
Trustworthy Deep Learning Acceleration with
Customizable Design Flow Automation

Zhiqiang Que
Imperial College London

London, UK
z.que@imperial.ac.uk

Hongxiang Fan
Imperial College London

London, UK
hongxiang.fan@imperial.ac.uk

Gabriel Figueiredo
Imperial College London

London, UK
gabriel.figueiredo@imperial.ac.uk

Ce Guo
Imperial College London

London, UK
c.guo@imperial.ac.uk

Wayne Luk
Imperial College London

London, UK
w.luk@imperial.ac.uk

Ryota Yasudo
Kyoto University
Kyoto, Japan

yasudo@i.kyoto-u.ac.jp

Masato Motomura
Institute of Science Tokyo

Tokyo, Japan
motomura@artic.iir.isct.ac.jp

Abstract
In recent years, deep learning has brought the development of
accurate and complex models across various domains. Deploying
these models efficiently on resource-constrained platforms while
maintaining high accuracy and trustworthiness, however, remains
a critical challenge. This paper introduces an automated framework
for optimizing trustworthy deep learning by enabling trade-off be-
tween three metrics: computational efficiency, trustworthiness, and
predictive accuracy. Traditional compression techniques such as
pruning and scaling reduce computational complexity but can com-
promise model calibration and uncertainty quantification, which
is critical for safety-critical applications. To address this challenge,
we integrate Monte Carlo Dropout (MCD) for Bayesian Convolu-
tional Neural Networks (BayesCNNs) and propose an automated
Design Space Exploration (DSE) approach driven by Bayesian Op-
timization to identify Pareto-optimal configurations. Our frame-
work dynamically tunes pruning rates, dropout probabilities, and
other parameters to achieve Pareto-optimal trade-offs between
accuracy, efficiency, and uncertainty estimation. Two BayesCNN
architectures are evaluated to demonstrate that our approach can
systematically optimize deep learning models for trustworthiness
and efficiency. Our results show that no single configuration is
optimal across all metrics, demonstrating the need to automate
and customize co-optimization strategies. Compared to state-of-
the-art FPGA implementations, our optimized design achieves up
to 7.67× faster inference and 12.8× higher energy efficiency while
maintaining well-calibrated uncertainty estimates.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HEART 2025, Kumamoto, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/10.1145/3728179.3728198

ACM Reference Format:
Zhiqiang Que, Hongxiang Fan, Gabriel Figueiredo, Ce Guo, Wayne Luk,
Ryota Yasudo, and Masato Motomura. 2025. Trustworthy Deep Learning Ac-
celeration with Customizable Design Flow Automation. In The International
Symposium on Highly Efficient Accelerators and Reconfigurable Technologies
2025 (HEART 2025), May 26–28, 2025, Kumamoto, Japan. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3728179.3728198

1 Introduction
The continuous advancement of deep learning has allowed increas-
ingly accurate and complex models for various applications, from
computer vision [4, 13] to natural language processing [10]. How-
ever, efficiently deploying these models on edge and embedded
systems is still challenging due to limited computational power,
memory, and energy constraints [22]. To address these constraints,
model compression techniques, such as pruning and quantization,
are commonly used to reduce computational complexity while pre-
serving accuracy.

At the same time, trustworthiness in AI is becoming an increas-
ingly important requirement, particularly in safety-critical appli-
cations like autonomous driving [9], healthcare [23], and finance.
Conventional deep learning models tend to be overly confident in
their predictions and struggle to express uncertainty, which may
result in errors in high-risk decision-making environments. To
address this, Bayesian Convolutional Neural Networks (BayesC-
NNs) are utilized to estimate uncertainty using techniques such as
Monte Carlo Dropout (MCD). However, these Bayesian approaches
can introduce a significant computational overhead, since multi-
ple stochastic forward passes are required for reliable uncertainty
estimates.

The key challenge is to enable a trade-off between compression,
trustworthiness, and accuracy, which are three competing metrics
that are difficult to optimize simultaneously. Each metric affects
the other ones, and requires a careful trade-off to support both
efficiency and reliability.

1

https://doi.org/10.1145/3728179.3728198
https://doi.org/10.1145/3728179.3728198

HEART 2025, May 26–28, 2025, Kumamoto, Japan ZhiqiangQue, Hongxiang Fan, Gabriel Figueiredo, Ce Guo, Wayne Luk, Ryota Yasudo, and Masato Motomura

• Compression: reducingmodel size through techniques such
as pruning and scaling reduces memory usage, lowers en-
ergy consumption, and speeds up inference. This is especially
important for Bayesian CNNs where Monte Carlo Dropout
(MCD) requires multiple forward passes, increasing com-
putational costs. However, aggressive pruning may remove
essential network parameters, leading to accuracy loss and
making the model behave more deterministically, diminish-
ing its ability to estimate uncertainty.

• Trustworthiness: Bayesian methods such as MCD can im-
prove model reliability by generating predictive distributions
rather than a single-point result. However, each input leads
to multiple forward passes and increases inference time as
well as energy consumption. While compression techniques
can reduce per-pass computation overhead, excessive prun-
ing – as mentioned above – can disrupt Bayesian uncertainty
calibration, resulting in unreliable confidence estimates.

• Accuracy: The key objective of a deep learning model is to
keep high predictive accuracy, but compression and trustwor-
thiness mechanisms can introduce competing constraints.
Pruning can remove critical representations with informa-
tion loss which degrades accuracy, while MCD introduces
variance in predictions due to randomized dropout masks,
which affects stability.

Given the above considerations, we believe that manually tuning
the trade-offs between compression, uncertainty, and accuracy is
impractical in both large-scale models and edge AI applications due
to the vast design space. So a naive approach, such as grid search,
would be computationally expensive and inefficient.

To address these challenges, this paper introduces an automated
framework for developing Bayesian neural networks by optimizing
trade-offs between these three metrics. We propose Design Space
Exploration (DSE) driven by Bayesian Optimization to dynami-
cally select pruning rates, scaling factors, dropout probabilities,
and Bayesian layer configurations. Our approach supports efficient
navigation of this large design space, identifying configurations
with effective trade-offs between compression, trustworthiness, and
predictive accuracy.

Although prior work has individually explored techniques such
as model compression [21], uncertainty estimation with Monte
Carlo Dropout [8], and Bayesian Optimization, our work is the
first to automate co-optimization of these techniques in a unified
framework for acceleration. Moreover, we extend existing methods
– which primarily focus on static configurations and manual tun-
ing [8] – by using DSE driven by Bayesian Optimization to dynami-
cally adjust optimization parameters. This enables the discovery of
Pareto-optimal configurations across compression, trustworthiness
and accuracy dimensions while eliminating the need for manual
tuning.

Our contributions are as follows:

(1) An automated DSE for Bayesian CNNs (Section 3) which:
• explores optimal configurations for compression tech-
niques, such as pruning rates (𝛽𝑝) and scaling factors (𝛽𝑠)
dynamically;

• adjusts MCD settings including dropout rate 𝑝 , number
of Bayesian layers 𝐵 to improve uncertainty estimates;

• optimizes the trade-offs between compression, trustwor-
thiness and accuracy, generating a set of Pareto-optimal
configurations.

(2) Custom optimization strategies tailored to different deploy-
ment scenarios, such as reducing computation for efficiency
but maintaining trustworthiness (Section 4).

(3) Comprehensive evaluation of our approach (Section 5). Our
designs achieve up to 7.67× faster inference and 12.8× higher
energy efficiency when compared to state-of-the-art FPGA-
based implementations, demonstrating significant improve-
ments in performance.

2 Related Work
Co-optimization for Deep Learning Accelerators. Efficient
deployment of deep learning models often requires co-optimization
of both software and hardware, especially in resource-constrained
platforms such as FPGAs and edge devices.

Conventional approaches for deep learning acceleration typi-
cally rely on predefined hardware templates, which limits flexibility
in design space exploration [6, 12, 15, 24, 28]. Recent work has in-
troduced hardware-aware Neural Architecture Search (NAS) [1, 18]
and mixed-integer geometric programming-based frameworks [5]
to automate deep learning accelerator design, optimizing both deep
learning architectures and hardware efficiency.

Some approaches, such as MetaML [21], advance this field by
integrating multi-level deep learning accelerator optimization with
metaprogramming techniques [25] to enable automated source-to-
source transformations for high-level synthesis (HLS), optimizing
hardware efficiency without fixed hardware templates.

Uncertainty Estimation in Bayesian Deep Learning. Bayesian
deep learning has been widely studied to enhance model trustwor-
thiness, particularly through MCD and Bayesian Neural Networks
(BayesNNs).

Recent efforts have sought to optimize Bayesian CNN accelera-
tion using hardware-aware techniques. For example, FPGA-based
Bayesian CNN architectures [8] utilize MCD with intermediate-
layer caching to reduce redundant computations. Besides, [8] intro-
duces structured sparsity techniques which exploit channel, layer,
and sample sparsity to skip redundant computations. Bayesian
modeling techniques have also been extended to Graph Neural Net-
works (GNNs), improving robustness against adversarial attacks
and enhancing predictive uncertainty [27].

Despite advances in Bayesian deep learning, prior studies lack
an automated method for jointly optimizing compression, uncer-
tainty estimation, and accuracy. They rely on manual tuning or
fixed configurations. The proposed framework leverages Bayesian
Optimization to automate the tuning of pruning rates, dropout set-
tings, and Bayesian layers, in order to achieve optimal trade-offs
between efficiency and trustworthiness based on design require-
ments. Unlike previous static approaches which tie to specific hard-
ware constraints, our method is adaptive and can generalize across
diverse deployment scenarios.

Key novelties include:
2

Trustworthy Deep Learning Acceleration with
Customizable Design Flow Automation HEART 2025, May 26–28, 2025, Kumamoto, Japan

DB

compression

scaling pruning
Bayesian

conversion

adjusts model size
(𝛽s)

CNN => BayesCNN
(B layers, dropout rate p)

- trained model
- metrics
 accuracy
 FLOP
 aPE
 ECE

adjusts pruning rate
(𝛽p)

Pareto
analysis

training and
evaluation

FLOP count
MC dropout (S),

accuracy evaluation…

DSE: Bayesian Optimization
refines trade-offs between accuracy, efficiency, and trustworthiness

based on resulting metrics

- CNN model
- parameters
 𝛽s, 𝛽p

 p, B, S

trustworthiness

model transformation

HLS +
P&R

device specific

optimised
model

FPGA
design

Figure 1: Our Bayesian Optimization process is platform-agnostic, enabling trade-off between compression, uncertainty
estimation, and efficiency through scaling, pruning, and Bayesian conversion. It iteratively refines model parameters based on
performance metrics such as accuracy, FLOP, aPE, and ECE. Identified optimized models are prime candidates for hardware
acceleration on devices such as FPGAs (see Section 5.6).

(i) systematic exploration of the design space, eliminating the
need for manual tuning;

(ii) modeling the complex trade-offs between efficiency, accu-
racy, and trustworthiness;

(iii) applicability across different platforms, including CPUs,
GPUs, and FPGAs.

3 Approach
This section presents a platform-agnostic approach to optimize
deep learning models and ensure they remain small, efficient, and
trustworthy. We achieve this through an automated framework that
enables optimizing trade-offs between compression, trustworthi-
ness, and accuracy. This framework navigates these trade-offs using
a design space exploration (DSE) to minimize computational cost
while identifying high-performance configurations. Its modular ar-
chitecture allows the integration of diverse optimization techniques
even under challenging conditions such as out-of-distribution (OoD)
inputs.

3.1 Workflow
Figure 1 shows the workflow of our optimization process. It follows
a sequence of transformations to progressively fine-tune the model
in order to identify optimal trade-offs between different metrics.

The process begins with the compression stage, where the model
is optimized for computational efficiency through scaling and prun-
ing. Scaling modifies the network size based on scaling factor 𝛽𝑠
(Table 1). Given an original CNN with 𝐿0 length and𝑊0 width per
layer, the scaled network has:

𝐿 = ⌊𝛽𝑠𝐿0⌋, 𝑊 = ⌊𝛽𝑠𝑊0⌋ (1)

where ⌊·⌋ denotes the floor function. A smaller 𝛽𝑠 reduces computa-
tional complexity but risks removing important features. Pruning,
on the other hand, removes unimportant weights from the model
based on a pruning rate 𝛽𝑝 , defined as:

𝑊pruned = (1 − 𝛽𝑝)𝑊orig (2)

where𝑊orig is the original number of weights. Higher pruning
rates (𝛽𝑝 → 1) reduce computational complexity but may degrade
accuracy.

Following compression, the trustworthiness stage transforms the
model into a Bayesian Convolutional Neural Network (BayesCNN)
by integrating Monte Carlo Dropout (MCD) and Bayesian layers.
This enables the model to quantify predictive uncertainty. MCD
supports controlled stochasticity during the evaluation phase, and
it enables uncertainty estimation by incorporating dropout distri-
butions rather than fixed values. The dropout rate (𝑝) and number
of Bayesian layers (𝐵) can be fine-tuned to optimize the trade-offs
between uncertainty estimation and computational cost(Table 1).

After the trustworthiness stage, models are trained and then
evaluated to calculate key performance metrics, including model
accuracy, computational efficiency, and uncertainty estimations.
Computational efficiency is measured in terms of floating-point
operations (FLOP), a widely used proxy metric for estimating the
computational cost. Please note that this does not refer to floating-
point operations per second. This provides a hardware-agnostic
measure of model complexity and efficiency. In our approach, FLOP
corresponds to the total number of floating-point operations re-
quired to execute all forward steps, taking into account the pruning
rate. In addition, uncertainty quantification is measured using Aver-
age Predictive Entropy (aPE) and Expected Calibration Error (ECE),
as presented in Table 2.

Finally, this framework employs Bayesian Optimization to dy-
namically refine hyperparameters, including compression factors
(𝛽𝑠 , 𝛽𝑝) and uncertainty settings (𝑝, 𝐵). This process systematically
explores trade-offs among model accuracy, efficiency, and trustwor-
thiness, ultimately converging toward Pareto-optimal solutions.

3.2 Uncertainty Estimation
Bayesian Conversion. Traditional Convolutional Neural Net-
works (CNNs) are inherently deterministic and lack the ability to

3

HEART 2025, May 26–28, 2025, Kumamoto, Japan ZhiqiangQue, Hongxiang Fan, Gabriel Figueiredo, Ce Guo, Wayne Luk, Ryota Yasudo, and Masato Motomura

Table 1: Optimization Parameters
Parameter Description Range Impact on Optimization

𝛽𝑝

pruning rate: determines the percentage of
network weights removed to reduce model
size and computation, potentially affecting
accuracy and uncertainty estimation.

5% - 95% higher pruning rates reduce memory and computa-
tional costs but can degrade accuracy and uncertainty
estimation.

𝛽𝑠

scaling rate: adjusts the proportion of net-
work layers or neurons to shrink the model,
balancing efficiency with accuracy reten-
tion.

5% - 95% decreasing the scaling rate decreases model size and
computational demands but may negatively impact
accuracy and uncertainty quantification.

𝑝

dropout rate for Monte Carlo Dropout
(MCD): controls the probability of dropping
neurons during inference, improving uncer-
tainty estimation at the cost of feature rich-
ness.

5% - 95% higher dropout rates enhance uncertainty estimation
but reduce feature representation quality, which can
affect model stability.

𝐵

number of Bayesian layers: specifies the
number of layers incorporating Bayesian
inference, enhancing uncertainty quantifi-
cation while increasing computational over-
head.

1 to 𝑁 (Total CNN
layers) increasing the number of Bayesian layers improves

uncertainty estimation but adds computational over-
head, influencing model efficiency.

𝑆

number of Monte Carlo samples: a
higher number of stochastic forward passes
for uncertainty estimation, improving relia-
bility but slowing inference.

10 a higher number of samples improves uncertainty
quantification but slows inference, impacting real-time
deployment feasibility. For simplicity, this is fixed to
10 in this work, but the proposed approach can sup-
port varying values.

quantify uncertainty, which is critical for decision-making in safety-
critical applications. A model’s confidence in its predictions should
align with its accuracy; otherwise, it may make overconfident yet
incorrect decisions. To support trustworthiness, we automatically
transform a CNN into a Bayesian CNN (BayesCNN) by replacing
deterministic dropout with Monte Carlo Dropout (MCD).
Monte Carlo Dropout (MCD). Monte Carlo Dropout (MCD) pro-
vides an alternative approximation to Bayesian inference. It intro-
duces stochasticity at inference time by randomly dropping neurons
with a probability 𝑝 . The final prediction is obtained by averaging
multiple stochastic forward passes:

𝑦 =
1
𝑆

𝑆∑︁
𝑠=1

𝑓 (𝑥 ;𝑊𝑠 , 𝑝) (3)

where:
• 𝑆 is the number of Monte Carlo samples (forward passes).
• 𝑊𝑠 represents a different set of randomly sampled weights
from the Bayesian layers at each forward pass due to dropout.

• 𝑝 is the dropout probability (see Table 1), which controls the
fraction of neurons randomly deactivated at each inference
step to introduce uncertainty.

• 𝑦 represents the final predictive output, serving as the best
estimate of the model’s output.

MCD allows models to quantify uncertainty through aPE and
ECE. It mitigates overconfidence by providing well-calibrated prob-
ability estimates, ensuring accuracy (Acc) aligns with confidence.
In addition, it helps detect out-of-distribution (OoD) inputs, making
it valuable for high-risk decision tasks.

However, its effectiveness depends on dropout rate (𝑝), the num-
ber of Monte Carlo samples (𝑆) and the number of Bayesian layers
(𝐵), as too few samples degrade uncertainty estimation while too
many add computational overhead. MCD introduces computational
overhead since multiple forward passes (𝑆) increase floating-point
operations (FLOP). This will slow inference. While higher dropout
rates (𝑝) improve uncertainty estimation, they will reduce the effec-
tive feature representation and impact classification performance.
Additionally, pruning rate (𝛽𝑝) and scaling factor (𝛽𝑠) influence both
efficiency and calibration; excessive pruning or downscaling can
disrupt Bayesian inference, degrading ECE and aPE. The number
of Bayesian layers (𝐵) also affects uncertainty quantification – it
requires tuning to optimize the trade-off between trustworthiness,
accuracy, and efficiency.

Expected Calibration Error (ECE) [11]. ECE quantifies how
well a model’s predicted confidence correlates with its actual accu-
racy. A well-calibrated model should satisfy:

𝑃 (𝑌 = 𝑌 | 𝑃) ≈ 𝑃 (4)

where 𝑃 is the model’s predicted probability for its top class. ECE is
computed by binning predictions into𝑀 intervals [𝐵1, 𝐵2, ..., 𝐵𝑀]
and measuring the average absolute difference between accuracy
and confidence within each bin:

𝐸𝐶𝐸 =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑁

|acc(𝐵𝑚) − conf(𝐵𝑚) | (5)

where:
• 𝑁 is the total number of predictions.

4

Trustworthy Deep Learning Acceleration with
Customizable Design Flow Automation HEART 2025, May 26–28, 2025, Kumamoto, Japan

Table 2: Platform-Agnostic Design Metrics
Metric Description Typical Range Impact on Optimization

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
model accuracy: measures the classifica-
tion performance of the model on test data 80% - 99% higher accuracy is essential for reliable predictions.

aPE
average predictive entropy: quantifies
model uncertainty by evaluating the en-
tropy of the predictive distribution

0.001 − 2.0 a higher aPE suggests greater uncertainty, which helps
identify ambiguous or out-of-distribution inputs.

ECE
expected calibration error: assesses how
well the predicted confidence aligns with
actual correctness.

0.01 − 0.2 a lower ECE indicates better-calibrated confidence
scores, reducing the risk of overconfident incorrect
predictions.

FLOP

floating-point operations: represents the
total number of floating-point operations
required for running S forward passes of
the model, taking into account pruning rate
(𝛽𝑝). Note that this does not refer to floating-
point operations per second.

model-specific lower FLOP values improve computational efficiency
and reduce inference latency, but excessive reductions
may degrade model accuracy.

• acc(𝐵𝑚) is the accuracy within bin 𝐵𝑚 .
• conf(𝐵𝑚) is the average confidence in bin 𝐵𝑚 .

Consider a model that predicts class probabilities for test images.
Suppose it classifies several images and, within a specific confidence
bin (80%-90%), assigns an average confidence of 85%, but the actual
accuracy is only 75%. This means overconfidence and results in
a high ECE. Such miscalibration is often worsened by extreme
compression settings, such as high pruning rates (𝛽𝑝) and scaling
(𝛽𝑠), which remove network parameters and degrade calibration.
On the other hand, a well-calibrated model with a lower ECE has
confidence values that closely align with actual accuracy across all
bins and ensures more reliable decision-making.
Average Predictive Entropy (aPE) [8]. aPE measures the uncer-
tainty in the predictions of a model by evaluating the entropy of
the probability distribution:

aPE = − 1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑃 (𝑦𝑐 | 𝑥𝑖) log 𝑃 (𝑦𝑐 | 𝑥𝑖) (6)

where:

• 𝐶 is the number of classes.
• 𝑃 (𝑦𝑐 | 𝑥𝑖) is the predicted probability of class 𝑐 for input 𝑥𝑖 .

To understand aPE, consider an image classification model where
uncertainty quantification is important for detecting ambiguous or
OoD inputs. Suppose a model trained on CIFAR-10 is evaluated on
two test samples: a clean image of an animal and a noisy variant
generated with the samemean and variance as the training data. For
the clean image, a well-calibrated Bayesian model should express
strong confidence, resulting in a low aPE. While for the noisy im-
age, which deviates from the original distribution, the same model
should express higher uncertainty, yielding a higher aPE. This effect
is influenced by the dropout rate, where a lower 𝑝 often results
in lower uncertainty, while a higher value increases uncertainty.
Ensuring that aPE rises for noisy or OoD inputs helps the model
signal unreliable predictions, which is critical for risk-sensitive
applications. Note that we use noisy inputs in our evaluation to
specifically assess aPE in Section 5.

3.3 Bayesian Optimization
Bayesian Optimization (BO) is a powerful technique which can
efficiently optimize functions that are expensive to evaluate. This
makes it particularly useful for Design Space Exploration (DSE) in
deep learning. Unlike conventional optimization methods, which
may require exhaustive searches or gradient-based techniques, BO
builds a surrogate model of the objective function, which allows
it to predict promising configurations without evaluating every
possibility. This surrogate model, often based on a Gaussian Pro-
cess (GP), estimates the relationship between different parameter
choices and their outcomes, enabling the optimization process to
be uncertainty-aware. Instead of blindly testing multiple configura-
tions, BO strategically selects new points to evaluate, improving
efficiency while maintaining accuracy.

To guide this selection, BO uses an acquisition function to de-
termine where to sample next by balancing exploration (trying
uncertain regions to discover better solutions) and exploitation
(refining known good solutions). We use Expected Improvement
(EI) function, which prioritizes evaluating configurations that are
likely to outperform the best-known result. This approach ensures
that BO efficiently converges toward the best configurations while
avoiding wasted computations on suboptimal regions.

In our approach, BO is used to optimize hyperparameters govern-
ing deep learning model compression, trustworthiness, and accu-
racy. Let 𝑥 = (𝛽𝑝 , 𝛽𝑠 , 𝑝, 𝐵) represent the configuration parameters:

• 𝛽𝑝 : pruning rate
• 𝛽𝑠 : scaling factor
• 𝑝: dropout rate for Monte Carlo Dropout (MCD)
• 𝐵: number of Bayesian layers

The optimization problem is formulated as:

𝑥∗ = argmax
𝑥

𝑓 (𝑥) (7)

subject to model performance constraints (e.g., accuracy 𝐴, aver-
age predictive entropy 𝑎𝑃𝐸, expected calibration error 𝐸𝐶𝐸). The
objective function combines different performance metrics using a

5

HEART 2025, May 26–28, 2025, Kumamoto, Japan ZhiqiangQue, Hongxiang Fan, Gabriel Figueiredo, Ce Guo, Wayne Luk, Ryota Yasudo, and Masato Motomura

weighted sum:

𝑓 (𝑥) =
∑︁

𝑚∈𝐴𝑐𝑐,𝐹𝐿𝑂𝑃,𝑎𝑃𝐸,𝐸𝐶𝐸

𝑊𝑚 · Norm𝑚 (𝑥) (8)

where𝑊𝑚 are user-defined weights that identify the relative impor-
tance of each metric, and Norm𝑚 (𝑥) normalizes the metric values.
Infeasible configurations are penalized using an infinite negative
score in order to enforce constraints:

𝑓 (𝑥) = −sys.maxsize, if constraints not met (9)

This ensures that configurations exceeding hardware limits or vio-
lating user-supplied constraints are automatically discarded. The
BO algorithm iterates over several rounds, refining hyperparame-
ters until convergence or a predefined budget is exhausted.

We find that the proposed formulation allows our framework
to efficiently navigate the design space, identifying Pareto-optimal
configurationswith effective trade-offs between efficiency, accuracy,
and trustworthiness in deep learning model deployment.

4 Optimization Strategies
To explore the trade-offs between compression, trustworthiness,
and accuracy, we define multiple optimization strategies tailored
to various deployment scenarios. We encode different strategies by
revising the weights in Eq. 8 and enforce constraints using Eq. 9 to
penalize configurations exceeding computational limits or violating
accuracy constraints.

4.1 Minimizing Computational Cost while
Preserving Accuracy (S1)

This strategy aims to prune redundant parameters and also scale
down model size to reduce the computational cost while maintain-
ing model accuracy.

The pruning rate 𝛽𝑝 and the scaling factor 𝛽𝑠 are tuned to ensure
that the resulting model remains lightweight without sacrificing
model accuracy. However, aggressive FLOP reduction can lead to a
loss of essential features and impact the model’s ability to general-
ize. It can also disrupt the uncertainty calibration. Therefore, this
strategy ensures that when FLOP is reducing, the accuracy drop is
constrained within acceptable margins to avoid severe performance
degradation.

4.2 Maximizing Accuracy while Constraining
Computational Cost (S2)

For applications where model accuracy is critical, this strategy
prioritizes accuracy while considering computational costs. The
pruning and scaling rates as well as Monte Carlo Dropout (MCD)
configurations are fine-tuned to keep critical network parameters,
so that the model can maintain high accuracy. While this strategy
aims for high accuracy, it has the cost of increased computation.
Thus, the number of FLOP is constrained in our experiments to
prevent excessive computational overhead.

4.3 Minimizing Calibration Error under
Constraints (S3)

This strategy aims to minimize ECE to ensure that the model pro-
duces well-calibrated predictions that align with true confidence

levels. This strategy tunes both the dropout rate 𝛽𝑑 and the num-
ber of Bayesian layers 𝐵 to achieve reliable uncertainty estima-
tion. However, minimizing ECE introduces additional challenges
that aggressive dropout may reduce accuracy by eliminating valu-
able feature representations. To address the challenge, we adjust
ECE reduction taking into account both FLOP and accuracy con-
straints, leading to a well-calibrated and computationally efficient
model. This strategy is useful for applications where uncertainty-
awareness is essential, such as medical diagnosis and autonomous
decision-making.

4.4 Balancing Accuracy and Trustworthiness
(S4)

This strategy focuses on identifying trade-offs between accuracy,
aPE, and ECE. Unlike previous strategies which optimize for a
single objective, this strategy ensures that no individual metric
is disproportionately prioritized at the cost of others. Bayesian
optimization explores Pareto-optimal solutions and searches for the
models with sufficient accuracy while maintaining well-calibrated
uncertainty estimates. This strategy is well-suited for real-world
applications since maintaining both accuracy and trustworthiness
is critical, particularly for high-risk environments.

4.5 Balancing Computational Cost and
Trustworthiness (S5)

This strategy focuses on balancing FLOP, aPE, and ECE to achieve
a lightweight but reliable model. The pruning and scaling rates are
adjusted to reduce model complexity while the MCD configurations
are adjusted to maintain acceptable uncertainty calibration. This
strategy ensures that computational efficiency remains a key consid-
eration but the challenge is how to prevent over-pruning and over-
down-scaling which could degrade uncertainty estimation. The
proposed Bayesian optimization based framework mitigates this by
dynamically adjusting hyperparameters to find configurations that
offer the best compromise between efficiency and trustworthiness.

4.6 Balancing Accuracy, Computational Cost
and Trustworthiness (S6)

This strategy optimizes all four metrics to ensure that a model re-
mains compact, well-calibrated, and highly accurate under resource
constraints. Unlike S4 (balancing accuracy and trustworthiness) and
S5 (balancing computational cost and trustworthiness), this strategy
jointly optimizes pruning rate 𝛽𝑝 , scaling rate 𝛽𝑠 , dropout rate 𝛽𝑑 ,
and Bayesian layer number 𝐵 while imposing constraints on both
FLOP and accuracy. To achieve this trade-off, Bayesian Optimiza-
tion dynamically tunes hyperparameters to identify Pareto-optimal
configurations to prevent over-pruning which can degrade accu-
racy and uncertainty estimation, and excessive Bayesian inference
overhead which increases latency and energy consumption. This
strategy is particularly useful for deployments on resource-limited
devices that require reliable decision-making, such as real-time
healthcare monitoring, autonomous robotics, and embedded AI
systems.

6

Trustworthy Deep Learning Acceleration with
Customizable Design Flow Automation HEART 2025, May 26–28, 2025, Kumamoto, Japan

Table 3: The resultant configurations, and the corresponding performance of the Bayes-LeNet5.

Opt-Mode 𝛽𝑝 𝛽𝑠 𝑝 𝐵 ECE (%) ↓ aPE (nats) ↑ Accuracy (%) ↑ FLOP (106) ↓
Opt-Confidence 0.35 0.95 0.15 1 0.55 0.5718 99.07 28.2

Opt-Uncertainty 0.95 0.70 0.05 3 0.95 1.124 97.76 1.26

Opt-Accuracy 0.65 0.95 0.05 1 0.56 0.4013 99.10 15.2

Opt-Efficiency 0.95 0.60 0.30 1 1.53 0.8458 96.51 0.96

Balance-Top1 0.95 0.70 0.05 3 0.95 1.124 97.76 1.26

Balance-Top2 0.95 0.85 0.05 1 0.82 0.9247 98.14 1.77

Balance-Top3 0.95 0.95 0.05 3 0.89 0.9195 98.11 2.17

5 Evaluation
To evaluate the effectiveness of the proposed framework, we con-
duct experiments on Bayesian Convolutional Neural Networks
(BayesCNNs) across two datasets and architectures. This section
provides details of our experimental setup and results.

5.1 Experimental Setup
As presented in Table 2, we consider model predictive accuracy
(Acc) for assessing classification performance, FLOP as a measure
of computational efficiency, average predictive entropy (aPE) [8]
for evaluating the quality of quantified uncertainty and expected
calibration error (ECE) [11] to measure the calibration of the confi-
dence in the predictions. This evaluation focuses on the S6 strategy
(balancing accuracy, computational cost and trustworthiness) and
assigns an equal weight of 0.25 to each of the four metrics. This
ensures a comprehensive trade-off among key performance metrics.

To evaluate the effectiveness of our framework, we use the
BayesCNNs on image classification datasets. To stay consistent with
previous designs [2, 3, 26], we consider MNIST [17], and CIFAR-
10 [16]. We utilize two widely used CNN architectures: LeNet-5 [17],
a lightweight model suitable for small-scale datasets like MNIST,
and ResNet-18 [14], a deeper network designed for more complex
datasets such as CIFAR-10. These models are implemented using
TensorFlow and Keras. For training and evaluation (see green box in
Fig. 1), we use the NVIDIA RTX 3090 GPU to speed-up training and
compute model predictive accuracy after the model transformation
phase.

To assess the quality of uncertainty estimation for inputs that
should inherently confuse the network, we evaluate the model’s
response to random Gaussian noise generated with the same mean
and variance as the training data. As previously mentioned, we
quantify uncertainty using aPE, computed over a dataset of size 𝑁
with𝐶 classes as shown in Eq. 6. This metric captures the entropy of
the model’s predictive distribution, providing insight into how well
the model expresses uncertainty when encountering ambiguous or
out-of-distribution inputs. Hence, for our evaluation a higher aPE
value is desirable.

In addition, we evaluate the calibration of the BayesCNN’s con-
fidence using ECE on unmodified test data. ECE is computed as

a weighted average of the absolute difference between accuracy
and confidence across bins as shown in Eq. 5. Lower ECE values
indicate better-calibrated models, ensuring that confidence scores
reliably reflect true predictive performance.

The evaluation results presented in Sections 5.2–5.5 are platform-
agnostic. In contrast, the results in Section 5.6 are platform-specific,
based on the most efficient DNN model (Opt-Efficiency) and the
most confident model (Opt-Confidence) derived from our approach,
which are subsequently synthesized to hardware. Our FPGA work-
flow employs HLS4ML to convert selected models to HLS for AMD
Xilinx Kintex UltraScale KU115 FPGAs, operating at a default fre-
quency of 181 MHz. The bit width is set to 16-bit fixed-point preci-
sion with 6 integer bits. Power consumption is reported by Vivado
after place and route.

5.2 Trade-Off between Accuracy, Efficiency, and
Trustworthiness

This section leverages Bayesian Optimization-driven design space
exploration to automatically identify Pareto-optimal configurations.

To illustrate the effectiveness of our approach, we present both
Table 3 and Figure 2 to conduct Pareto frontier analysis for the
Bayes-LeNet5 model.

Table 3 presents the optimized configurations for Bayes-LeNet5
with different metrics. It highlights the impact of key hyperpa-
rameters, including pruning rate (𝛽𝑝), scaling rate (𝛽𝑠), dropout
probability (𝑝), and the number of Bayesian layers (𝐵), on model
performance. The Opt-Confidence design achieves the lowest ECE
(0.55%) and produces the most trustworthy confidence estimates.
However, this configuration is computationally expensive with a
high FLOP count (28.2E+6). The Opt-Uncertainty prioritizes uncer-
tainty estimation by maximizing average predictive entropy (aPE
= 1.124 nats). The Opt-Accuracy achieves the highest model accu-
racy (99.10%) in our search and it shows that accuracy optimization
alone does not always lead to well-calibrated uncertainty estimates.
Moreover, the Opt-Efficiency design has a small FLOP count, just
0.96E+6, nearly 30× smaller than the Opt-Confidence design. How-
ever, this efficiency comes at a trade-off in accuracy (96.51%). We
also have balanced designs (Balance-Top1, Top2, Top3) which rep-
resent the top-3 solutions found by Bayesian Optimization search

7

HEART 2025, May 26–28, 2025, Kumamoto, Japan ZhiqiangQue, Hongxiang Fan, Gabriel Figueiredo, Ce Guo, Wayne Luk, Ryota Yasudo, and Masato Motomura

Opt-Efficiency
Acc.: 0.9651
ECE: 0.0153
aPE: 0.8458

FLOP: 0.96E6

Opt-Uncertainty
& Balance-Top1

Acc.: 0.9776
ECE: 0.0952
aPE: 1.1242

FLOP: 1.26E6

Opt-Confidence
Acc.: 0.9907
ECE: 0.0055
aPE: 0.5718

FLOP: 28.2E6

AccuracyBalance-Top2
Acc.: 0.9814
ECE: 0.0082
aPE: 0.9247

FLOP: 1.25E6

FLOP

Opt-Accuracy
Acc.: 0.9910
ECE: 0.0056
aPE: 0.4013

FLOP: 15.2E6

1e7

aP
E

EC
E

Figure 2: Pareto frontier analysis of Bayesian LeNet5 on MNIST, illustrating the trade-offs between accuracy, FLOP, Expected
Calibration Error (ECE), and Average Predictive Entropy (aPE). Each point represents a model candidate.

under the balanced strategy. They achieve good trade-offs across
all key metrics.

While Table 3 shows the key design candidates, Figure 2 shows
all the designs and demonstrates the effectiveness of our framework
by plotting the Pareto-optimal solutions for Bayes-LeNet5. This fig-
ure highlights the trade-offs between Accuracy, FLOP, aPE, and ECE.
Opt-Efficiency is positioned in the low-computation region and it
demonstrates extreme efficiency with significantly reduced FLOP.
However, this comes at the cost of low accuracy and weak uncer-
tainty estimate. Opt-Accuracy and Opt-Confidence are positioned
at a high-computation region with increased computational burden.
Balance-Top1 shows good trade-offs to provide well-calibrated un-
certainty estimates while maintaining reasonable efficiency. Finally
Balance-Top2, which is on the Pareto frontier, offers good compro-
mises between FLOP, accuracy, and uncertainty metrics, making it
a practical choice for real-world deployment where both efficiency
and trustworthiness are required.

Both Table 3 and Figure 2 show that no single configuration is op-
timal across all dimensions, which means that accuracy, uncertainty

estimation, and computational efficiency must be co-optimized. Our
experimental results demonstrate that the proposed framework can
generate balanced solutions, achieving compact, accurate, and trust-
worthy BayesCNNs.

5.3 Extending the Analysis to ResNet-18 on
CIFAR-10

Following our analysis of Bayes-LeNet5, we extend our evaluation
to a more complex model, Bayes-ResNet18, trained on the CIFAR-10
dataset. Using the proposed DSE, we analyze trade-offs between
FLOP, accuracy, and uncertainty estimation. The results are summa-
rized in Table 4, and the Pareto frontier analysis (Figure 3) illustrates
trade-offs across different options.

Opt-Confidence achieves the lowest ECE (7.47%), which shows
well-calibrated confidence estimates, as shown in Table 4. However,
similar to Bayes-LeNet5, this design candidate has a high FLOP
count as 10.6E+8. This means improved calibration comes at a
computational cost.

8

Trustworthy Deep Learning Acceleration with
Customizable Design Flow Automation HEART 2025, May 26–28, 2025, Kumamoto, Japan

Table 4: The resulting configurations, and the corresponding performance of the Bayes-ResNet18 on CIFAR10.

Opt-Mode 𝛽𝑝 𝛽𝑠 𝑝 𝐵 ECE (%) ↓ aPE (nats) ↑ Accuracy (%) ↑ FLOP (108) ↓
Opt-Confidence 0.85 0.80 0.15 1 7.47 0.2638 87.61 10.6

Opt-Uncertainty 0.80 0.60 0.05 3 7.64 1.6464 88.07 7.87

Opt-Accuracy 0.05 0.30 0.40 2 8.81 0.4711 88.68 9.41

Opt-Efficiency 0.95 0.45 0.05 3 7.92 1.1512 86.03 1.07

Balance-Top1 0.95 0.60 0.05 3 7.65 1.5959 87.03 1.97

Balance-Top2 0.80 0.60 0.05 3 7.64 1.6464 88.07 7.87

Balance-Top3 0.80 0.55 0.05 3 7.50 1.5908 88.17 6.68

Opt-Uncertainty
& Balance-Top2

Acc.: 0.8807
ECE: 0.0764
aPE: 1.6464

FLOP: 7.87E8

Opt-Confidence
Acc.: 0.8761
ECE: 0.0747
aPE: 0.2638

FLOP: 10.6E8

Balance-Top1
Acc.: 0.8703
ECE: 0.0765
aPE: 1.5959

FLOP: 1.97E8

FLOP Opt-Accuracy
Acc.: 0.8868
ECE: 0.0881
aPE: 0.4711

FLOP: 9.41E8

1e9

aP
E

EC
E

Opt-Efficiency
Acc.: 0.8603
ECE: 0.0792
aPE: 1.1512

FLOP: 1.07E8

Accuracy

Figure 3: Pareto frontier analysis of Bayesian ResNet18 on CIFAR10, illustrating the trade-offs between accuracy, FLOP, ECE,
and aPE. Each point represents a model candidate.

9

HEART 2025, May 26–28, 2025, Kumamoto, Japan ZhiqiangQue, Hongxiang Fan, Gabriel Figueiredo, Ce Guo, Wayne Luk, Ryota Yasudo, and Masato Motomura
E

C
E

FLOP (1E6)

Pareto-Front

(a)

E
C
E

Accuracy
(b)

E
C
E

aPE
(c)

Figure 4: (a) Trade-off between model calibration (ECE) and computational efficiency (FLOP). (b) Trade-off between ECE and
Accuracy. (c) Trade-off between ECE and aPE, taking into account confidence calibration and uncertainty estimation.

Opt-Uncertainty has the largest uncertainty estimation with aPE
= 1.6464 nats, making it well-suited for scenarios where reliable
uncertainty representation is essential.

Opt-Accuracy achieves the highest accuracy (88.68%), slightly
outperforming other designs. However, similar to LeNet5, optimiz-
ing for accuracy alone does not always lead to the best uncertainty
calibration, as ECE is higher, which is 8.81%, and aPE is relatively
low, which is 0.4711 nats. This shows overconfident predictions.

Opt-Efficiency severely reduces computational overhead and
achieves only 1.07E+8 FLOP. It is around 10 times smaller than
Opt-Confidence. However, this efficiency gain comes at the cost of
low accuracy and uncertainty estimation. Balance-Top1/2/3 explore
Pareto-optimal trade-offs across accuracy, efficiency, and uncer-
tainty metrics. Figure 3 further illustrates these design candidates
in a Pareto frontier.

As with LeNet-5, the evaluation of ResNet-18 shows that no
single design is universally optimal, which highlights the need to
balance trade-offs between all these metrics. By utilizing Bayesian
Optimization for DSE, our framework automates the search for
Pareto-optimal configurations, potentially allowing models to be
tailored based on deployment needs, from small devices such as
edge platforms to larger computing systems.

5.4 ECE-Focused Analysis
As previously mentioned, Expected Calibration Error or ECE is a
critical metric in Bayesian CNNs, which reflects how well a model’s
predicted confidence aligns with actual correctness. Unlike accu-
racy, which measures classification performance, and FLOP, which
quantifies computational efficiency, ECE evaluates the trustworthi-
ness of predictions. Figure 4 illustrates the complex relationships
between ECE and FLOP, Accuracy as well as aPE, which shows on
how different optimization strategies impact calibration quality.

In particular, Figure 4(a) presents the trade-off between ECE
and FLOP, highlighting how reducing computational complexity
impacts model calibration. It shows that models with lower FLOP
tend to have higher ECE. This indicates that aggressive model com-
pression can weaken calibration. This trend is also shown in the

Opt-Efficiency designs discussed in the previous sections, where
reducing FLOP leads to less reliable confidence estimates. Opt-
Confidence designs, which achieve the lowest calibration error, re-
tain significantly higher FLOP, demonstrating that well-calibrated
Bayesian CNNs require sufficient computational capacity to main-
tain robust uncertainty estimation. We also have well-balanced
designs which can effectively reduce FLOP while maintaining ac-
ceptable calibration quality. These results highlight the importance
of compression strategies to preserve uncertainty quantification.
Minimizing FLOP too aggressively can weaken calibration, so one
needs to optimize the trade-off between efficiency and model trust-
worthiness in Bayesian CNNs.

Figure 4(b) shows the relationship between ECE and model accu-
racy, illustrating whether improving model calibration necessarily
enhances classification performance. It shows that better-calibrated
models tend to have higher classification performance. However
the lowest ECE values do not always correspond to the highest ac-
curacy, for instance, Opt-Confidence achieves superior calibration
but does not yield the best accuracy.

Figure 4(c) investigates the relationship between ECE and aPE. It
shows that larger aPE (uncertainty estimation) does not guarantee
good calibration. This reinforces the need for fine-tuning of Monte
Carlo dropout strategies.

These three figures clearly show that model compression de-
grades calibration, so careful compression strategies to retain model
trustworthiness are necessary. Besides, accuracy and ECE do not
always correlate, which means that high-performance models may
still be poorly calibrated. Furthermore, aPEmust be optimized along-
side calibration to ensure that models remain reliable in real-world
deployments.

5.5 Understanding the Impact of
Hyperparameters on Model Trustworthiness

To evaluate how different optimization parameters influence Bayesian
CNNs’ efficiency, trustworthiness, and predictive performance, we

10

Trustworthy Deep Learning Acceleration with
Customizable Design Flow Automation HEART 2025, May 26–28, 2025, Kumamoto, Japan

p

βp

βs

B

p βp B βs

Figure 5: Correlation matrix illustrating the relationships between key hyperparameters including dropout rate (𝑝), pruning
rate (𝛽𝑝), number of Bayesian layers (𝐵), and scaling rate (𝛽𝑠), and performance metrics including Accuracy, FLOP, Expected
Calibration Error (ECE), and Average Predictive Entropy (aPE).

present a correlation matrix (Figure 5) which shows the relation-
ships between four key hyperparameters and four performance
metrics.

Regarding the ECE, the Figure 5 shows that dropout rate (𝑝) has
a positive correlation with ECE (0.42), indicating that increasing
dropout rate introduces uncertainty but at the cost of degraded
calibration. Pruning rate has a moderate positive correlation with
ECE, suggesting that severe pruning leads to poor calibration. The
scaling rate has a negative correlation with ECE (-0.57), showing
that proper scaling improves calibration quality. Accuracy strongly
correlates with lower ECE (-0.93), confirming that good-calibrated
models tend to have high classification accuracy as shown in Fig-
ure 4(b). In summary, low ECE is best achieved through structured
dropout and proper scaling, rather than aggressive pruning.

Regarding the aPE, the correlation matrix shows that the number
of Bayesian layers (𝐵) has a strong positive correlation with aPE
(0.46), reinforcing that more Bayesian layers enhance uncertainty

estimation. Pruning rate (𝛽𝑝) has a moderate positive correlation
with aPE (0.25), suggesting that proper pruning can help retain
uncertainty representation. Dropout rate has a mild negative cor-
relation with aPE (-0.30), indicating that excessive dropout may
suppress useful uncertainty information. And the scaling rate has a
mild positive correlation with aPE (0.29), showing that proper scal-
ing improves uncertainty quantification. In summary, the number
of Bayesian layers is the primary driver of aPE, while pruning and
scaling also influence uncertainty estimation.

5.6 Comparison with Other FPGA designs
While the previous subsections covered a platform-agnostic evalu-
ation, this section focuses on our framework’s ability to support
efficient FPGA design. In particular, we select two optimized Bayes-
LeNet5 models automatically identified by our approach: (1) Cali-
bration Optimized (Opt-Confidence) and (2) Efficiency Optimized
(Opt-Efficiency). We adopt the HLS4ML workflow from [7] with

11

HEART 2025, May 26–28, 2025, Kumamoto, Japan ZhiqiangQue, Hongxiang Fan, Gabriel Figueiredo, Ce Guo, Wayne Luk, Ryota Yasudo, and Masato Motomura

Table 5: Performance comparison of our final Bayesian LeNet5 designs with CPU, GPU and other FPGA-based implementations.
The Opt-Efficiency design has been partially unrolled to improve latency due to its compact size.

CPU
[7]

GPU
[7]

ASPLOS
2018 [3]

DATE
2020 [2]

TPDS
2022 [8]

DAC
2023 [7]

This work
Opt-Confid.

This work
Opt-Effici.

Platform Intel
i9-9900K

NVIDIA
RTX 2080

Altera
Cyclone V

Zynq
XC7Z020

Arria 10
GX1150

Kintex
XCKU115

Kintex
XCKU115

Kintex
XCKU115

Freq. (MHz) 3600 1545 213 200 220 181 181 181

Technology 14 nm 12 nm 28 nm 28 nm 20 nm 20 nm 20 nm 20 nm

Accuracy - - - - 99.3% 98.9% 99.07% 96.51%

Power (W) 205 236 6.11 2.76 43.6 4.6 4.48 2.72

Latency (ms) 1.26 0.57 5.5 4.5 0.32 0.89 0.855 0.116

Energy Effi.
(mJ/Image) 258 134 33 12 14 4.1 3.8 0.32

MCD supported. With a custom HLS4ML configuration, as de-
scribed in Section 5.1, we generate two corresponding FPGA designs
and we compare them against CPU, GPU, and other FPGA-based
designs, as presented in Table 5. The comparison uses Bayes-LeNet5
on the MNIST dataset since they are the most common network
and dataset across different work [2, 3, 7, 8]. The results of our
Calibration Optimized (Opt-Confidence) and Efficiency Optimized
(Opt-Efficiency) designs demonstrate significant trade-offs between
accuracy, latency, power, and energy efficiency, as discussed next.

Our design optimized for calibration utilizes the same parallelism
configurations as [7]. It has a strong model accuracy of 99.07%,
outperforming the [7] (98.9%). Besides, it consumes 4.48W, making
it more power-efficient than other high-accuracy designs, such
as [8] (43.6W). Its latency is 0.855ms, slightly better than the state-
of-the-art [7], and it achieves an energy efficiency of 3.8 mJ/Image,
better than previous FPGA-based implementations.

The Opt-Efficiency design, focused on FLOP reduction, results
in a small design that allows more unrolling to improve latency
with a cost of hardware resources. It achieves not only lowest
power consumption, but also the lowest latency (0.116ms), making
it the fastest and most efficient design among all evaluated imple-
mentations. However, this efficiency comes at a slight accuracy
drop (96.5%), compared to Opt-Confidence (99.07%) and previous
designs (99.3%). Nevertheless, this design achieves the highest en-
ergy efficiency, making it an ideal solution for ultra-low-power and
real-time embedded applications. Compared to a state-of-the-art
implementation [7], our Opt-Efficiency design is 7.67 times faster
and 12.8 times more energy-efficient. Compared with a CPU imple-
mentation [7], our FPGA designs are 1.5∼10.9 times faster. In terms
of the energy efficiency, our designs are 67.9∼806 times higher than
the CPU implementation. When compared to a GPU implementa-
tion [7], our FPGA designs achieve 35.3∼419 times higher power
efficiency than the GPU implementation.

In addition, our approach is automatic. In contrast to their man-
ual implementations with expert optimizations, it significantly en-
hances design productivity and scalability. These evaluation results
confirm the effectiveness of the proposed framework which en-
ables FPGA-based designs that are faster, more power-efficient, and
automatically optimized. This pushes the boundaries of real-time
energy-efficient Bayesian CNN accelerators.

6 Conclusion
Deploying deep learning models in real-world applications requires
a careful balance among a number of factors, including compu-
tational efficiency, predictive accuracy, and trustworthiness. This
paper introduces automated design space exploration driven by
Bayesian Optimization to improve BayesCNNs for efficient and
reliable deployment.

Our approach dynamically tunes key hyperparameters to iden-
tify Pareto-optimal trade-offs across multiple performance metrics.
Through an extensive evaluation, we demonstrate that our frame-
work enables optimizing trade-offs between key metrics. This en-
sures that models remain lightweight, accurate, and well-calibrated.
Our results show that compared to state-of-the-art FPGA implemen-
tations, our optimized designs achieve up to 7.67× faster inference
and 12.8× higher energy efficiency, while maintaining high classifi-
cation performance and robust uncertainty estimation.

Our future work includes framework extension to cover larger-
scale deep learning models. In addition, we will integrate advanced
model compression techniques, including Supermask-based prun-
ing [19, 20]. Moreover, we plan to explore optimization approaches
tailored for transformer architectures to further optimize their de-
ployment on various hardware platforms.

Acknowledgement. The support of the United Kingdom EPSRC
(grant number UKRI256, EP/V028251/1, EP/N031768/1, EP/S030069/1,
and EP/X036006/1), Intel, and AMD is gratefully acknowledged.

12

Trustworthy Deep Learning Acceleration with
Customizable Design Flow Automation HEART 2025, May 26–28, 2025, Kumamoto, Japan

References
[1] Mohamed S Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim,

and Nicholas D Lane. 2020. Best of both worlds: Automl codesign of a cnn and
its hardware accelerator. In 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[2] Hiromitsu Awano and Masanori Hashimoto. 2020. BYNQNet: Bayesian neural
network with quadratic activations for sampling-free uncertainty estimation
on FPGA. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1402–1407.

[3] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud
Pedram, and Yanzhi Wang. 2018. VIBNN: Hardware acceleration of Bayesian
neural networks. ACM SIGPLAN Notices 53, 2 (2018), 476–488.

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. 2016. R-fcn: Object detection via
region-based fully convolutional networks. Advances in neural information
processing systems 29 (2016).

[5] Yuhao Ding, Jiajun Wu, Yizhao Gao, Maolin Wang, and Hayden Kwok-Hay So.
2023. Model-Platform Optimized Deep Neural Network Accelerator Generation
through Mixed-Integer Geometric Programming. In 2023 IEEE 31st Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 83–93.

[6] Zhen Dong, Yizhao Gao, Qijing Huang, John Wawrzynek, Hayden KH So, and
Kurt Keutzer. 2021. Hao: Hardware-aware neural architecture optimization
for efficient inference. In 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 50–59.

[7] Hongxiang Fan, Mark Chen, Liam Castelli, Zhiqiang Que, He Li, Kenneth Long,
and Wayne Luk. 2023. When Monte-Carlo Dropout meets multi-exit: Optimizing
Bayesian neural networks on FPGA. In 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[8] Hongxiang Fan, Martin Ferianc, Zhiqiang Que, Xinyu Niu, Miguel Rodrigues, and
Wayne Luk. 2022. Accelerating Bayesian neural networks via algorithmic and
hardware optimizations. IEEE Transactions on Parallel and Distributed Systems
33, 12 (2022), 3387–3399.

[9] Alessandro Frigerio, Bart Vermeulen, and Kees GW Goossens. 2021. Automotive
architecture topologies: Analysis for safety-critical autonomous vehicle applica-
tions. IEEE Access 9 (2021), 62837–62846.

[10] Yoav Goldberg. 2016. A primer on neural network models for natural language
processing. Journal of Artificial Intelligence Research (2016).

[11] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian QWeinberger. 2017. On calibration of
modern neural networks. In International conference on machine learning. PMLR,
1321–1330.

[12] Cong Hao, Jordan Dotzel, Jinjun Xiong, Luca Benini, Zhiru Zhang, and Deming
Chen. 2021. Enabling design methodologies and future trends for edge AI:
specialization and codesign. IEEE Design & Test 38, 4 (2021), 7–26.

[13] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. 2018. Can spatiotemporal 3D
CNNs retrace the history of 2D CNNs and Imagenet?. In Proceedings of the 2018
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6546–6555.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen
Gu, Sakyasingha Dasgupta, Yiyu Shi, and Jingtong Hu. 2020. Hardware/software
co-exploration of neural architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 12 (2020), 4805–4815.

[16] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[18] Jonas Ney, Dominik Loroch, Vladimir Rybalkin, Nico Weber, Jens Krüger, and
Norbert Wehn. 2021. HALF: Holistic auto machine learning for FPGAs. In 2021
31st International Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 363–368.

[19] Yasuyuki Okoshi, Ángel López García-Arias, Kazutoshi Hirose, Kota Ando,
Kazushi Kawamura, Thiem Van Chu, Masato Motomura, and Jaehoon Yu. 2022.
Multicoated Supermasks Enhance Hidden Networks.. In ICML. 17045–17055.

[20] Hikari Otsuka, Daiki Chijiwa, Ángel López García-Arias, Yasuyuki Okoshi,
Kazushi Kawamura, Thiem Van Chu, Daichi Fujiki, Susumu Takeuchi, andMasato
Motomura. [n. d.]. Partially Frozen Random Networks Contain Compact Strong
Lottery Tickets. In Workshop on Machine Learning and Compression, NeurIPS
2024.

[21] Zhiqiang Que, Jose GF Coutinho, Ce Guo, Hongxiang Fan, and Wayne Luk. 2025.
MetaML-Pro: Cross-Stage Design Flow Automation for Efficient Deep Learning
Acceleration. arXiv preprint arXiv:2502.05850 (2025).

[22] Markus Rognlien, Zhiqiang Que, Jose GF Coutinho, and Wayne Luk. 2022.
Hardware-aware optimizations for deep learning inference on edge devices.
In International Symposium on Applied Reconfigurable Computing. Springer, 118–
133.

[23] Divya Saxena and Vaskar Raychoudhury. 2017. Design and verification of an
NDN-based safety-critical application: A case study with smart healthcare. ieee
transactions on systems, man, and cybernetics: systems 49, 5 (2017), 991–1005.

[24] Shikhar Tuli, Chia-Hao Li, Ritvik Sharma, and Niraj K Jha. 2023. CODEBench:
A neural architecture and hardware accelerator co-design framework. ACM
Transactions on Embedded Computing Systems 22, 3 (2023), 1–30.

[25] Jessica Vandebon, Jose Coutinho, and Wayne Luk. 2022. Meta-Programming
Design-Flow Patterns for Automating Reusable Optimisations. In Proceedings of
the 12th International Symposium on Highly-Efficient Accelerators and Reconfig-
urable Technologies (Tsukuba, Japan) (HEART ’22). Association for Computing
Machinery, New York, NY, USA, 42–50. doi:10.1145/3535044.3535050

[26] Qiyu Wan and Xin Fu. 2020. Fast-BCNN: Massive neuron skipping in Bayesian
convolutional neural networks. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 229–240.

[27] Fangxin Wang, Yuqing Liu, Kay Liu, Yibo Wang, Sourav Medya, and Philip S
Yu. 2024. Uncertainty in graph neural networks: A survey. arXiv preprint
arXiv:2403.07185 (2024).

[28] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gam-
bardella, Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, et al.
2019. Synetgy: Algorithm-hardware co-design for convnet accelerators on em-
bedded fpgas. In Proceedings of the 2019 ACM/SIGDA international symposium on
field-programmable gate arrays. 23–32.

13

https://doi.org/10.1145/3535044.3535050

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Workflow
	3.2 Uncertainty Estimation
	3.3 Bayesian Optimization

	4 Optimization Strategies
	4.1 Minimizing Computational Cost while Preserving Accuracy (S1)
	4.2 Maximizing Accuracy while Constraining Computational Cost (S2)
	4.3 Minimizing Calibration Error under Constraints (S3)
	4.4 Balancing Accuracy and Trustworthiness (S4)
	4.5 Balancing Computational Cost and Trustworthiness (S5)
	4.6 Balancing Accuracy, Computational Cost and Trustworthiness (S6)

	5 Evaluation
	5.1 Experimental Setup
	5.2 Trade-Off between Accuracy, Efficiency, and Trustworthiness
	5.3 Extending the Analysis to ResNet-18 on CIFAR-10
	5.4 ECE-Focused Analysis
	5.5 Understanding the Impact of Hyperparameters on Model Trustworthiness
	5.6 Comparison with Other FPGA designs

	6 Conclusion
	References

