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Abstract

Deep hedging has emerged as a powerful framework for financial
risk management, capable of learning effective hedging strategies
in the presence of market frictions. However, its reliance on black-
box neural networks creates a critical barrier to adoption, limiting
trust, auditability, and regulatory compliance. In this work, we ad-
dress this challenge by introducing a transparent alternative to
the black-box Deep Hedging paradigm. Instead of relying on an
opaque architecture, our model learns a finite set of representative
market states, or “prototypes”. Hedging decisions are then made via
a transparent, similarity-based mechanism: the agent’s action is a
weighted average of learned actions associated with each prototype.
We call our specific implementation of this framework ProtoHedge.
The reasoning approach makes every decision traceable to under-
standable market scenarios. We conduct extensive experiments in
both classical Black-Scholes and more realistic stochastic volatility
environments. Our results demonstrate that this interpretability is
achieved with minimal impact of less than 0.40% on hedging perfor-
mance, as our model’s hedging effectiveness is comparable to that
of the original black-box deep hedging agent. This work shows that
transparency and performance are not mutually exclusive, paving
the way for more trustworthy automated risk management systems.
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1 Introduction

The Deep Hedging framework, introduced by Buehler et al. [8],
represents a significant advance in computational finance. By refor-
mulating derivatives hedging as a data-driven, sequential decision-
making problem, it learns robust strategies that can manage real-
world complexities like transaction costs, market frictions, and
incomplete information—challenges that often confound classical,
model-based approaches. The framework’s ability to optimize for
an investor’s specific risk preferences (utility) further enhances its
practical appeal.

However, Deep Hedging has a critical limitation: its black-box
nature. The hedging policy is determined by a deep neural network
whose internal logic is opaque. This lack of transparency poses
a major obstacle for deployment in the financial industry, where
trust, auditability, and regulatory compliance are critical [7]. As
with other critical Al applications, there is a significant risk that the
model could learn spurious, non-causal correlations from the data,
leading to unpredictable failures in live market conditions [30].

In response to this challenge, the field of eXplainable AI (XAI)
has broadly evolved into two paradigms. The first, post-hoc expla-
nation, attempts to explain the decisions of a pre-trained black-box
model. Methods like LIME [22] and SHAP [17] operate by building
a secondary, simpler model to approximate the behavior of the com-
plex model around a single prediction. However, a growing body
of research has exposed their fundamental flaws, showing they
can be unstable, misleading, and even manipulated [16, 26]. These
limitations have motivated a shift towards the second paradigm:
intrinsic interpretability, where models are transparent by design.
In an intrinsically interpretable model, the structure itself is suffi-
ciently understandable that the calculation leading to the output
is the explanation. Classic examples include linear models, deci-
sion trees, and rule-based systems. While these models are highly
transparent, they often lack the expressive capacity to capture the
complex, non-linear dynamics inherent in financial markets.

This paper presents a novel architecture designed to retain the
modeling power necessary for deep hedging while providing the
structural transparency of case-based reasoning. Instead of relying
on a complex, opaque network, our model learns a discrete set
of representative market states (prototypes). At each time step, it
computes the similarity between the current market conditions and
these learned prototypes, and the final hedging action is a trans-
parent, weighted combination of the learned actions tied to each
prototype. We call our specific implementation of this framework
ProtoHedge. This design ensures that every decision is directly
attributable to a collection of understandable, historical scenarios.
Crucially, we demonstrate that this gain in interpretability does not
require a significant sacrifice in hedging effectiveness.

The practical implications of this interpretability are deep. For
example, during a sudden market downturn, a conventional deep
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hedging model can only justify its actions through its internal
numerical states, such as a specific pattern of neuron activations,
which provides little financial insight. In contrast, our proposed
framework offers a causally transparent rationale. It would explain
a large defensive trade by identifying high similarity to established
prototypes, for example, a “2008-style financial crisis” or a “2020-
style flash crash”. Since the influence of each prototype and its
corresponding learned action is explicit, the model’s reasoning
becomes directly auditable and aligns with case-based analysis.
Our main contributions are:

e A novel interpretable architecture and training methodology,
where we present the complete ProtoHedge model, its two-
phase training process, and the derivation of its analytical
gradients for end-to-end optimization (Section 3).

e An empirical evaluation of hedging performance, demon-
strating through extensive experiments that our transparent
model achieves hedging effectiveness comparable to a black-
box agent and successfully replicates the optimal analytical
solution in a classical market (Section 4.2).

e A practical framework for model auditing and interpreta-
tion, where we demonstrate how the model’s transparency
can be used to trace any specific hedging decision back to
understandable prototypes and to verify the global financial
logic learned by the model (Sections 4.3 and 4.4).

The remainder of this paper details our proposed approach,
presents the experimental results validating its performance and
interpretability, and discusses its implications for building more
trustworthy financial Al systems. The code for our implementation
is available at https://github.com/sonnets-project/protohedge.

2 Background and Related Work

2.1 Black-Box Deep Hedging

The Deep Hedging framework [8] formulates hedging as a se-
quential decision-making problem. Over a discrete time grid 7 =
{to,...,tn = T}, an agent with a policy Fy observes the market state
s¢; and outputs an action a?i = Fy(st;). This action represents the

change in the hedge position. The total position (or hedge), 52_ e R,

is the cumulative sum of actions, updated as 52_ = 52_1 + atgi, with

an initial position of 5?71 =0.

The agent is trained to manage the terminal Profit and Loss (P&L),
which is a function of the policy parameters 6. For a portfolio started
with an initial premium pg, the P&L is:

PLY = po — Zr + (89 - AS)r - CY (1)

where Z7 is the contingent liability, (57 - AS)7 is the cumulative
gain from the self-financing trading strategy, and C? represents
the policy-dependent cumulative transaction costs, which are typi-
cally proportional to the value of each trade. The trading gain is
calculated as:

N-1
(8% -8S)r = )7 8 - (St = St) @
i=0

The training objective is to find the optimal policy parameters 0
that maximize the hedger’s risk preference, typically framed as
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maximizing the expected utility U(+) of the terminal P&L:

méiX E[U(PL?)] (3)

This allows the framework to learn strategies that align with a spe-
cific risk measure, like Conditional Value-at-Risk (CVaR), without
relying on classical assumptions of complete markets.

Recent extensions enhance the real-world applicability of the
Deep Hedging framework by addressing key practical challenges,
including the shift to continuous-time trading, the impact of trans-
action costs, and validation on empirical data. For instance, Murray
et al. [19] adapt the framework for continuous-time settings using
stochastic control, improving its accuracy for high-frequency in-
struments. To manage transaction costs, Imaki et al. [14] introduce
a No-Transaction Band Network that prevents costly overtrading.
Mikkila and Kanniainen [18] validate the framework’s potential
in a fully model-free setting, showing that an agent trained di-
rectly on real S&P 500 option data can outperform classical and
model-based methods. In a related line of work, Kolm and Ritter
[15] study how transaction costs in discrete-time settings create
systematic deviations from Black-Scholes delta hedging, highlight-
ing empirical links between option moneyness and hedging actions.
Vittori, Trapletti, and Restelli [29] extend this perspective using
reinforcement learning in a risk-averse setting, explicitly analyzing
how moneyness and trading costs jointly shape the learned pol-
icy, and showing that such deviations can outperform the classical
Black-Scholes hedge.

A fundamental limitation of Deep Hedging is its black-box na-
ture, which creates challenges for trust, auditing, and regulatory
compliance. The creators of deep hedging acknowledge this, noting
that the neural network’s decision-making logic is opaque [8]. This
opacity is a widely recognized problem in applied Al [7], creating
ethical and operational risks [30] because models can learn spurious,
non-causal correlations. This danger is well-documented in critical
fields like medicine, where systems have mistakenly learned to as-
sociate chest tubes with pneumothorax [25] or surgical rulers with
skin lesions [6] instead of the actual clinical features. Consequently,
addressing this fundamental lack of transparency has become a
central goal in modern Al, giving rise to the field of explainable Al.

2.2 Explainable AI for Finance

In response to the opacity in black-box models, a field of post-hoc
explainability emerged, with model-agnostic methods like LIME
[22], SHAP [17], Integrated Gradients [27], Anchors [23], and ALE
[3] designed to explain predictions after a model is trained. How-
ever, this after-the-fact approach has proven fundamentally flawed.
Research shows that post-hoc explanations can be deliberately ma-
nipulated to hide model biases [26], are unstable to minor input
changes [12], and frequently produce conflicting or misleading at-
tributions [10, 16, 28], undermining their reliability in high-stakes
settings.

This unreliability has shifted focus towards a more robust para-
digm: intrinsic interpretability, where models are built to be trans-
parent by design. Architectures like Neural Additive Models (NAMs)
[2] and TabNet [4] demonstrate that high performance can be
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Figure 1: The architecture of the ProtoHedge model. Train-
able components are highlighted in orange.

achieved without sacrificing transparency. Among these, concept-
based models that reason using prototypes are particularly promis-
ing because they mirror human logic. Pioneered by ProtoPNet [11],
these models justify decisions with a "this looks like that" approach,
comparing parts of an input to learned, prototypical examples. This
core idea has been advanced by a range of works focusing on con-
cept definition [5], prototype clarity [20, 21], continual learning
[24], and spatial grounding [9]. This evolution from flawed post-hoc
patches to human-centric, prototype-based designs provides a clear
path toward building trustworthy and transparent hedging models.

3 Proposed Approach: ProtoHedge

To overcome the opacity of traditional deep hedging models, we
propose a novel framework that is intrinsically interpretable by
design. The model’s policy is constructed from a set of canonical
market states, or prototypes, ensuring that every hedging decision
is transparent and traceable. This section details the model’s ar-
chitecture, its practical use for interpretation, and the end-to-end
training procedure.

3.1 Model Architecture and Decision Process

The model architecture of ProtoHedge is shown in Figure 1. We
encode the raw market state at time ¢ to a market state vector
% € R4 using a single dense layer with a ReLU activation function.
We apply a single shared affine map (followed by a pointwise non-
linearity) to re-scale heterogeneous features and improve distance
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conditioning; without this re-weighting, Euclidean distances can
be dominated by large-scale inputs. We deliberately avoid deeper
encoders to preserve transparency and to keep the similarity metric
simple and auditable. The same encoder is applied once to each pro-
totype state, and the resulting encoded representations are cached
for use in similarity computations. At each time step, given the en-
coded market state vector %; € RY, the hedging action a(%;) € R™
produced by ProtoHedge is:

K
a(Fr) = ) sim(F, py) - Pl (4)
k=1
where ¢(+) is the non-linear SoftClip function that smoothly en-
forces the environment’s trading limits. The architecture is com-
posed of the following key components:

e Prototypes (py): A fixed set of K vectors, P = {p1,...,px},
where each p; € R? is an actual, historical market state
selected from the data. These serve as the model’s static
knowledge base of canonical market scenarios.

e Raw Action Parameters (azaw): A set of learnable, un-
bounded vectors. These are the underlying trainable param-
eters of our model, optimized during the training phase de-
scribed in Section 3.2.

e Similarity Score (sim): A normalized score that measures
the resemblance between the current state x; and each pro-
totype pg. It is computed using a softmax over the negative
squared Euclidean distance:

exp (—II% — pil®)
I, exp (=% = pjll2)

sim(%y, px) = ®)
This architecture is intrinsically interpretable because the final de-
cision is a linear combination of well-defined components. Specifi-
cally, it is a weighted average of the bounded actions, a; = ¢(a;€a“’),
where the influence of each prototype’s bounded action is explicitly
quantified by its similarity score.

3.2 Training

The model is trained in a two-phase process: first, the static pro-
totype space is constructed, and second, the prototype actions are
learned via end-to-end optimization.

e Phase 1: Prototype Space Construction. This step is per-
formed once on the set of market states. It involves first
partitioning the state space into K clusters to identify re-
gions of high data density, and then extracting a medoid (a
representative data point) from each cluster to serve as a
prototype. This ensures that the set of prototypes P is fixed
before the main policy learning begins.

e Phase 2: End-to-End Parameter Optimization. With the
prototypes P held constant, the model is trained to learn
the optimal set of unbounded action vectors, {a™ Ik(:l' The
final, bounded actions, ag, are obtained by applying the Soft-
Clip function, i.e., a; = (]S(a;fw). The training objective is to
maximize a utility metric, such as the Conditional Value-at-
Risk (CVaR) of the terminal Profit & Loss (P&L).

The model learns by minimizing a loss function, £, defined as
the negative of a chosen utility metric. An optimizer, such as Adam,
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uses the gradient of this loss to update the trainable parameters
{aiaw}le. In the remainder of this subsection, we derive the ana-
lytical gradient.

Applying the chain rule across the time steps of a single trajec-
tory, the gradient of the loss £ with respect to a single unbounded
prototype action azaw is:

oL _Tz‘l oL oa(ir) ©
o™ = L4 da(z) oal™™

Here, 9.L/da(%;) is the upstream gradient from the loss function.
The local gradient, da(x;)/0a}™™, is first written by expanding the
definition of the total action a(X;):

K
Z sim(Xs, p;) - a; (7)

Jj=1

aa(it) _ 7]
raw raw
6ak 8ak

Because the derivative of a sum is the sum of the derivatives and the
similarity scores are constant with respect to the trainable parame-
ters, we can move the derivative operator inside the summation:

~ K
da(%y) L oa;
dataw = Z sim(X, pj) oataw ®)
k 7= k

Since a; = ¢(a§aw) and the raw actions {a"*V} are independent
parameters, the derivative da;/da;*" is non-zero only when j = k.
This can be expressed using the Kronecker delta, 6, as da;/ 8arkaw =
¢’ (a™) - 6k, where ¢’ (-) is the derivative of the SoftClip function.

The summation therefore reduces to a single term:

da(x L
%) — sim(r,pi) - ¢ (a2 ©)
k

Substituting this result back into the chain rule (Equation 6) yields
the final form of the gradient:

T-1
oL _ oL i L1 Taw
e = | 2 ey SmepO| S 00

This gradient has a clear interpretation: the update signal for an un-
bounded action, @;*", is the sum of upstream error signals weighted
by its prototype’s similarity, which is then scaled by the local gradi-
ent of the ‘SoftClip’ function. This final term moderates the update,
applying smaller adjustments when the raw action is far into the
flat regions of the clip function, ensuring stable learning.

As with the original Deep Hedging framework, the optimization
problem is non-convex. Prototype actions are initialized from a
random normal distribution, while prototype states are fixed once
during clustering. Although local minima cannot be ruled out, in
practice we found training to be stable: repeated runs with different
random seeds produced very similar hedging profiles and nearly
identical utility values. This indicates that, while the optimization
landscape is non-convex, it does not materially hinder convergence
in our setting.

3.3 Implementation

Our framework is implemented as a custom TensorFlow layer that
encapsulates the logic for transparent decision-making. During the
forward pass, an input state vector is first standardized using pre-
computed mean and standard deviation parameters derived from
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the training data. The model then calculates similarity scores based
on a weighted squared Euclidean distance between the standardized
input and the fixed prototypes. These distances are converted into
a normalized probability distribution using a softmax function, and
the final hedging action is efficiently computed via a single matrix
multiplication between these similarity weights and the learned
prototype actions.

The trainable parameters are the actions corresponding to each
prototype, which are initialized as an unbounded tensor from a ran-
dom normal distribution. To ensure the model’s outputs are realistic,
these unbounded actions are passed through a SoftClip function
during the forward pass. This mechanism smoothly enforces the
environment’s pre-defined trading limits while maintaining stable
gradients necessary for effective optimization. This architectural
design makes our model a self-contained, differentiable module
that can be readily integrated into standard deep hedging training
loops.

4 Performance and Interpretability Evaluation
4.1 Experimental Setup

To validate our proposed architecture, we evaluate it in two canon-
ical yet distinct simulated environments, following the setup of
Buehler et al. [8]. This two-pronged approach allows us to both
verify the model’s correctness against a known optimum and test
its performance in a more realistic, incomplete market setting.

o Black-Scholes Environment: This serves as a critical san-
ity check. The agent hedges a European call option by trad-
ing the underlying spot asset S;, whose dynamics follow
geometric Brownian motion:

dSt :,USt dt+USt th (11)

In this complete market, the existence of an analytical so-
lution provides a ground truth to confirm our model learns
correct hedging principles.

e Stochastic Volatility Environment: This presents a more
challenging and realistic scenario. The agent trades both
the spot asset and an at-the-money (ATM) European call
option where drift and volatility are themselves stochastic
mean-reverting processes:

dSt = ytSt dt + 0+St dVV},

bt = ~Ku(pe = ) dt + &, AW, (1)
doy = kg (6 — o7) dt + £ AW/ .

As an incomplete market with no closed-form solution, this
is a standard benchmark for data-driven hedging methods.

Across both environments, we generate independent price paths
using the Euler-Maruyama method for discretization. Unless stated
otherwise, we align our hyperparameter settings with the original
Deep Hedging baseline to allow fair comparison. For example, we
set the number of steps per sample to 20 and use CVaR at 50% as
the training utility. These choices are not inherent to our approach:
alternative hyperparameter values or different state definitions
can be used without modifying the model, which highlights the
adaptability of our framework to different market settings and
risk preferences. The key hyperparameters for training and the
environment specifications are summarized in Table 1. For the



ProtoHedge: Interpretable Hedging with Market Prototypes

market state features, we again follow the Deep Hedging setup:
in the Black—Scholes world the state includes the spot price, the
current hedge position (delta), and time to maturity, while in the
stochastic volatility world it additionally includes the tradable ATM
option price and its hedge position (delta).

As is common in prototype-based and case-based reasoning mod-
els, the number of prototypes K is a critical hyperparameter that
governs the trade-off between model granularity and generalization
risk [1, 11]. A small K may fail to capture the diversity of market
scenarios, while an overly large K can lead to overfitting and in-
creased computational cost. Following standard machine learning
methodology, we determined the optimal values for K through
cross-validation on our simulated data. Based on this analysis, we
set K = 100 for the Black-Scholes setup and K = 500 for the more
complex stochastic volatility setup.

Table 1: Summary of hyperparameter and configuration

Variable Black-Scholes  Stochastic Volatility
Training Epochs 800 800

Batch Size 32 32
Training Samples 10,000 10,000
Validation Samples 1,000 1,000

Steps per Sample 20 20

Time Step Size (At) 0.02 (~ weekly) 0.02 (~ weekly)
No. Prototypes (K) 100 500

Soft Clip Smoothness 1.0 1.0

Spot Trade Limits +5 units +5 units
Option Trade Limits - +5 units
Option Maturity 4 -

Spot Trading Cost 0.0002 0.0002
Option Cost (vega) - 0.02
Option Cost (price) - 0.0005
Utility CVaR @ 50% CVaR @ 50%
Optimizer Adam Adam
Learning Rate 0.001 0.001

Drift (u) 0 (constant) 0.1 (mean-reverting)
Realized Volatility 0.2 (constant) Stochastic?
Implied Volatility - Stochastic?
Payoff (Liability) —max (St — 1,0) —max (St — 1,0)

2In the stochastic volatility setup, the volatilities follow the
discretized mean-reverting log-processes: logosy1 = logo; +
ki(log oy —log oy ) At+&ier — %§?At, with similar dynamics for drift
r¢. Key parameters are k, = 2.0,x; = 0.1, & =& = 0.5,00 = 0.2.

4.2 Hedging Performance Results

Our quantitative analysis focuses on a direct comparison with the
original black-box Deep Hedging (DH) model [8]. Black-box DH
serves as the most direct and relevant benchmark for our primary
contribution: replacing the opaque neural network with an intrin-
sically interpretable model. While several important extensions to
the Deep Hedging framework exist, direct quantitative comparisons
are infeasible due to fundamental differences in their experimental
settings and objectives. For instance, the work of Murray et al. [19]
is formulated in continuous-time, which is mathematically incom-
patible with our discrete-time settings. The No-Transaction Band
Network of Imaki et al. [14] introduces a specialized architecture
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for managing transaction costs, making it difficult to isolate the
performance impact of our interpretability mechanism from their
cost-control mechanism. Finally, the work of Mikkil4d and Kanni-
ainen [18] is validated on empirical market data, whereas our study
relies on controlled environments to understand foundational cor-
rectness. Given these incompatibilities, the original black-box DH
model remains the most appropriate benchmark for this founda-
tional study. Adapting ProtoHedge to these more advanced settings
to enable such comparisons is a promising direction for future
research, but is beyond the scope of this paper.

We first validate ProtoHedge (PH) in the classical Black-Scholes
world, where an optimal analytical hedge provides a ground-truth
benchmark. As shown in Figure 2, the terminal Profit and Loss
(P&L) of the ProtoHedge (PH) strategy closely tracks the option’s
payoff curve, mirroring the behavior of the analytical Black-Scholes
(BS) hedge. This demonstrates that our model effectively learns to
minimize risk. The utility comparison, measured by the Conditional
Value-at-Risk for the worst 1% of outcomes (CVaR at 1%), further
confirms this. This metric is used to specifically assess the mitiga-
tion of extreme tail risk. While the BS hedge is theoretically optimal,
ProtoHedge achieves a nearly identical utility, confirming its ability
to learn a near-optimal strategy in a complete market.

Next, we test ProtoHedge in a more realistic stochastic volatil-
ity setting, where no closed-form solution exists. Figure 3 shows
that the unhedged portfolio is exposed to significant losses as the
option moves in-the-money. In contrast, the ProtoHedge strategy
effectively neutralizes this downside risk, maintaining a stable P&L
across all terminal spot prices. This result highlights the model’s
primary function: to reduce risk and minimize variance in com-
plex, unpredictable environments where analytical solutions are
unavailable.

Table 2: Absolute and relative expected utility improvements
across models in Black-Scholes and Stochastic Volatility set-
tings.

Comparison Absolute Diff. Relative Diff.
Black-Scholes

DH vs Unhedged +0.04570 +44.0%
ProtoHedge vs Unhedged +0.04547 +43.8%
ProtoHedge vs BS -0.00677 -13.1%
ProtoHedge vs DH -0.00023 -0.40%
Stochastic Volatility

DH vs Unhedged +0.03440 +27.6%
ProtoHedge vs Unhedged +0.03410 +27.4%
ProtoHedge vs DH -0.00030 -0.33%

Having established our model’s correctness and efficacy, we now
quantify the performance trade-off associated with its interpretabil-
ity by comparing it directly to the original black-box Deep Hedging
model (DH). Figure 4 compares the expected utility (CVaR at 50%,
the training objective) for all strategies in both environments. Ta-
ble 2 reports the exact utility differences between the models.

A direct comparison reveals that ProtoHedge achieves hedging
performance nearly identical to the black-box DH model. In the
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Figure 2: Validation of ProtoHedge (PH) against the analytical Black-Scholes (BS) solution. The plots show effective terminal
payoffs, terminal hedged P&L, and a utility comparison (CVaR at 1%).

Ry pp— Unhedged PnL (—Payoff)
—— Cumulative Hedge (Gains)
0.4+ Gains — Payoff
0.2 §
= |
&£ oo e 7‘7_7—;)<
-0.2 HHR
-0.4
-0.6 T T T T T T T
0.4 0.6 0.8 1.0 1.2 14 1.6

Terminal Spot Price St

Figure 3: Effective risk reduction: Performance of Proto-
Hedge vs Unhedged Strategy in the Stochastic Volatility En-
vironment

0.00 0.00

-0.02 —0.02

—0.04
-0.04

—0.06

-0.05163
~0.06

-0.05817  -0.05840

Expected Utility
Expected Utility

I
e
=3
®

-0.0905

-0.08 _0.10

-0.10 -0.12
-0.10387 -0.1246
Unhedged BS DH  ProtoHedge Unhedged DH

ProtoHedge

(a) Black-Scholes Setting (b) Stochastic Volatility Setting
Figure 4: Utility comparison of hedging strategies across
both market environments. The plots show the expected
utility (CVaR at 50%) for the Unhedged, ProtoHedge, and
black-box DH strategies, along with the analytical BS hedge
where applicable.

Black-Scholes setting (Figure 4a), the utility difference is a minimal
0.00023, a margin that remains negligible at 0.00030 in the more com-
plex stochastic volatility setting (Figure 4b). This result is crucial: it
quantifies the cost of interpretability as exceptionally low. When
contextualized by the substantial utility gains both models provide
over an unhedged strategy, this minor trade-off underscores our
central claim that intrinsic interpretability and high-performance
hedging are not mutually exclusive.

Taken together, these analyses provide a clear validation of our
interpretable model. ProtoHedge demonstrates its foundational cor-
rectness by replicating the optimal analytical solution in a classical
Black-Scholes market. Moreover, it proves its practical value in a
complex stochastic volatility environment by achieving hedging
effectiveness comparable to its black-box counterpart. This con-
firms that the substantial benefits of explainability—enabling model
auditing and building trust-are attainable with only a minimal and
quantifiable impact on performance.

4.3 Interpreting a Hedging Decision

To illustrate how our model makes decisions, we analyze a sam-
ple trajectory from the Black-Scholes environment. This example
shows not only the actions taken by the agent, but also helps explain
why they are reasonable in light of the evolving market conditions.

In this path, the option ends up in-the-money as the spot price
increases steadily above 1.1. Since the agent is short the option,
this creates a growing liability that must be hedged. Our model
responds by gradually increasing its holdings in the underlying
asset, as shown in Figure 5. The delta rises quickly and remains
high to offset the upward price movement and limit potential losses.

This behavior is expected and shows that the agent builds up
protection early and maintains it as risk grows, demonstrating a
clear and intuitive hedging strategy.

To better understand how our model selects actions, we examine
the current market state at a specific timestep and compare it with



ProtoHedge: Interpretable Hedging with Market Prototypes

1.0 1.200

—— Underlying Asset Deita \d\/_i“,/\/"“ Spot Price
7

AN 1.175

0.8 ad N \

/ ; \ . 1.150
: \ £ f112s

0.6 I\/ / \ /
s / [N / g
kil ~—t L 1.100 2
g / S - 5
0.4 / 1.075
1.050

0.2 / /

[ 1.025
0.04L--- 1.000

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Time Step
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est prototypes, highlighting similarity in the feature space.
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the top five closest prototypes identified by the model. Figures 6
and 7 show this comparison using parallel coordinates and radar
plots. The red line represents the current input, while the remaining
lines correspond to the nearest prototypes. We observe that the
input is visually close to several stored prototypes across all features,
which explains why the model confidently applies a similar action.
This highlights the interpretability of our approach: since the input
resembles known patterns, the model can reuse previously learned
behaviors in a transparent and intuitive way.

4.4 Characterizing the Learned Prototype Space

A primary benefit of ProtoHedge is the ability to audit the hedging
strategy learned by the model so that the user can build trust.
Beyond analyzing individual decisions, we can inspect the entire
set of learned prototypes to answer two critical questions: (1) Does
the model’s knowledge base reflect sound financial principles? and
(2) How does it dynamically apply this knowledge?

To investigate the structure of the learned knowledge, we visu-
alize the 500 prototypes from the stochastic volatility environment
in Figure 8. The band-like patterns visible in both subplots arise
naturally because prototypes cluster along regions of consistent
hedging behavior (e.g., near-zero hedge out-of-the-money and pos-
itive hedge in-the-money), rather than from redundant prototypes.
These plots confirm that ProtoHedge has independently rediscov-
ered fundamental principles of derivatives hedging. Subfigure 8a
illustrates the classic “S-curve” relationship between an option’s
delta and the underlying spot price, with prototypes correctly rec-
ommending “sell” actions (blue) for out-of-the-money states and
“buy” actions (red) for in-the-money states. Subfigure 8b highlights
time-sensitive strategies: as time left decreases, the recommended
actions become more decisive (darker colors), consistent with the
effects of Theta and Gamma.

In summary, this global audit provides strong evidence of the
model’s value. ProtoHedge does not simply produce a hedging de-
cision; it builds a transparent and coherent strategy grounded in
sound financial logic. Its learned behavior aligns closely with es-
tablished principles of derivatives hedging and organizes strategies
around a small set of critical market regimes, making it a trustwor-
thy and auditable system.

4.5 Limitations

While our results demonstrate the viability of the prototype-based
approach, it is important to acknowledge the deliberate scope of our
evaluation and its inherent limitations. First, our experiments were
conducted in simulated market environments (Black-Scholes and
stochastic volatility) using European-style options. These settings
were chosen intentionally as they provide a controlled environment
with clear benchmarks, which is essential for validating a novel
architecture and proving its ability to learn fundamental hedging
principles. However, these simulations do not capture the full com-
plexity of real-world markets, such as price jumps or fat-tailed
distributions. Furthermore, the model has not yet been tested on
more complex, path-dependent derivatives (e.g., Asian or barrier
options), where the state representation would need to be richer.
Second, our analysis highlights a trade-off between interpretability
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Figure 8: Visualization of the learned prototype space. The
plots confirm that ProtoHedge’s internal logic, which is
learned from data, aligns with fundamental financial princi-
ples.

and computational scalability. As noted in Section 3.3, the computa-
tional cost during training scales with the number of prototypes, K.
Moving from the Black-Scholes (K=100) to the stochastic volatility
(K=500) environment required a significant increase in both proto-
types and training time. Applying the model to high-dimensional
problems, such as hedging a large portfolio of diverse instruments,
would pose a substantial computational challenge that is beyond
the scope of this initial study. These limitations define clear and
important directions for future research, which we outline in the
following section.

5 Conclusion and Future Work

The practical adoption of deep hedging is limited by the black-box
nature of its underlying neural networks, which poses challenges
for trust, auditability, and regulatory oversight. In this work, we

Lisa Faloughi, Ce Guo, and Wayne Luk

introduce an intrinsically interpretable hedging framework to ad-
dress this limitation. Our model is transparent by design, making
hedging decisions by computing the similarity between the current
market state and a learned set of representative prototypes. The
final action is a weighted combination of simple policies associated
with these prototypes, making each decision fully traceable.

Our experimental results demonstrate the effectiveness of this
approach. First, the model successfully replicates the optimal ana-
lytical solution in a complete Black-Scholes market, confirming its
ability to learn correct hedging strategies. Second, its performance
is comparable to that of a conventional black-box deep hedging
model in a more realistic stochastic volatility environment. Our
results suggest that the integration of intrinsic interpretability into
deep hedging systems is achievable without a significant compro-
mise in performance, which is a crucial step towards their practical
deployment in the financial industry.

Future work will proceed along three main axes. First, empirical
validation: a crucial next step is to test the framework on historical
market data for a variety of instruments, including path-dependent
options (e.g., Asian or barrier options). This will test the model’s
robustness against real-world dynamics like market frictions and
non-stationarity. Since our current design is a proof-of-concept,
training on empirical data will also allow us to backtest whether the
learned prototypes correspond to recognizable market scenarios,
such as financial crises or flash crashes, and whether the model
responds to them in a consistent and interpretable way. In parallel,
engaging professional traders to backtest and assess the model in
practice would provide valuable external validation and highlight its
usability in real trading contexts. Second, scalability and optimiza-
tion: we will systematically investigate the trade-off between the
number of prototypes, feature space dimensionality, and computa-
tional performance. This includes exploring more efficient methods
for prototype selection and distance calculation, such as approxi-
mate nearest-neighbor search, which will be essential for applying
this interpretable framework to more complex, high-dimensional
hedging problems. Third, comparative evaluation: it will be impor-
tant to benchmark our approach against other recent deep hedging
models, such as Deeper Hedging under Chiarella-Heston dynam-
ics [13], to better assess its strengths and limitations under more
realistic market conditions.
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