

Sufficient Conditions for Cooperation Between Rational Agents

Anthony DiGiovanni and Jesse Clifton

INTRODUCTION

• Cooperative AI: design AIs that achieve socially efficient outcomes when making decisions for humans

What are all possible reasons even very intelligent
 Als might not cooperate
 (i.e., reach Pareto efficiency)?

MORE DETAILS

Conditional commitment devices

- (Including commitment to following randomization)
- My device commits me to cooperate with you *if and only if* your device is one that would cooperate with

- Some causes of cooperation failure ("conflict") are well-studied
- AIs could overcome these with cooperation-enabling technologies like conditional commitment devices
- On-equilibrium causes: not exhaustive!
- Goals:
- Taxonomy of all causes
 of conflict including ra tional off-equilibrium play
- 2. Framework for on-equilibrium causes identifying which cooperation-enabling technologies can solve them

First exhaustive taxonomy of causes of rational conflict

Cooperation-enabling technologies help, but aren't sufficient me

- → Efficient equilibrium always exists without private information [Kalai et al., 2010]
- Implementation?
- Robust program equilibrium: Programs recursively call each other + random cooperation [Oesterheld, 2019]
- Conditional disclosure devices
- My device commits me to share my private info *if and only if*:
- 1. Your disclosure device is one that would share your

FRAMEWORK AND EXAMPLES

• Credible commitment inability: All Nash equilibria inefficient + my cooperation can't be made conditional on yours

- *Ex:* Prisoner's Dilemma
- Non-disclosure of private information: My uncertainty about you makes cooperation irrational + you can't/won't resolve that uncertainty
- *Ex:* Seller hides their valuation of a product
- **Miscoordination:** We both try to maximize expected

Solving coordination problems is a key priority for Cooperative AI

- private info
- 2. Your commitment device is one that would cooperate with me
- → Efficient equilibrium always exists even with private information [DiGiovanni and Clifton, 2022]
- Implementation?
- Modular AI architecture,
 "utility function" separate
 from module implementing the commitment
- Secure simulator where
 AIs verify each other's code
 + can't leak unauthorized
 info

utility by playing the same
equilibrium, but our beliefs
lead to playing strategies
from different equilibria **– Pure coordination fail-**ure: We both prefer the

same outcome

* *Ex:* Schelling NYC game

Bargaining problem: The best possible outcome for me isn't the best for you
* *Ex:* Chicken

FUTURE DIRECTIONS

• Causes of more or less severe inefficiency

Safe Pareto improvements
[Oesterheld and Conitzer,
2021]: prevents particularly bad inefficiencies

• Interactions between different causes of inefficiency

Take a picture to download the full paper