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Overview

Motivated by the need of having safe autonomous
systems, especially in safety-critical scenarios,
we introduce ROAD-R [1], the first real-world
dataset equipped with logical requirements ex-
pressed as logical constraints.
We show that modern neural networks fail to sat-
isfy the safety norms captured by the require-
ments and that we can develop methods to ac-
count for these constraints and simultaneously
increase the models’ performance.
The methods and ideas presented here are based
on our paper “ROAD-R: The Autonomous Driving
Dataset with Logical Requirements” [1] and on
preliminary ongoing work.

Example

Deep neural networks are increasingly becom-
ing indispensable tools for autonomous systems,
however, they might exhibit unexpected behaviour,
which could result in catastrophic outcomes.

To avoid the above, we advocate for the intro-
duction of requirements elicitation as a stan-
dard step in deep learning models develop-
ment.

Having requirements as additional
input information could help making
safer decisions!

RedTrafficLight → ¬ GreenTrafficLight

The ROAD-R dataset

ROAD-R is the first publicly available dataset for
autonomous driving manually annotated with re-
quirements.

It extends the autonomous driving dataset ROAD
[2] with 243 logical constraints expressing facts
such as that a traffic light cannot be green and
red at the same time.

Modern NNs fail to satisfy safety norms

We picked 6 SOTA temporal feature learning ar-
chitectures and incorporated them into the 3D-
RetinaNet object detector [2]. After evaluating
each model on ROAD-R, we noticed that:
▶ most predictions violated at least one

requirement,
▶ and about 99% of the predictions violated

at least one constraint, when using 0.9 for
the threshold over which the prediction for a
label becomes positive.

Using logic to guide learning

We use logical constraints in two complementary
ways to guide learning:
▶ to constrain the loss function of the neural

networks during training,
▶ to correct the outputs of the neural networks

during inference.

Constraining the loss

Pros: the domain knowledge is injected at training
time and neural networks can learn from it.

Cons: no guarantee that constraints are satisfied.

How to integrate the constraints in the loss?

Loss = Lossloc + Losscls + Lossrequirements,

where Lossloc is the localisation loss of the
candidate bounding boxes, Losscls is the clas-
sification loss, and Lossrequirements is a regu-
larisation term indicating the degree of satis-
faction of the relaxed constraints.

Correcting neural outputs during inference

Pros: guaranteed constraint satisfaction.

Cons: the neural network cannot learn from the
domain knowledge during training.

Output correction as a PMaxSAT problem

Each label is assigned a positive cost for mak-
ing a correction. The problem is then finding
the optimal correction of a prediction and can
be formulated as a PMaxSAT problem aiming to
minimise the total cost of correcting all labels.

It is better to correct the labels for which the
model makes a lot of mistakes, so we assign
the average precision of a label as its cost!
c1 = APTL

c2 = APRedTL

c3 = APGreenTL

Results

Comparison of the frame mean average precision
(f-mAP) between the standard models and the
same models trained with the requirements loss
and with post-processing.

Model Baseline With Requirements
C2D 27.57 28.16 (+0.59)
I3D 30.12 31.21 (+1.09)
RCGRU 30.78 31.81 (+1.03)
RCLSTM 30.49 31.65 (+1.16)
RCN 29.64 31.02 (+1.38)
SlowFast 28.79 28.98 (+0.19)

Logic-guided semi-supervised learning

Additionally, we explored how logic can help when
little annotated data is available and developed an
approach for multilabel semi-supervised learning
which:
▶ generates pseudo-labels for unlabelled data,
▶ and uses logic to improve their robustness.

Our method combines the principles of neurosym-
bolic integration with the standard self-training
paradigm, where unlabelled samples are as-
signed pseudo-labels and are then treated as
annotated data during training.
Below we show the preliminary results for different
percentages of annotated ROAD-R data using
3D-RetinaNet with the RCGRU temporal feature
learning architecture.

Labelled Data (%) Baseline Logic-guided SSL
10% 15.12 21.98 (+6.86)
20% 20.22 24.98 (+4.76)
50% 27.08 27.88 (+0.80)
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