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Our Contribution

TL; DR: Make the structure of the graph private in addition 4 X ’ a ) y
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Local Differential Privacy: . :
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node, we propose A-selector algorithm, where A 1s the percentage
of noise to be added
For each node:
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aggregation 1s performed 1n k-Prop.

Privacy 1n our model 1s controlled by 4 and €. Addition of more
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and node labels by applying RR.




