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Abstract—Typical data analysis systems involving FPGAs work
better with low-dimensional low-precision (LDLP) data than with
high-dimensional high-precision (HDHP) ones due to limitations
on data bandwidth and on-chip resources. However, data sources
usually offer HDHP data matrices. It is possible to obtain LDLP
data that approximate HDHP data by applying dimensional-
ity reduction and quantisation. However, this straightforward
workflow incurs significant information loss that reduces the
accuracy of data analysis on FPGAs. This paper proposes
that the information loss in the straightforward workflow is
due to the dimensionality reduction algorithm’s unawareness
of quantisation. To address this problem, the paper introduces
Quadir, a novel algorithm that supports quantisation-aware
dimensionality reduction. In particular, Quadir is an alternating
direction optimisation algorithm that finds a transformation to
project an HDHP data matrix to an LDHP one so that the
LDLP matrix after quantisation can reconstruct the original
HDHP matrix with optimised approximation. Our experimental
evaluation in data reconstruction shows that the LDHP data
matrices produced by Quadir preserve more information from
the original data than principal component analysis (PCA) after
quantisation.

I. INTRODUCTION

Data analysis systems on the FPGA platform usually work
better with low-dimensional low-precision (LDLP) data than
with high-dimensional high-precision (HDHP) ones. Com-
pared with HDHP data, LDLP data can facilitate FPGA design
by reducing bandwidth and resource usage. Two conventional
techniques to produce LDLP data are dimensionality reduction
(DR) and quantisation. A dimensionality reduction procedure
reduces the number of elements in each data point, shrinking
the data from the perspective of dimensionality without touch-
ing the numerical representation; a quantisation procedure
reduces the precision of data elements, cutting down the data
size from the perspective of numeric precision without affect-
ing the dimensionality. A straightforward workflow to prepare
LDLP data is to apply dimensionality reduction followed by
quantisation [1]. However, this workflow can incur information
loss and reduce the accuracy of the downstream data analysis
system on the FPGA platform.

This paper aims to reduce such information loss by im-
proving the fundamental understanding of the effect of quan-
tisation on dimensionality reduction. A key insight is that the
ineffective interaction between dimensionality reduction and
quantisation is due to the unawareness of the dimensionality
reduction procedure regarding the downstream quantisation
procedure. Specifically, with the straightforward workflow
shown in Figure la, it is impossible to provide the spec-
ifications for quantisation to the dimensionality reduction

Target

Specifications
(r<d) for quantisation

dimensionality r
l Y

nxr
high-precision
data matrix

nxr
low-precision
data matrix for|
FPGA

Conventional
dimensionality
reduction

nxd
high-precision
data matrix

Quantisation

(a) Straightforward: no awareness of quantisation

Target -
dimensionality r Specifications
(r<d) for quantisation
l A4
- QUantisation- -
Aware e
nxd Dimensionality; nxr Quantisation low-precision
high-precision Reduction high-precision data matrix for
data matrix (Quadir) data matrix

(b) Proposed: awareness of quantisation

Fig. 1. Workflows with DR and quantisation

procedure. Therefore, the dimensionality reduction procedure
is unable to take advantage of the specifications to reduce
information loss during quantisation.

This paper proposes Quadir, the first dimensionality reduc-
tion algorithm with the awareness of quantisation, to enable
the use of the workflow in Figure 1b. Specifically, Quadir
projects an HDHP data matrix to an LDHP one with the
awareness of quantisation, so that the quantisation procedure
incurs low information loss when it converts the LDHP data
matrix to an LDLP one. The data analysis system on the FPGA
platform can directly use the LDLP data with low bandwidth
and resource usage. The major contributions of this paper
include the following:

1) An analysis of the suboptimality of conventional di-
mensionality reduction methods with quantisation. See
Section III-A.

2) Quadir, a novel dimensionality reduction algorithm that
takes quantisation into account when projecting data to
the low-dimensional space. See Section III-B.

3) An experimental evaluation of Quadir on data recon-
struction. See Section IV.

II. BACKGROUND AND RELATED WORK

The primary objective of dimensionality reduction is to
reduce the data size by projecting the data onto a low-
dimensional space, preserving as much information as pos-
sible [2]. In other words, dimensionality reduction methods



compress the data, allowing direct processing without decom-
pression. For ease of discussion, we denote the set of high-
precision numbers and low-precision numbers respectively by
H and L. Without loss of generality, we assume that the data
source provides high-precision data matrices in the row-major
order. In other words, a data matrix X € H"*“ contains n data
points. Each data point is a d-dimensional row vector with d
real-valued elements in H.

A dimensionality reduction algorithm transforms a data ma-
trix X € H"*? to a low-dimensional data matrix X € H"*"
where 7 < d. An obvious benefit of dimensionality reduction
for FPGA design is the reduction in storage space, data traffic
and logic resource usage without significant accuracy loss. The
low-dimensional data matrix obtained from dimensionality
reduction can be treated as an approximate version of the
original one. If the low-dimensional data provide sufficient
accuracy, it is safe to store and transmit the low-dimensional
projection while discarding the original one. Moreover, FPGA
designs for a data analysis task may have an upper bound on
the number of dimensions due to bandwidth or resource limit.
When the number of dimensions exceeds the capacity of the
hardware design, dimensionality reduction gives a chance to
enable on-chip data processing with decent accuracy.

Existing FPGA-related studies on data projection are mainly
on hardware designs that extract projection models from
data [3], [4], [5]. There are also FPGA designs projecting
data into random sub-spaces to enhance ensemble modelling
[6]. These studies demonstrate that FPGAs can benefit data
projection techniques. In contrast, we investigate a problem
in the opposite direction where data projection techniques
benefit FPGA design. In particular, we propose an off-chip
data projection method to reduce the resource and bandwidth
usage for on-chip data analysis.

Existing studies related to both quantisation and hardware
design are mostly about the quantisation of model parameters
to facilitate hardware design. For instance, studies such as [7]
focus on the quantisation of model parameters to reduce the
model size. The objective of these studies is to deploy the
model using limited on-chip resources. In contrast, this study
focuses on the preparation of quantised data for data analysis
systems.

ITI. QUANTISATION-AWARE DIMENSIONALITY REDUCTION

This section proposes the QUantisation-Aware DImension-
ality Reduction (Quadir) algorithm. Given a high-dimensional
data matrix X € H"*¢, the remaining dimensionality r and
the quantisation function =, Quadir finds a function ® that
projects X to a low-dimensional data matrix ¥ = ®(X) €
H"*" so that Z(Y) € L™*" contains sufficient information
to approximately restore the original data. The data analysis
algorithm running on the FPGA platform can use Z(Y)
directly instead of X, with reduced bandwidth and resource
usage. Section III-A analyses why the consecutive application
of dimensionality reduction and quantisation results in subop-
timal statistical accuracy in general; Section III-B proposes the

Quadir algorithm to enable quantisation-aware dimensionality
reduction.

A. Suboptimality of straightforward workflow

We expect that the low-dimensional data transmitted to the
FPGA platform still contain sufficient information from the
original data. In other words, we aim to solve the following
optimisation problem

°, U* = argming o F(V( O(X) ), X) (1
——

high-precision
where F' is a function that measures the difference between
two matrices regarding the properties to preserve; ® is a
dimensionality reduction function that projects the data from
H"*d to H"*"; ¥ is a data reconstruction function that
projects the data from H"™*" or L."*" back to H"*¢. Since
® and ¥ are functions, the optimisation problem in Equa-
tion 1 involves a search in the function space. However, it is
impossible to search in the function space without additional
assumptions. A practical approach is to make the two functions

parametric and search in the parameter space.

When the two functions, ®® and W*®, are available, the data
analysis algorithm running on the FPGA platform can process
the data in the low-dimensional space ®*(X) € H™*" directly
without knowing the original data X € H"*<,

Since the FPGA platform often has limited bandwidth for
incoming data, we further reduce the data size by quantising
the low-dimensional data matrix ®*(X) to the low-precision
space IL"*". In this case, it is only necessary to transmit
the quantised low-dimensional data Z(®°(X)) to the FPGA
platform. An ideal situation is that the data matrix Z(®*(X))
received by the FPGA platform retains as much information
from the original data matrix X. In other words, it is expected
that the following variant of Equation 1 holds:

O, U = arg mian,F(\I!( E(P(X))

——
quantised for FPGA

), X) @

In Equation 2, the low-precision data matrix Z(®(X)) for
FPGA processing appears in the position of its high-precision
counterpart ®(X) in Equation 1.

However, Equation 2 does not hold because the optimisation
objective functions in Equation 1 and Equation 2 are different.
In other words, the functions ®* and W*® obtained from
Equation 1 may not satisfy Equation 2. As a result, the
quantised data matrix Z(®* (X)) for FPGA processing is likely
to incur a higher error than ®*(X) due to the information loss
introduced in quantisation.

B. Quadir algorithm

The key insight of the Quadir algorithm is to reduce the
quantisation error by considering the existence of quantisation
during dimensionality reduction. In other words, rather than
minimising the information loss in dimensionality reduction,



we directly minimise the information loss for the data trans-
mitted to the FPGA platform. In particular, we directly solve
the linear case for the optimisation problem in Equation 2:

B°,C° = argming ¢||X — E(XB)C||2 3)

The optimisation problem is challenging because the optimi-
sation objective is not differentiable with respect to B. We
propose an alternative form to facilitate optimisation:

B°,C° = argming G c(X) (@)
where

Gp.o(X) =X =UCls
+ AU =EWV)|l2 +pllV = XBll2 (5

where U € L™*" and V € H"*" are latent variables; A and
p are positive penalty coefficients. With these settings, the
optimisation problem in Equation 4 becomes a transformed
version of the original problem in Equation 3 where the
optimisation objective G ¢(X) approximately enforces the
constraints on U and V.

We design Quadir, an alternating direction algorithm [8], to
solve the optimisation problem. In the optimisation problem
defined in Equation 4, when three out of the four variables B,
U,V and C are available, there is a polynomial-time procedure
to update the remaining one. The algorithm keeps updating the
four variables using the following rules:

U= (XCT + ) Z5(V))(CCT + AI)7? (6)
1

B=Xx'v (8)

C=U'x 9)

where At is the Moore-Penrose inverse [9] of A and I € R"*"
is an identity matrix. The algorithm terminates when the error
Gp.c(X) stops decreasing. It is only necessary to run the
Quadir algorithm once for a data matrix X to produce B°. It
is then possible to project data with a similar distribution to
X without rerunning Quadir.

IV. EVALUATION

We compare Quadir with the most widely used dimension-
ality reduction method, principal component analysis (PCA),
regarding the information preservation ability. A dimensional-
ity reduction method that produces a small data reconstruction
error is likely to support high accuracy in data analysis
tasks in general. On the other hand, the major objective
of using low-dimensional data in FPGA-based data analysis
is to save bandwidth. Since the bandwidth depends on the
remaining dimensionality r, we study how the reconstruction
error changes with 7.

We use platforms listed in Table I in this evaluation. Specif-
ically, we calculate the maximum value of r for each platform
when the FPGA runs in a fully-pipelined manner at 100MHz
without IO stalls. For the Intel Arria 10 GX development Kkit,
we measure the throughput by profiling an OpenCL kernel

TABLE I
EVALUATED FPGA PLATFORMS FOR DATA RECONSTRUCTION

FPGA

Xilinx V7-XC7VX690T
Xilinx UltraScale+ VU9P
Intel 10AX115S2F4511SG
Intel SSGXEATN2F45C2

Bandwidth

9.2 GB/s [10]

8.0 GB/s [11]

5.1 GB/s (measured)
2.9 GB/s [12]

Platform

Alpha Data 7V3
Amazon EC2 F1
Arria 10 GX DK
Stratix V DE5-Net

compiled with the Intel FPGA SDK for OpenCL 19.4. The
kernel calculates the weighted sum of the input data. The
bandwidth we achieve is 5.1 GB/s, which is less than 5.8
GB/s reported in [13]. For the other three platforms, we use
bandwidth data reported in [10], [11], [12].

We implement the Quadir algorithm and the PCA algorithm
using Python 3.7 and run them on a workstation with an Intel
Core 15-9400F CPU and 32GB of DDR4 memory. We use
10% of the data points to determine the parameters A and p
via cross-validation. In all experiments with different values
of r, the longest execution times for the Quadir algorithm
and the PCA algorithm are respectively 47 seconds and 6
seconds across all experiments in this study. In other words,
the two algorithms bring little overhead to the design cycle
since they take significantly less time than the compilation of
FPGA kernels. As a result, we do not analyse the execution
time of the dimensionality reduction algorithms in detail.

We use a random data matrix for this experiment. The size
of the data matrix is 3000 x 1000. We plot the recovery error
against the remaining dimensionality r € [5..100] for 6-bit,
8-bit and 10-bit fixed-point numbers in Figure 2. Besides,
we plot the maximum dimensionality that the four FPGA
platform can achieve as vertical lines in the figure. We also
run experiments for 4-bit quantisation, but we omit the results
since both algorithms can only produce sensible results outside
the tested range of 7.

A major observation is that Quadir incurs less data recon-
struction error than PCA with the same remaining dimen-
sionality 7 in general. In other words, low-dimensional data
produced by Quadir tend to support higher accuracy than PCA
for FPGA-based data analysis with the same bandwidth usage
in general. There are a few cases in 6-bit quantisation where
PCA achieves a slightly lower error than Quadir. Still, these
points are of little interest since the error level in these cases
is higher than the smallest error in 8-bit quantisation with the
lowest dimensionality » = 5. In other words, the designer
should use more bits because 6-bit quantisation produces
higher errors with higher bandwidth.

The error curves for PCA become horizontal lines when
r is sufficiently large. The curves do not drop because the
quantisation procedure brings significant information loss.
Since PCA is unaware of the quantisation procedure, it is
unable to take actions to counter the loss. On the contrary,
the error for Quadir continues to decrease since the Quadir
algorithm reduces the error considering quantisation.

Another observation is that the two Intel devices do not
benefit much from Quadir, while the two Xilinx devices benefit
significantly. However, the apparent correlation between the
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FPGA vendor and the benefit of Quadir is a coincidence. REFERENCES

The reason behind the correlation is that the Intel devices in
this evaluation have lower bandwidth than the Xilinx ones.
Therefore, the maximum remaining dimensionality r that the
Intel devices can reach is lower than the Xilinx ones. The
correlation does not hold for all Intel devices. For example,
we expect that an Intel Stratix 10 GX FPGA development kit
with a PCIe Gen 3 x16 interface could receive similar benefits
to the Alpha Data 7V3 platform.

V. CONCLUSIONS AND FUTURE WORK

This paper concerns the preparation of low-dimensional
low-precision (LDLP) data for FPGA-based data analysis.
A straightforward approach for LDLP data preparation is
to apply dimensionality reduction followed by quantisation.
However, this method can incur much accuracy loss in the
data analysis system that uses the data. This paper proposes
that the major problem behind the accuracy loss is that the
dimensionality reduction algorithm is unaware of the quanti-
sation procedure applied later. To solve this problem, we pro-
pose Quadir (Quantisation-Aware DImensionality Reduction),
a dimensionality reduction algorithm based on alternating-
direction optimisation. A key feature of Quadir is that the
algorithm reduces the potential error incurred in the quantisa-
tion procedure and takes precautionary measures to reduce the
error during dimensionality reduction. Our experimental study
on data reconstruction shows that the LDHP data matrices
produced by Quadir preserve more information from the
original data than PCA after quantisation in general.

There are two directions for future work. The first direction
is to evaluate the impact of Quadir on real-life data analysis
tasks. The second direction is to develop a design automation
tool that finds the optimal remaining dimensionality r using
samples from data and constraints on hardware resources.

VI. ACKNOWLEDGEMENTS

The support of UK EPSRC (grant number EP/L016796/1,
EP/1012036/1, EP/L00058X/1, EP/N031768/1 and
EP/K034448/1) and Intel is gratefully acknowledged.

[1]

[2]

[3

[t}

[4]

[5]

[6

=

[7]

[8]

[9]
[10]

(11]

[12]

[13]

K. Rujirakul, C. So-In, B. Arnonkijpanich, K. Sunat, and S. Poolsan-
guan, “PFP-PCA: parallel fixed point PCA face recognition,” in 2013
4th International Conference on Intelligent Systems, Modelling and
Simulation. 1EEE, 2013, pp. 409-414.

J. P. Cunningham and Z. Ghahramani, “Linear dimensionality reduction:
Survey, insights, and generalizations,” Journal of Machine Learning
Research, vol. 16, no. 1, pp. 2859-2900, 2015.

D. Fernandez, C. Gonzalez, D. Mozos, and S. Lopez, “FPGA implemen-
tation of the principal component analysis algorithm for dimensionality
reduction of hyperspectral images,” Journal of Real-Time Image Pro-
cessing, pp. 1-12, 2016.

C. He, H. Fu, C. Guo, W. Luk, and G. Yang, “A fully-pipelined hardware
design for Gaussian mixture models,” IEEE Transactions on Computers,
vol. 66, no. 11, pp. 1837-1850, 2017.

B. D. Rouhani, E. M. Songhori, A. Mirhoseini, and F. Koushanfar, “Ss-
ketch: An automated framework for streaming sketch-based analysis of
big data on FPGA,” in 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines. 1EEE, 2015, pp.
187-194.

J. Meng, C. Guo, N. Gebara, and W. Luk, “Fast and accurate training
of ensemble models with FPGA-based switch,” in 2020 IEEE 31st
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). 1EEE, 2020, pp. 81-84.

S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “ESE: Efficient speech recognition engine with sparse
Istm on FPGA,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp.
75-84.

S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. ~ Now
Publishers Inc, 2011.

A. Ben-Israel and T. N. Greville, Generalized inverses: theory and
applications.  Springer Science & Business Media, 2003, vol. 15.
Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei,
“A quantitative analysis on microarchitectures of modern CPU-FPGA
platforms,” in Proceedings of the 53rd Annual Design Automation
Conference, 2016, pp. 1-6.

J. Choi, R. Lian, Z. Li, A. Canis, and J. Anderson, “Accelerating
Memcached on AWS cloud FPGAs,” in Proceedings of the 9th Interna-
tional Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, 2018, pp. 1-8.

I. Firmansyah, Y. Yamaguchi, and T. Boku, “Performance evaluation of
Stratix V DE5-Net FPGA board for high performance computing,” in
2016 International Conference on Computer, Control, Informatics and
its Applications (IC3INA). 1EEE, 2016, pp. 23-27.

K. Kang and P. Yiannacouras, “Host pipes: Direct streaming interface
between opencl host and kernel,” in Proceedings of the 5th International
Workshop on OpenCL, 2017, pp. 1-2.



