
Overview

TL; DR: Make the structure of the graph private in addition 
to the privacy of node features and labels Dataset Classes Nodes Edges Features Average Degree

Cora 7 2708 5278 1433 3.90

Pubmed 3 19717 44324 500 4.50

Facebook 4 22470 170912 4714 15.21

LastFM 10 7083 7842 7842 7.29
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To select the amount of noise to add to neighborhood data of each 
node, we propose -selector algorithm, where  is the percentage 
of noise to be added
For each node:
1. Calculate  percentage of degree
2. Sample  percent nodes from a set of nodes except the actual 

neighborhood
3. Return the nodes sampled in step 2 along with the actual 

neighborhood
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Method: EP-GNN Dataset Statistics 
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Our Contribution

-selectorλ

Randomization

-Propk

To add noise, take the set of nodes and apply randomized 
response (RR) as follows:

p(a′ |a) =
eϵ

1 + eϵ if a′ = a
1

1 + eϵ otherwise

Added noise is removed to some extent by using aggregation of 
the node features over the neighborhood of a node. This 
aggregation is performed in -Prop.k

hk
"(v) = Aggregate ({hk−1

"(u), ∀u ∈ "(v) − {v}})

Privacy in node features and labels: Earlier methods [1] provide 
ways to privatize the node features by using multi-bit mechanism 
and node labels by applying RR.

Privacy in our model is controlled by  and . Addition of more 
noise, makes the data more private, but leads to drop in accuracy 
in the task the GNN addresses.
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Local Differential Privacy:

where  is the privacy budget.
The noise is added at the users’ side before passing on the 
information to the server where it is given to a Graph Neural 
Network.
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