

For correctness testing and resource usage evaluation, we use
Vivado 2023.1 for simulation, synthesis, and analysis. The hardware
implementation is targeted at the programmable logic section of the

AMD Zynq 7000 XC7Z020CLG400-1 SoC, operating at its default
clock frequency. While design correctness remains independent of
the chosen tool, the LUT count is influenced by Vivado’s synthesis
capabilities and the type of LUTs on the target device. However,
we expect the impact of FPGA software choice on relative resource
efficiency to be small. In particular, for a given problem, the HDL
designs with the smallest LUT count will likely stay unchanged
even when evaluated with different FPGA tools.

For all the evaluated LLMs, we set the temperature parameter to
1.5 to encourage high diversity of the HDL code for each problem.
The evaluation includes three types of models: general-purpose
LLMs, code-specialized LLMs, and HDL-specialized LLMs. The
general-purpose models we evaluate include GPT-3.5 [44], GPT-4o
[13], GPT-4 [2], GPT-o1-mini [14], Llama3.1-450B [34], Qwen-Max
[3], and Qwen-Plus [42]. The evaluated code-specialized models
include Qwen2.5-Coder-32B-Instruct [12] and Codestral [15]. We
also evaluate VeriGen [33], an HDL-specialized model. However,
during the evaluation, VeriGen failed to generate legitimate Verilog
code for all problems. As a result, we omit its results from further
discussion.

5.2 Functional Correctness
Table 4 provides detailed pass counts across 12 categories of prob-
lems, with 15 designs generated for each problem. Each table cell
follows the format: pass / synthesis OK but incorrect design /
synthesis error. For example, if a category contains 5 problems,
each LLM generates a total of 75 solutions (5 problems × 15 gen-
erated designs per problem), and the sum of the three numbers in
each cell corresponds to this total. In this table, we also include
the number of wins, which represents the number of categories in
which each LLM achieved the highest pass count.

The results show that GPT-o1-mini is the leading model, achiev-
ing the highest pass counts in most categories. This suggests that
reasoning-optimized models have an advantage in Verilog code
generation. This is potentially because its reasoning capabilities
contribute to more accurate outputs.

Table 4 shows a notable observation in finite state machines,
mathematical functions, pipelining. The generated code can of-
ten pass synthesis but fail to function correctly. This observation
suggests that while LLMs grasp basic syntax, they struggle with
complex functional logic. In contrast, for more intricate problems
with complex contexts, such as mathematical functions and finan-
cial computing, LLMs tend to produce syntactically incorrect code,
reflecting challenges in understanding and reasoning within these
contexts.

The results show that for every problem there is at least one
model providing correct solutions. However, in categories such as
pipelining, financial computing, and encryption, LLMs tend to un-
derperform and show higher variability. For example, GPT-3.5 pro-
duced no passing solutions in pipelining, but LLaMA 3.1 achieved
good results. A similar pattern is observed in the mathematical
functions category. These results highlight the importance of eval-
uating both functional correctness and resource optimization in
complex design scenarios.



HEART 2025, May 26–28, 2025, Kumamoto, Japan C. Guo and T. Zhao

Table 4: Design correctness of LLMs in generating Verilog code across different categories

Cell format: pass / synthesis OK but incorrect design / synthesis error
GPT-3.5 GPT-4 GPT-4o GPT-o1 Llama3.1 Qwen-max Qwen-plus Qwen2.5-coder Codestral
turbo mini 405B 32B

Combinational Logic 112 / 5 / 3 117 / 3 / 0 120 / 0 / 0 118 / 1 / 1 115 / 2 / 3 117 / 2 / 1 109 / 1 / 10 112 / 2 / 6 120 / 0 / 0

Finite State Machines 23 / 15 / 22 32 / 22 / 6 31 / 24 / 5 39 / 18 / 3 31 / 24 / 5 34 / 26 / 0 27 / 23 / 10 39 / 10 / 11 36 / 6 / 18

Mathematical Functions 13 / 19 / 43 6 / 39 / 30 36 / 10 / 29 46 / 24 / 5 7 / 6 / 62 26 / 27 / 22 20 / 26 / 29 5 / 8 / 62 0 / 3 / 72

Basic Arithmetic Ops 37 / 2 / 36 63 / 8 / 4 66 / 9 / 0 68 / 4 / 3 43 / 2 / 30 38 / 22 / 15 27 / 13 / 35 54 / 6 / 15 62 / 13 / 0

Bitwise & Logic Ops 35 / 0 / 25 55 / 0 / 5 58 / 2 / 0 59 / 0 / 1 52 / 0 / 8 47 / 0 / 13 33 / 11 / 16 36 / 0 / 24 55 / 0 / 5

Pipelining 0 / 59 / 16 11 / 54 / 10 26 / 49 / 0 15 / 38 / 22 7 / 38 / 30 15 / 32 / 28 16 / 26 / 33 21 / 31 / 23 6 / 56 / 13

Polynomial Evaluation 19 / 3 / 53 69 / 0 / 6 74 / 1 / 0 68 / 5 / 2 58 / 6 / 11 55 / 2 / 18 28 / 5 / 42 65 / 7 / 3 69 / 6 / 0

Machine Learning 31 / 3 / 41 60 / 8 / 7 60 / 13 / 2 73 / 1 / 1 45 / 28 / 2 63 / 12 / 0 61 / 12 / 2 57 / 2 / 16 64 / 8 / 3

Financial Computing 9 / 23 / 28 21 / 22 / 17 29 / 13 / 18 20 / 20 / 20 11 / 21 / 28 28 / 15 / 17 15 / 12 / 33 16 / 7 / 37 17 / 23 / 20

Encryption 30 / 0 / 15 30 / 2 / 13 25 / 20 / 0 30 / 0 / 15 26 / 0 / 19 25 / 9 / 11 30 / 1 / 14 30 / 0 / 15 30 / 0 / 15

Physics 45 / 3 / 12 57 / 0 / 3 53 / 4 / 3 54 / 5 / 1 41 / 11 / 8 49 / 7 / 4 40 / 17 / 3 38 / 15 / 7 55 / 2 / 3

Climate 8 / 15 / 37 21 / 30 / 9 41 / 11 / 8 41 / 15 / 4 24 / 23 / 13 38 / 19 / 3 19 / 31 / 10 32 / 14 / 14 28 / 19 / 13
Number of wins 0 2 4 5 0 0 0 1 1

5.3 Resource Usage
Table 5 presents the LUT usage results for the benchmark problems.
In this table, problems where all LLMs yield identical LUT usage are
excluded for brevity. The cell with the lowest resource usage in each
category is highlighted in bold. The number of wins is determined
by counting these highlighted cells.

The results suggest that different LLMs have varying levels of
optimization capability within our benchmark framework. This
highlights how the benchmark problems reveal differences in LLMs’
ability to optimize resource usage. Moreover, we have the following
observations based on the results:

(1) GPT-o1-mini leads with 19 wins, significantly outperform-
ing the runner-up, GPT-4, which achieves 12 wins. This
indicates that GPT-o1-mini generates Verilog designs with
lower resource usage in most problems. Its strong perfor-
mance suggests that advanced reasoning capabilities may
enhance its understanding of problem requirements, the Ver-
ilog language, and the complexities of hardware design. In
contrast, code-specialized LLMs, while demonstrating high
accuracy in producing functionally correct Verilog, may lack
the reasoning depth needed to optimize designs effectively
for FPGA constraints. This difference highlights that gen-
erating syntactically correct HDL alone is insufficient for
producing resource-efficient hardware, as true optimization
demands a deeper understanding of both design require-
ments and FPGA-specific constraints.

(2) GPT-3.5-Turbo, Qwen2.5-Coder, and Codestral demonstrate
the weakest resource optimization ability, achieving only
7, 7, and 8 wins, respectively. The poor resource optimiza-
tion of GPT-3.5-turbo is potentially due to its model size
and lack of updates. Qwen2.5-Coder and Codestral, the two
code-specialized models in our evaluation, also struggle with
resource optimization. One possible explanation is that these
models are primarily trained on software code rather than

HDL, which may limit their ability to account for FPGA re-
source constraints when generating and optimizing Verilog.
Additionally, key optimization techniques, such asmathemat-
ical simplifications, are unlikely to be picked up effectively
from software code data.

(3) The observed variations in resource usage across different
problem types confirm that our benchmarks can lead to diver-
gent hardware resource usage for Verilog designs generated
by different LLMs. For simple tasks such as combinational
logic and basic arithmetic operations, the differences tend to
be less significant. This is likely because the training data of
the models include well-established reference solution for
these problems. However, for more complex problems, our
benchmark problems lead to significantly greater divergence
in LUT usage. This suggests that our benchmark problems
effectively evaluate the ability of LLMs to optimize resource
usage beyond learned patterns.

Considering both functional correctness and resource usage, we
find that GPT-o1-mini achieves the highest performance in both
aspects, while code-specialized models, including Qwen2.5-Coder
and Codestral, perform the worst.

6 Conclusion and Future Work
LLMs provide a promising solution for automating HDL generation.
However, most current benchmarks focus mainly on functional
correctness while overlooking FPGA resource constraints. This
lack of attention on FPGA resource efficiency underscores the need
for resource-aware benchmarks to better evaluate LLM-generated
HDL for real-world FPGA deployment. Additionally, current bench-
marks lack problem diversity, limiting their effectiveness in evalu-
ating real-world FPGA applications. To address these limitations,
we introduce ResBench, the first resource-centric benchmark for
LLM-generated HDL. ResBench features 56 problems spanning 12
categories. The benchmark problems are designed to expose LLMs’



ResBench: A Resource-Aware Benchmark for LLM-Generated FPGA Designs HEART 2025, May 26–28, 2025, Kumamoto, Japan

Table 5: LUTmin for each LLM across categories

GPT-3.5 GPT-4 GPT-4o GPT-o1 Llama3.1 Qwen-max Qwen-plus Qwen2.5-coder Codestral
turbo mini 405B 32B

fsm 3state 1 0 0 0 0 0 0 0 0

traffic light 1 1 2 0 0 2 3 2 ∞

elevator controller 3 3 2 2 2 2 2 2 2

vending machine 1 1 2 1 2 1 1 2 1

int sqrt ∞ ∞ 68 177 ∞ 64 229 173 ∞

fibonacci ∞ 56 1 56 56 56 ∞ ∞ ∞

mod exp ∞ ∞ 4466 4669 ∞ 1911 1678 ∞ ∞

power ∞ 79 93 93 ∞ 93 93 93 ∞

log2 int ∞ ∞ ∞ 10 20 ∞ ∞ 12 ∞

abs diff 12 12 14 12 12 ∞ 12 12 12

modulo op 82 82 82 82 111 ∞ ∞ ∞ ∞

left shift 10 10 10 10 10 12 12 10 10

pipelined adder ∞ 0 16 ∞ 0 ∞ 0 15 ∞

pipelined multiplier ∞ ∞ 77 70 56 ∞ 70 ∞ ∞

pipelined max finder ∞ 0 24 0 24 24 24 24 24

𝑥3 + 3𝑥2 + 3𝑥 + 1 49 49 0 91 0 91 0 91 49

(𝑥 + 2)2 + (𝑥 + 2)2 + (𝑥 + 2)2 64 33 96 11 108 108 26 18 33

(𝑎 + 𝑏 )2 − (𝑎 − 𝑏 )2 ∞ 0 213 59 16 213 16 16 16

relu 8 8 8 8 8 16 8 8 16

mse loss ∞ 216 64 64 216 64 216 64 64

compound interest ∞ 13060 10135 10135 52950 9247 ∞ 10135 52950

currency converter ∞ ∞ 0 0 25 0 ∞ ∞ ∞

free fall distance 6 6 64 6 6 64 67 64 6

kinetic energy 70 70 54 54 54 54 54 54 54

potential energy 6 6 84 0 6 6 6 6 6

carbon footprint 174 121 110 92 121 121 110 110 110

heat index 16 16 201 16 195 16 124 201 201

air quality index ∞ ∞ 128 104 ∞ 104 116 128 128
Number of wins 7 12 10 19 11 10 9 7 8

ability to generate Verilog designs optimized for FPGA resource
usage.

While ResBench is not explicitly designed to emphasize combi-
national logic and arithmetic operations, the current problem set
naturally includes a high proportion of such designs. Future work
will expand the benchmark to include more sequential designs, such
as pipelined architectures and state-driven circuits. Additionally,
although the current evaluation focuses on Verilog, our framework
is designed to support multiple HDLs. Future efforts will extend
support to VHDL and high-level synthesis (HLS) tools.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback
and suggestions. The support of the United Kingdom EPSRC (grant
number UKRI256, EP/V028251/1, EP/N031768/1, EP/S030069/1, and
EP/X036006/1), Intel, and AMD is gratefully acknowledged.

AI Usage Statement: This work involves the use of generative
AI in multiple aspects. The methodology presented in this paper
focuses on evaluating the ability of AI models to generate HDL
code. As such, all experimental results are based on Verilog designs
produced by LLMs. For writing, ChatGPT-4 and Llama 3.1 were
used to refine phrasing, improve clarity, and proofread the text.



HEART 2025, May 26–28, 2025, Kumamoto, Japan C. Guo and T. Zhao

References
[1] Manar Abdelatty, Jingxiao Ma, and Sherief Reda. 2024. MetRex: A Benchmark

for Verilog Code Metric Reasoning Using LLMs.
[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. GPT-4 Technical Report.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen Technical Report.

[4] Christopher Batten, Nathaniel Pinckney, Mingjie Liu, Haoxing Ren, and Brucek
Khailany. 2024. PyHDL-Eval: An LLM Evaluation Framework for Hardware
Design Using Python-Embedded DSLs. In Proceedings of the 2024 ACM/IEEE
International Symposium on Machine Learning for CAD. IEEE, 1–17.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot Learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating Large Language Models Trained on Code.

[7] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. PaLM: Scaling Language Modeling with Pathways.
Journal of Machine Learning Research 24, 240 (2023), 1–113.

[8] Jacob Devlin. 2018. BERT: Pre-Training of Deep Bidirectional Transformers for
Language Understanding.

[9] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
Generative Model for Code Infilling and Synthesis.

[10] Mingzhe Gao, Jieru Zhao, Zhe Lin, Wenchao Ding, Xiaofeng Hou, Yu Feng, Chao
Li, and Minyi Guo. 2024. AutoVCoder: A Systematic Framework for Automated
Verilog Code Generation using LLMs.

[11] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring Mathematical Problem
Solving with the Math Dataset.

[12] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. 2024. Qwen2.5-Coder Technical
Report.

[13] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024.
GPT-4o System Card.

[14] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. 2024.
OpenAI O1 System Card.

[15] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7B.

[16] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024. A
Survey on Large Language Models for Code Generation. arXiv:2406.00515 [cs.CL]
https://arxiv.org/abs/2406.00515

[17] Farzaneh Rabiei Kashanaki, Mark Zakharov, and Jose Renau. 2024. HDLEval
Benchmarking LLMs for Multiple HDLs. In 2024 IEEE LLMAided DesignWorkshop
(LAD). IEEE, IEEE, 1–5.

[18] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Wen-tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-1000: A
Natural and Reliable Benchmark for Data Science Code Generation. In Interna-
tional Conference on Machine Learning. PMLR, 18319–18345.

[19] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: May the Source Be with You!

[20] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
LanguageModels for Code Generation. Advances in Neural Information Processing
Systems 36 (2024).

[21] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. 2023. Ver-
ilogeval: Evaluating Large Language Models for Verilog Code Generation. In 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE,
1–8.

[22] Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. 2024. OpenLLM-
RTL: Open Dataset and Benchmark for LLM-Aided Design RTL Generation. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[23] Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. 2024. RTLLM: An Open-Source
Benchmark for Design RTL Generation with Large Language Models. In 2024 29th
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 722–727.

[24] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui,
Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne
Longpre. 2023. Octopack: Instruction Tuning Code Large Language Models.

[25] Bardia Nadimi and Hao Zheng. 2024. A Multi-Expert Large Language Model
Architecture for Verilog Code Generation.

[26] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis.

[27] Ruidi Qiu, Grace Li Zhang, Rolf Drechsler, Ulf Schlichtmann, and Bing Li. 2024.
Autobench: Automatic Testbench Generation and Evaluation Using LLMs for
HDL Design. In Proceedings of the 2024 ACM/IEEE International Symposium on
Machine Learning for CAD. 1–10.

[28] Alec Radford. 2018. Improving Language Understanding by Generative Pre-
Training.

[29] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: A Method
for Automatic Evaluation of Code Synthesis.

[30] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code Llama: Open Foundation Models for Code.

[31] Alvin Tan. 2017. HDLBits: Digital Circuits Exercises. https://hdlbits.01xz.net/
wiki/Problem_sets Accessed: 2025.

[32] Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan,
Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. 2023. Benchmarking
Large Language Models for Automated Verilog RTL Code Generation. In 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1–6.

[33] Shailja Thakur, BaleeghAhmad, Hammond Pearce, Benjamin Tan, BrendanDolan-
Gavitt, Ramesh Karri, and Siddharth Garg. 2024. VeriGen: A Large Language
Model for Verilog Code Generation. ACM Transactions on Design Automation of
Electronic Systems 29, 3 (2024), 1–31.

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: Open and Efficient Foundation Language Models.

[35] Mansi Uniyal, Mukul Singh, Gust Verbruggen, Sumit Gulwani, and Vu Le. 2024.
One-to-Many Testing for Code Generation from (Just) Natural Language. In
Findings of the Association for Computational Linguistics: EMNLP 2024. 15397–
15402.

[36] Ashish Vaswani. 2017. Attention is All You Need. Advances in Neural Information
Processing Systems (2017).

[37] Prashanth Vijayaraghavan, Luyao Shi, Stefano Ambrogio, Charles Mackin,
Apoorva Nitsure, David Beymer, and Ehsan Degan. 2024. VHDL-Eval: A Frame-
work for Evaluating Large Language Models in VHDL Code Generation.

[38] Gwok-Waa Wan, Wang yubo, SamZaak Wong, jingyi zhang, Mengnv Xing, Zhe
jiang, Nan Guan, ying wang, Ning Xu, Qiang Xu, and Xi Wang. 2025. GenBen:A
Genarative Benchmark for LLM-Aided Design. https://openreview.net/forum?
id=gtVo4xcpFI

[39] JianxunWang and Yixiang Chen. 2023. A Review on Code Generation with LLMs:
Application and Evaluation. In 2023 IEEE International Conference on Medical
Artificial Intelligence (MedAI). IEEE, 284–289.

[40] Ning Wang, Bingkun Yao, Jie Zhou, Xi Wang, Zhe Jiang, and Nan Guan. 2024.
Large Language Model for Verilog Generation with Golden Code Feedback.

[41] Sam-Zaak Wong, Gwok-Waa Wan, Dongping Liu, and Xi Wang. 2024. VGV:
Verilog Generation Using Visual Capabilities of Multi-Modal Large Language
Models. In 2024 IEEE LLM Aided Design Workshop (LAD). IEEE, 1–5.

[42] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2.5
Technical Report.

[43] Yiyao Yang, Fu Teng, Pengju Liu, Mengnan Qi, Chenyang Lv, Ji Li, Xuhong Zhang,
and Zhezhi He. 2025. HaVen: Hallucination-Mitigated LLM for Verilog Code
Generation Aligned with HDL Engineers.

[44] Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui,
Zeyang Zhou, Chao Gong, Yang Shen, et al. 2023. A Comprehensive Capability
Analysis of GPT-3 and GPT-3.5 Series Models.

[45] Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi
Ye, and Jiachi Chen. 2023. A Survey of Large LanguageModels for Code: Evolution,
Benchmarking, and Future Trends.

https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://hdlbits.01xz.net/wiki/Problem_sets
https://hdlbits.01xz.net/wiki/Problem_sets
https://openreview.net/forum?id=gtVo4xcpFI
https://openreview.net/forum?id=gtVo4xcpFI

	Abstract
	1 Introduction
	2 Background
	2.1 Code-specialized and HDL-specialized LLMs
	2.2 Benchmarks for LLM-Generated Software
	2.3 Benchmarks for LLM-Generated Hardware
	2.4 Challenges in LLM Benchmarking for FPGA Design

	3 Design of ResBench
	3.1 Design Principles and Benchmark Problems
	3.2 Comparison with Existing Benchmarks

	4 Evaluation Framework for ResBench
	5 Evaluation
	5.1 Experimental Setup and Metrics
	5.2 Functional Correctness
	5.3 Resource Usage

	6 Conclusion and Future Work
	Acknowledgments
	References

