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Abstract—Agent-based models (ABMs) play a critical role
in the containment and mitigation of epidemics. An ABM for
epidemics involves a population of agents that represent healthy
and infected individuals. Users can simulate the interactions
of the agents to analyse spreading patterns, make predictions
and conduct what-if tests. A major drawback that limits the
application of ABMs is the long simulation time for large popu-
lations. This paper proposes new techniques to speed up ABM-
based simulation. Specifically, we present an agent-based model
for epidemic spreading that enables effective acceleration using
reconfigurable hardware. The key idea is to compute the infection
probability in a novel way so that the amount of on-chip memory
usage is independent of the population size. Also, we propose
a parameter pre-computation algorithm, a parallel simulation
algorithm and an efficient collaboration method between the host
computer and the accelerator. We simulate the proposed model
on an Intel Arria 10 FPGA and compare it with a software
reference that simulates a conventional ABM on an Intel Core
i5-9400F CPU with six cores. The two systems produce similar
results, but the FPGA-based system achieves 14 times speedup
compared to the software reference.

Index Terms—agent-based modelling, epidemics simulation,
reconfigurable computing, limited-memory algorithms, clustering

I. INTRODUCTION

An epidemic is the rapid spreading of an infectious disease
that affects a large population or region [1], [2]. Even in the
modern world, epidemics can still lead to a public health
crisis and economic recession. For instance, the recent global
outbreak of COVID-19 has claimed the lives of over 832000
people and has plunged the global economy into recession all
within a few short weeks. In order to mitigate an epidemic, it
is necessary to understand how it spreads.

Agent-based models (ABMs) are useful tools to analyse
the spread of epidemics. An ABM treats each individual as
an agent in a simulated world. The simulation algorithm of
the model tracks the health status of each agent. ABMs can
capture realistic dynamics of the epidemic at the individual
level, to enable observation and prediction of the spread of
the epidemic over time and space. Moreover, the effects of
enforcing public health policies can be simulated using ABMs,
allowing the adoption of ‘what-if’ tests to evaluate strategies
for containment and mitigation.

While ABMs have significant potential for epidemic sim-
ulation, they are computationally demanding. Reconfigurable
computing based on FPGAs supports fast processing. How-
ever, it is challenging to apply reconfigurable computing to

the simulation of epidemics. In particular, the simulation
algorithms for ABMs require intensive memory access over
a large space. For example, to obtain the infection probability
for an individual, distance-based simulation algorithms need
to visit all other individuals in the worst case. This mem-
ory access pattern is challenging for FPGAs: their off-chip
memory is large but slow, while their on-chip memory is
fast but small. Even the latest FPGAs do not have on-chip
memory sufficiently large to support simulation of agent-based
epidemic models for the population of a small town.

This study addresses the above memory challenge for a
common reconfigurable computing platform where a general-
purpose computer collaborates with an FPGA-based acceler-
ator. We propose a novel method to evaluate the infection
probability using a limited amount of selected information.
A key insight of the proposed method is to update the health
status of an individual using the cumulative impact of a cluster
of individuals. This makes it possible to update the health
status by visiting a limited number of clusters rather than a
large population of individuals. The proposed method there-
fore no longer requires the storage of the whole population.
The result is that the on-chip memory usage no longer depends
on the population size. As a result, an accelerator based on
this approach can simulate a significantly larger population
compared with conventional methods.

To the best of our knowledge, this paper presents the first
reconfigurable accelerator for the simulation of large-scale
epidemic spreading. The key contributions of the paper include
the following:

• A novel way to evaluate the infection probability with
constant on-chip memory usage. (Section III-A)

• Pre-computation and simulation algorithms for the host
computer and the accelerator. (Section III-B)

• An efficient collaboration scheme between the accelerator
and its host computer. (Section III-C)

• An empirical study on an FPGA-based platform on
simulation speed and quality. (Section IV)

II. BACKGROUND AND RELATED WORK

In this section, we review agent-based models for epidemic
spreading and discuss existing acceleration solutions for gen-
eral agent-based models.



A. Agent-based models for epidemic spreading

To understand the patterns and trends behind the spread of
an epidemic, agent-based models provide a way to track the
health status and interactions of people. There are two major
ways to model the interactions between agents depending on
whether or not the model considers the explicit geographical
positions of agents and places [3].

Those models that do not involve the explicit geographical
positions of locations typically use graph-based representa-
tions to describe the interaction pattern. The first graph-based
method is called the labelled bipartite graph method [4] and
employs a bipartite graph G = (VP , VL, E) to represent
the simulated world. The two sets of vertices VP and VL
respectively represent the population and the set of locations.
An edge in the edge set E connecting an individual and a
location represents a visit of the individual to the location.
Each edge carries a time interval as a label to mark the duration
of the visit. A simulation algorithm can take advantage of the
bipartite graph to compute the locations of agents at discrete
time steps. Also, the simulation algorithm can compute the
probability that healthy individuals get infected using the
infection probability. The second graph-based method directly
describes the relationship between individuals. In other words,
these models treat the population as an undirected graph
G = (V,E) where V is the set of vertices standing for the
population; E is the set of edges representing the contact
between individuals in the population. Since the graph does not
include temporal information, these models require additional
methods to describe temporal changes of the agents. For
instance, a widely-used approach to describe temporal changes
is to incorporate the graph with a state-based infection model
[5]–[7].

In contrast, in a spatially explicit model, the precise spatial
locations of individuals and places provide an option to
evaluate intervention options on the movement of agents [8].
In general, a short distance between two locations suggests a
higher rate of movement [9]. In a spatially explicit model, the
probability that an individual gets infected in a time step is

pi = 1− e−λi∆t (1)

where ∆t is the length of a time step in the simulation; λi is
the force of infection that individual i receives. For instance,
the distance-based force of infection for individual i in [8],
[10] is in the form:

λi =

∑N−1
k=0 hkckβf(d(li, lk))∑N−1

k=0 f(d(li, lk))
(2)

where hk is equal to 1 if individual k is infectious and
is equal to 0 otherwise; β is the transmission rate in the
general community; ck is the severity of the symptom of
individual k; li is the location of individual i; d(x, y) is the
geographical distance between x and y; f(·) is a function
describing the relation between the intensity of transmission

and the geographical distance. For instance, the function f(·)
in [8] is a decreasing function in the following form:

f(d(li, lk)) =
1

1 + (d(li,lk)
a )b

(3)

where a and b are positive real-valued parameters.
This paper focuses on a spatially explicit model where

the probability of infection is based on unstructured contacts
between individuals. Since the model is spatially explicit, we
can extend the model with a mobility model [11] that considers
the movement of people upon the availability of data. Also,
although the model only covers unstructured contacts, we can
use the techniques in [8] to couple the model with information
on structured contacts.

B. Accelerated simulation for ABMs

Unfortunately, computational efficiency issues reduce the
usability of agent-based models for large-scale epidemics.
The analysis by Nakamura et al. [12] suggests that the time
complexity of simulation can grow exponentially with the
population size.

An existing approach to accelerate simulation algorithms
is to design parallelised algorithms and run them on high-
performance CPU and GPU clusters. Barrett et al. [13] pro-
pose a framework for CPU clusters to model the spread of
epidemics for large social networks. The model representation
takes advantage of disease-specific semantics to support au-
tomated decoupling of temporal and spatial dependence. The
decoupling of dependence facilitates simulations across multi-
ple computational nodes. The simulation algorithm can scale
up to support large, realistic social networks with millions
of vertices. Zou et al. [6] improve the network-based parallel
epidemic simulation on GPU clusters from two aspects. The
first aspect is to build efficient GPU implementations for graph
algorithms. The second aspect is to improve the scalability by
amortising the transmission latency over the total time of the
computation.

Xiao et al. survey the agent-based models from the per-
spective of efficient computation [14]. The survey suggests
that the acceleration of ABM simulation using reconfigurable
computing platforms is challenging generally. In most existing
reconfigurable computing solutions for ABMs, each agent oc-
cupies dedicated hardware resources. This approach, although
straightforward, causes two problems. The first problem is
the difficulty in inter-agent communication. Traditional bus
communication usually follows the master-slave model. This
model is typically inefficient for agent-based systems since
the simulation in each time step involves a large number of
transactions [15]. The second problem is the limited scalability
with resources. The amount of logic resources required by
simulation grows at least linearly with the population size.
For instance, Gao et al. [16] present an accelerator for a
graph-based epidemics model using FPGAs. Since each agent
occupies dedicated logic resources, the experimental imple-
mentation on an Intel DE2i-150 FPGA Development Kit only
supports at most 140 individuals.



This paper develops an FPGA-based simulator for large-
scale agent-based epidemic models. Similar to existing hard-
ware solutions for ABMs on clusters [13] and GPUs [6],
our main objective is to accelerate the simulation procedure.
However, compared with clusters and GPUs, the FPGA plat-
form is considerably more power-efficient. Also, FPGA-based
acceleration platforms become as accessible as GPUs in recent
years since cloud service providers, including Amazon AWS,
Intel DevCloud and Microsoft Azure, begin to offer FPGA-
based instances. Compared with the only FPGA-based ABM
simulator for epidemics we know [16] that simulates only
140 individuals, the proposed simulator can handle a large
population of more than 10000 individuals.

III. PROPOSED METHOD

This section presents the proposed agent-based model for
epidemic spreading. Section III-A proposes a limited-memory
method for health status update. The health status update
method at the core idea in this study enables the simulation of
a large population using only the on-chip memory on recon-
figurable accelerators. Section III-B presents pre-computing
and simulation algorithms for the host computer and the
accelerator based on the method introduced in Section III-A.
Section III-C explains a way to improve the collaboration
efficiency between the host computer and the accelerator.

A. Limited-memory health status update

The simulation algorithm updates the health status of all
agents in each time step in a probabilistic manner. This
procedure is computationally expensive. Given a health and
susceptible individual, the simulation algorithm evaluates its
probability of being infected and changes its status to ‘in-
fected’ with the calculated probability. In a spatially explicit
model, the simulation algorithm needs to visit all susceptible
individuals in the population to calculate the infection proba-
bility in the worst case. The calculation of infection probability
for all susceptible individuals takes O(N2) time for each time
step in the simulation.

Reconfigurable accelerators are less able to help accelerate
the calculation of infection probabilities since there is a
problem on the storage of the population. A reconfigurable
computing platform usually has two types of memory. The on-
chip memory offers high bandwidth but low capacity, while the
off-chip memory provides high capacity but low bandwidth.
In the calculation of an infection probability, the traverse
through the whole population involves simple calculations
and intensive serial memory access. Fortunately, it is possible
to store the infectious population in the on-chip memory,
so the memory bandwidth is unlikely to result in a speed
bottleneck. However, the capacity of the on-chip memory
would be too small to fit a reasonably-sized population for
real-life scenarios. Alternatively, if the population is kept in
the off-chip memory, then the storage capacity would be
sufficient even if the population size is large. However, the low
bandwidth would limit the speed of the traverse. To the best

of our knowledge, there is no known method that addresses
this problem.

This paper proposes a limited-memory health status update
method which retrieves all required information from the
on-chip memory during the computation. In particular, we
store clustering information of the population rather than the
population itself in the on-chip memory. Instead of computing
the force of infection using Eq. 2, we approximate it using
the clustering information with a set of parameters. A critical
insight behind the idea is that the individuals in a real-world
population often have a highly clustered spatial pattern. The
distances between an individual and a cluster of other individ-
uals tend to be similar. Since the force of infection in Eq. 2 is
distance-based, we use the distance between the individual and
the cluster centroid to approximate the cumulative contribution
of all individuals in the cluster. In other words, the assumptions
of spatially explicit models on epidemic spreading patterns
remain unchanged. We approximate the infection probability
to facilitate FPGA-based computation with an additional as-
sumption that the population is highly clustered. As a result,
it is only necessary to visit all cluster centroids to compute
the force of infection instead of visiting all individuals in the
population. Therefore, it is possible to update health status
only using the on-chip memory as long as we can squeeze
the cluster centroids and related auxiliary information in the
on-chip memory.

To convert the idea of limited-memory health status update
to algorithms, we propose to partition the population into J
clusters and use the following approximate force of infection
to replace the original one in Eq. 2:

λ̂i =

∑J−1
j=0 υjgj(d(li, µj))∑J−1
j=0 gj(d(li, µj))

(4)

where µj is the centroid of cluster j and

gj(d(li, µj)) =

3∑
k=0

aj,kd
2k(li, µj) (5)

Eq. 4 facilitates the proposed limited-memory health status
update method. Specifically, Eq. 4 only visits J cluster cen-
troids while Eq. 2 visits all the N individuals. In other words,
the memory requirement of Eq. 4 scales with the number of
clusters J rather than the population size N . We only need
to select and maintain J centroids for the clusters and related
parameters in the on-chip memory to compute the force of
infection for any susceptible individual. We can choose a small
value for J considering the capacity of the on-chip memory
on the reconfigurable accelerator. The approximation accuracy
reduces with a small J value. However, studies on clustering
suggest that a small collection of clusters can be used to restore
key information in the original data [17].

Eq. 5 evaluates the cumulative contribution of the force
of infection using cluster centroids. The function takes a
polynomial form which is different from its individual-based
counterpart in Eq. 3. We design this particular polynomial
function to balance the approximation accuracy and resource



usage. Although the polynomial function is structurally un-
complicated, its derivation includes non-trivial design consid-
erations. The remainder of this section provides a sketch of
the derivation.

A straightforward way to build the approximation for the
force of infection is to copy the exact structure of f(·) from
Eq. 3. This setting guarantees that the approximation error
converges to zero when the number of clusters J reaches the
population size N . However, we do not consider it wise to
use the exact form of Eq. 3 because each centroid should
have a different impact on susceptible agents depending on the
spatial distribution of the infectious individuals in the cluster.
Therefore, instead of using an identical force function f(·) for
all infected individuals, it is necessary to assign a different
function gj(·) to each cluster. We choose to use a polynomial
function gj(·) in Eq. 5 for each cluster to approximate the
cumulative contribution of the force of infection. The polyno-
mial function avoids expensive arithmetic operations such as
divisions. On the other hand, although d(li, µj) can be derived
from d2(li, µj) with a square root operation, performing the
square root operation on an FPGA is costly and inaccurate.
The form of gj(·) in Eq. 5 can avoid such a square root
operation.

To balance the considerations on mathematics and re-
sources, we choose the lowest order that can preserve the
original concavity. As gj(·) works with squared distance space,
we focus on the function φ(s) = f(

√
s) which has two

intervals with different concavity. Therefore, we use the cubic
polynomial of d2(li, µj) to construct gj(·).

B. Pre-computation and accelerated simulation

The host computer needs to pre-compute model parameters
before the simulation. The parameters include the centroids
of the clusters, the coefficients a0..(J−1),0..3 for gj(·) and
the dynamic parameters υ0..(J−1) to compute the force of
infection. During the simulation, the host computer maintains
the population while the accelerator on the FPGA platform
updates the health status for the population using the model
parameters.

The search for the globally optimal parameters is an NP-
hard problem. In this study, we propose a greedy method
to compute the parameters from f(·) in two phases. The
first phase is clustering. The host computer identifies J
clusters from the population. Given the population and the
number of clusters J , this clustering procedure is invoked
only once. The clustering metric is independent of the param-
eters a0..(J−1),0..3 or υ0..(J−1). The second step is parameter
estimation, which takes the population and the centroids of
clusters to compute a0..(J−1),0..3 and υ0..(J−1). In other words,
the parameter estimation procedure considers the clustering
result from the first phase as optimal and does not revise it.

Fig. 1 shows an example of the two-step pre-computation
workflow. Given the population in Fig. 1(a), the pre-
computation algorithm identifies 5 clusters, as shown in
Fig. 1(b). The points in the same colour represent the indi-
viduals in the same cluster. A cross in the figure standard for

the centroid of the cluster it lays on. Fig. 1(c) demonstrates
a parameter estimation result where each circle marks the
boundary where the corresponding gj(x) decreases by half.

Algorithm 1: Pre-computation
Input: I: set of individuals, J : number of clusters
Output: Parameters µ0..(J−1), a0..(J−1),0..3, υ0..J

0 θ0..(J−1) ← IdentifyClusters(I, J)
1 µ0..(J−1) ← ExtractCentroids(θ)
2 for j ∈ 0..(J − 1) do
3 aj,0..3 ← arg minaj,0..3(Ea)

4 υj ← arg minυj (Ev)

5 return µ0..(J−1), a0..(J−1),0..3, υ0..J

Algorithm 1 shows detailed steps for the two-phase com-
putation. The two lines before the for-loop correspond to the
clustering phase. The clustering method used in this paper is
K-means [18]. The for-loop itself corresponds to the parameter
estimation phase. The two optimisation objectives in this phase
are:

Ea =

J−1∑
i=0

(
gj(d(µi, µj))−

N−1∑
k=0

ιj,kf(d(µi, lk))
)2

(6)

Eυ =

J−1∑
i=0

(
υjgj(d(µi, µj))−

N−1∑
k=0

ιj,khkckβf(d(µi, lk)))
)2

(7)

where ιj,k is equal to 1 if individual k is in cluster j and
is equal to 0 otherwise. The minimisation problems for Ea
and Eυ are standard least-square problems with closed-form
solutions.

Algorithm 2: Health status update (on FPGA)
Input: hj : health status, ∆t: time step length
Output: hj0..(N−1): updated health status

0 s> ← 0
1 s⊥ ← 0
2 for j ∈ 0..(J − 1) do
3 w ← gj(d(li, µj))
4 s> ← u+ wυj
5 s⊥ ← u+ w

6 λ̂← s>
s⊥

7 h+
j ←

{
0 with probability e−λ̂∆t

1 otherwise

Algorithm 2 shows the health status update procedure for
one individual. The loop implements the evaluation of λ̂i
in Eq. 4. The two variables s> and s⊥ are respectively
the accumulators for the numerator and the denominator on
the right-hand-side of Eq. 4. The calculations after the loop
correspond to the sampling process of hk following Eq. 1.
Since all iterations of the loop are independent, we unroll
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(c) Parameter estimation

Fig. 1: Pre-computation on host computer

the loop so that the accelerator runs U iterations in parallel.
Therefore, a larger value for U generally results in a higher
simulation throughput. As a result, the resource-intensive part
in Algorithm 2 is the loop even if the computation in a single
iteration only involves the evaluation of a polynomial. The
operations after the loop use fewer resources than the loop
itself. It is only necessary to deploy one hardware block for
these operations because this block only needs to work once
after J iterations of the loop.

Given a single FPGA chip, we recommend implementing a
single copy of Algorithm 2 and maximise U to improve the
throughput. Given multiple FPGA chips, we can implement
one copy of Algorithm 2 on each chip to take advantage
of the data parallelism, as long as each chip can keep a
sufficient number of clusters in its on-chip memory to maintain
enough approximation accuracy. Since there are no sequential
dependencies between the individuals in the population, the
host computer can split the population and stream the sub-
populations to different FPGA chips. During the simulation,
the data exchanged between the host computer and the FPGAs
only include the locations of individuals, the health status and
the parameter vector υ0..(J−1). The FPGAs do not need to
communicate with each other. Therefore, we can easily take
advantage of data parallelism when more units of reconfig-
urable hardware are available. Also, if we assume that (a) the
host computer can distribute the model parameters and collect
the health status for all processing units in parallel and (b) the
population is sufficiently large, then the simulation throughput
should scale linearly with the number of processing units.
With multiple FPGAs, we may scale up the simulation of an
epidemic at country level within limited time. An illustration
of this linear scaling is presented in Section IV-C.

C. Efficient host-accelerator collaboration
At the beginning of each time step, we need to make sure

that the parameter vector υ0..(J−1) in the on-chip memory of
the accelerator is up-to-date. A straightforward way is to take
the health status at time step (t − 1) to update υ0..(J−1) for
time step t. This straightforward workflow is based on the
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Fig. 2: Host-accelerator collaboration

assumption that an individual i can infect others as soon as
individual i itself gets infected. The assumption can simplify
the simulation logic, but the data dependence negatively affects
the collaborating efficiency. Fig. 2(a) is a Gantt chart for this
collaboration plan. The data transmission time is not shown for
simplicity. The host and the accelerator take turns to perform
computation. The host computer starts to compute υ0..(J−1)

after the accelerator returns the health status of the previous
time step. The accelerator needs to wait for υ0..(J−1) before
updating the health status. We consider the collaboration in
Fig. 2(a) to be inefficient as the host and the accelerator can
never run in parallel.

The key problem that hampers parallelisation is the assump-
tion that an individual can become infectious immediately
after getting infected. However, we notice that the assumption
does not hold biologically. Instead, there is a gap between
the time that an individual get infected and the time that
the newly infected individual is ready to infect others. This
biological conclusion turns out to be critical in the optimisation
of the workflow. Critically, it is possible to optimise the host-
accelerator collaboration schedule if the gap time is larger than
one time step in the simulation. We assume that an individual
infected at time step t is unable to infect others at time step



(t + 1). Instead, let q ∈ (1,∞) be an integer such that an
individual infected in time step t starts to infect others at the
beginning of time step (t+ q).

Fig. 2(b) shows an optimised schedule for this revised
collaboration. The schedule works as follows. At time step 0,
the host computer starts by computing the initial υ0..(J−1). The
accelerator updates the health status of all individuals using
the initial υ0..(J−1). At time step t ∈ (0, q−1], the accelerator
can still use the initial υ0..(J−1) to update the health status
of the individuals. While the accelerator is working, the host
can compute υ0..(J−1) for the current time step t. At time step
t ∈ [q,+∞), υ0..(J−1) for time step (t− q) must be available.
The accelerator can use the this version of υ0..(J−1) to update
the health status. Similar to the previous case, the host can
compute υ0,(J−1) for time step t while the accelerator is busy.

IV. EVALUATION

In this section, we present an empirical evaluation of the
proposed model. We first investigate the accuracy–efficiency
trade-off of the limited-memory health status update method.
Then, we show the simulation results for a synthetic epidemic
on statistical reliability and computational efficiency.

A. Experimental setup

We implement the health status update in Algorihtm 2
using OpenCL 1.2, compile it with the Intel FPGA OpenCL
SDK toolchain 19.4 and map the kernel on an Intel Arria
10 GX FPGA development platform. The platform contains
an Arria 10 GX 10AX115S2F45I1SG FPGA. The maximum
loop unroll factor we achieve is U = 120. The corresponding
resource usage is shown in Table I. The workstation hosting
the FPGA platform has a six-core Intel Core i5-9400F CPU
running at 2.90GHz and 32GB DDR-3333 memory. A PCIe x8
edge connector links the FPGA platform to the host. We use
32-bit floating point numbers across the design. The software
reference is an implementation of the model in [8]. As we
focus on spatially explicit models, we disable the non-spatial
force of infection in the source code before compilation. The
software reference is written in the C programming language
and compiled with the Intel C compiler 19.1 with the ‘-O2’
optimisation flag.

TABLE I: Resource usage

Resource ALMs FFs RAMs DSPs
Usage 572410 831570 1930 1211

Usage(%) 67% 49% 71% 80%
Total 854400 1708800 2713 1518

B. Accuracy versus computational burden

The key insight of the proposed method is that a limited
number of clusters are sufficient to reconstruct the force of
infection. We analyse the trade-off between the number of
clusters J and the approximation error. The number of clusters
J directly determines the computational burden at each time
step. With a fixed U , the execution time for each time step
increases linearly with J . The approximation error affects how

much the approximated version follows the same behaviour as
the original version.
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Fig. 3: Approximation error versus number of clusters

An ideal way to observe the impact of J on the model
quality is to observe the model quality with different values for
J . However, to the best of our knowledge, there is no generally
accepted way to quantify the quality of ABM simulation for
epidemics. As a result, we study the impact of J indirectly
by looking at how the approximation error of Eq. 4 varies
with the number of clusters. The locations of N=100000
individuals are generated with the method in [19]. The result
is shown in the blue curve in Fig. 3. The error converges
quickly towards zero, while suggests that a small number of
clusters can provide sufficient accuracy for a large population.
However, we believe that the convergence depends on the
general assumption that individuals in the population form
clusters. If the individuals distribute evenly in space, the error
would converge more slowly. To confirm this, we plot a curve
for an evenly distributed population in orange in Fig. 3. The
curve shows that we need to use a larger number of clusters
for an evenly distributed population to achieve the same level
of accuracy with a highly clustered population. However, in
a realistic simulation, the slow convergence of the error is
unlikely to appear since individuals in real-life populations do
tend to form clusters [20].

C. Accelerated simulation

We use the synthetic epidemic settings [8] and the popu-
lation in the previous experiment to evaluate the quality and
speed of the experimental implementation. We use J = 10000
in all experiments. Since there is no universally accepted
method to judge the quality of ABM models for epidemics,
we directly put the results from both models side by side
following [8]. Fig. 4 shows how the epidemic size changes
with time in the simulation for both models. Table II presents
the average epidemic sizes and standard deviations every 30
days. The three sub-figures in Fig. 4 correspond to different
basic reproductive ratios R0 = 1.5, 1.9 and 2.3. Each growth
curve is the average epidemic size based on 200 repetitions.
The band around the curve marks the 95% confidence interval.
In all the simulation settings, the growth trends of the epidemic
size appear as S-shaped curves. Regarding the averaged trend,
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Fig. 4: Epidemic size versus spreading time

TABLE II: Numeric results on epidemic size

Reference Proposed Reference Proposed Reference Proposed
Day R0 = 1.5 R0 = 1.5 R0 = 1.9 R0 = 1.9 R0 = 2.3 R0 = 2.3

30 0.0006 ± 0.0002 0.0008 ± 0.0003 0.0018 ± 0.0005 0.0027 ± 0.0014 0.0039 ± 0.0011 0.0071 ± 0.0062
60 0.0048 ± 0.0012 0.0078 ± 0.0041 0.0261 ± 0.0071 0.0538 ± 0.0454 0.0921 ± 0.0296 0.1638 ± 0.1195
90 0.0308 ± 0.0074 0.0574 ± 0.0369 0.1953 ± 0.0362 0.2458 ± 0.0774 0.4008 ± 0.0338 0.4353 ± 0.0663

120 0.1340 ± 0.0252 0.1893 ± 0.0683 0.3615 ± 0.0155 0.3506 ± 0.0292 0.4677 ± 0.0113 0.4974 ± 0.0176
150 0.2658 ± 0.0219 0.2915 ± 0.0436 0.3868 ± 0.0098 0.3670 ± 0.0162 0.4711 ± 0.0111 0.5019 ± 0.0169
180 0.3138 ± 0.0127 0.3245 ± 0.0217 0.3888 ± 0.0097 0.3685 ± 0.0156 0.4712 ± 0.0111 0.5020 ± 0.0170
210 0.3229 ± 0.0117 0.3319 ± 0.0188 0.3889 ± 0.0097 0.3686 ± 0.0155 0.4712 ± 0.0111 0.5021 ± 0.0170
240 0.3244 ± 0.0117 0.3334 ± 0.0197 0.3889 ± 0.0097 0.3686 ± 0.0155 0.4712 ± 0.0111 0.5021 ± 0.0170

the proposed model makes little difference from the reference
model. However, the main difference between the two models
is the confidence interval. The proposed model tends to have
wider bands than the reference model, which means that the
epidemic size in the proposed model spreads wider across
multiple simulations. Therefore, the trend of the epidemic size
from the proposed model may be less stable with a small
number of repetitions. However, the observation is unlikely to
cause problems as a practical simulation procedure of ABMs
involves 100-1000 repetitions [13].

TABLE III: Execution time and speedup

Loop unroll Exec. time Speed-up Speed-up
factor U (seconds) (one core) (six cores)

10 21.98 5.1 1.1
20 10.99 10.3 2.3
30 7.33 15.4 3.4
40 5.49 20.6 4.6
50 4.40 25.7 5.7
60 3.66 30.8 6.9
70 3.14 36.0 8.0
80 2.75 41.1 9.1
90 2.44 46.3 10.3

100 2.20 51.3 11.4
110 2.00 56.5 12.6
120 1.83 61.7 13.7

We measure the simulation throughput by the number of
simulated time steps per second. On average, the simulation
of the reference model takes respectively 112.91 and 25.10
seconds for each time step on one CPU core and six CPU
cores. The execution time with the accelerator is shown in
Table III. In this table, U is the loop unroll factor discussed

in Section III-B; the execution time is in seconds. In all
experiments, the optimised collaboration scheme amortises the
pre-computation time on the host computer over the total
execution time. The execution time for one time step drops
from around 21.98 seconds to 1.83 seconds as U increases
from 10 to 120. The maximum speedup compared with the
software reference is around 62 times over one CPU core and
14 times over six CPU cores.

TABLE IV: Number of Arria 10 FPGAs to simulate a 180-day
epidemic within 24 hours

Region Population # FPGAs
USA 328 million 9

EU 446 million 12
UK 67 million 2

China 1.39 billion 43
Japan 127 million 5

This paper focuses on the acceleration with a single FPGA
chip. However, we can scale up to support country-level
simulations using multiple FPGAs. We estimate the number of
Intel Arria 10 FPGAs to simulate a 180-day epidemic within
24 hours in Table IV with the following assumptions: (a) a one-
day time step can provide sufficient simulation accuracy [8];
(b) each FPGA has enough on-chip memory space to support
accurate approximation; (c) the host computer can update the
parameter vector η0..(J−1) for all FPGAs in parallel; (d) the
optimised collaboration scheme can still amortise the time for
parameter update time over the total execution time.



V. CONCLUSIONS AND FUTURE WORK

In the simulation of spatially explicit agent-based epidemic
models, the dependence between the population size and the
on-chip memory usage results in a difficult trade-off. If the
on-chip memory stores the population, then the population
size would be too small to simulate populations in the real
world. However, if we allow some agents to stay off-chip at
any time, then the low bandwidth would limit the simulation
throughput. We avoid the difficult trade-off by deriving a novel
method to update the health status of the population during the
simulation. A unique feature of our new approach is that the
on-chip memory requirement no longer depends on the size
of the simulated population. This feature significantly enlarges
the population that a reconfigurable computing platform can
simulate efficiently. We also propose algorithms for pre-
computation and parallelised health status update. In addition
to the computation of the infection probability, we take ad-
vantage of the latency period of disease infection to develop
an efficient collaboration scheme between the accelerator and
its host computer.

There are at least three directions of future work. The first
direction is to optimise the hardware design. This paper fo-
cuses on the algorithmic aspects of acceleration. There is still
a lot to do with performance improvement on implementation-
level optimisations. For instance, the experimental implemen-
tation uses floating-point numbers. However, the algorithmic
optimisations proposed in Section III-B, including the avoid-
ance of square roots and exponential functions, would result in
more significant improvement with fixed-point numbers than
floating-point numbers. The second direction is to calibrate the
model with data and perform large-scale simulations under
practical settings. Although the main statistical objective in
this paper is to predict the trend accurately, the design of
a practical simulation tool should involve the capability of
‘what-if’ tests and interventions, as well as a good trade-
off between speed and accuracy. The third and perhaps most
interesting and useful direction is to generalise the model
and the acceleration strategy to support other types of non-
epidemic ABMs [21]. This would appear to offer widespread
social benefit beyond the immediate and critical importance of
the global impact of the COVID-19 pandemic on health. Our
approach could provide valuable improvement in the speed
of evaluation of the impact of pandemics on the economies,
behaviours and social structures of the entire world, especially
in areas such as how other social and economic structures can
spread ideas, information and beliefs even more rapidly than
a virus can spread.

ACKNOWLEDGEMENTS

The support of UK EPSRC (grant number EP/L016796/1,
EP/I012036/1, EP/L00058X/1, EP/N031768/1 and
EP/K034448/1) and Intel is gratefully acknowledged.

REFERENCES

[1] J. M. Last, S. S. Harris, M. C. Thuriaux, and R. A. Spasoff, A dictionary
of epidemiology. International Epidemiological Association, Inc., 2001.

[2] K. J. Rothman, S. Greenland, and T. L. Lash, Modern epidemiology.
Lippincott Williams & Wilkins, 2008.

[3] N. M. Ferguson, D. A. Cummings, S. Cauchemez, C. Fraser, S. Riley,
A. Meeyai, S. Iamsirithaworn, and D. S. Burke, “Strategies for contain-
ing an emerging influenza pandemic in southeast asia,” Nature, vol. 437,
no. 7056, pp. 209–214, 2005.

[4] S. Eubank, H. Guclu, V. A. Kumar, M. V. Marathe, A. Srinivasan,
Z. Toroczkai, and N. Wang, “Modelling disease outbreaks in realistic
urban social networks,” Nature, vol. 429, no. 6988, pp. 180–184, 2004.

[5] F. S. Tabataba, B. Lewis, M. Hosseinipour, F. S. Tabataba, S. Venkatra-
manan, J. Chen, D. Higdon, and M. Marathe, “Epidemic forecasting
framework combining agent-based models and smart beam particle
filtering,” in 2017 IEEE International Conference on Data Mining.
IEEE, 2017, pp. 1099–1104.
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