

Overview

to the privacy of node features and labels

Local Differential Privacy:

where ϵ is the privacy budget.

Network.

of noise to be added

For each node:

- Calculate λ percentage of degree
- neighborhood
- neighborhood

Edge-Level Privacy in Graph Neural Networks

Rucha Bhalchandra Joshi and Subhankar Mishra NISER Bhubaneswar and HBNI Mumbai, India

Method: EP-GNN

$$a' = a$$

otherwise

$$\mathcal{N}(v) - \{v\}\}\Big)$$

and node labels by applying RR.

ways to privatize the node features by using multi-bit mechanism

Dataset Statistics

Dataset	Classes	Nodes	Edges	Features	Average Degree
Cora	7	2708	5278	1433	3.90
Pubmed	3	19717	44324	500	4.50
Facebook	4	22470	170912	4714	15.21
LastFM	10	7083	7842	7842	7.29

Privacy in our model is controlled by λ and ϵ . Addition of more noise, makes the data more private, but leads to drop in accuracy in the task the GNN addresses.

Reference:

[1] Sajadmanesh, Sina and Daniel Gática-Pérez. "Locally Private Graph Neural Networks." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (2021): n. pag.

Results