
CloudSafetyNet: Detecting Data Leakage between
Cloud Tenants

Christian Priebe
TU Braunschweig

Divya Muthukumaran
Imperial College London

Dan O’Keeffe
Imperial College London

David Eyers
University of Otago

Brian Shand
NCRS, Public Health England

Ruediger Kapitza
TU Braunschweig

Peter Pietzuch
Imperial College London

ABSTRACT
When tenants deploy applications under the control of third-party
cloud providers, they must trust the provider’s security mechanisms
for inter-tenant isolation, resource sharing and access control. De-
spite a provider’s best efforts, accidental data leakage may occur
due to misconfigurations or bugs in the cloud platform. Especially
in Platform-as-a-Service (PaaS) clouds, which rely on weaker forms
of isolation, the potential for unnoticed data leakage is high. Prior
work to raise tenants’ trust in clouds relies on attestation, which
limits the management flexibility of providers, or fine-grained data
tracking, which has high overheads.

We describe CloudSafetyNet (CSN), a lightweight monitoring
framework that gives tenants visibility into the propagation of their
application data in a cloud environment with low performance over-
head. It exploits the incentive of tenants to co-operate with each
other to detect accidental data leakage. CSN transparently adds
opaque security tags to a subset of form fields in HTTP requests,
using a client-side JavaScript library. Socket-level monitors main-
tain a log of observed tags flowing between application compo-
nents. Tenants retrieve their logs and identify foreign tags that in-
dicate data leakage. To check the correct operation of CSN, tenants
send probe requests with known tags and verify that monitors are
logging correctly. Using an implementation of CSN deployed on
the OpenShift and AppScale PaaS platforms, we show that it can
discover misconfigurations and bugs with a negligible performance
impact.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information flow controls; C.2.4
[Distributed Systems]: Client/Server

Keywords
Cloud; Inter-tenant isolation; Data leakage detection; Socket-level
monitoring

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCSW’14, November 7, 2014, Scottsdale, Arizona, USA.
ACM 978-1-4503-3239-2/14/11.
http://dx.doi.org/10.1145/2664168.2664174.

1. INTRODUCTION
Cloud computing enables organisations to deploy scalable web

applications with little upfront investment but it removes control:
organisations must trust cloud providers with their data and rely
on the correct operation of security mechanisms for inter-tenant
isolation, resource sharing and access control. Surveys show that
organisations are more likely to adopt a cloud model if they are
given assurances that their data remains secure [74, 48].

While cloud providers have an incentive to protect tenant data,
they must correctly configure, deploy and manage a complex cloud
software stack. The rise of reported occurrences of data leakage in
cloud environments [15] shows that accidental misconfigurations
due to human error or software bugs in cloud platforms are a real
threat to tenant data. It is challenging for tenants, however, to find
out what security mechanisms cloud providers have in place [91].
In particular, Platform-as-a-Service (PaaS) clouds, such as Google
App Engine [36] or OpenShift [62], hide internal deployment de-
tails [18], giving tenants no visibility into the PaaS platform on
which to anchor their trust.

From a security perspective, PaaS platforms are more vulnera-
ble to data leakage because they typically rely on weaker forms
of inter-tenant isolation, such as process containers [54, 66] or
application-level virtualisation [19, 38]. They also have shared
components used by multiple tenants such as load-balancers [11]
and data stores [40]. While hypervisor-controlled virtualisation
with virtual machines (VMs) provides hard isolation boundaries be-
tween tenants, PaaS platforms can leak tenant data through simple
misconfigurations such as incorrectly set-up namespaces, isolation
failure for shared components or incorrect request routing.

Due to the opaque nature of PaaS clouds, tenants cannot discover
when data leakage has occurred and instead must depend on the
security procedures of cloud providers. Cloud providers, however,
are business-driven and may delay alerting affected tenants of a
security incident because they want to protect their reputation or
carry out a complete damage assessment first [55, 77].

Previous work has attempted to mitigate data leakage in clouds
by offering stronger security guarantees [80, 81]. Such approaches,
however, remove control from cloud providers over their infrastruc-
ture and thus struggle to gain widespread adoption. Techniques for
data flow tracking [68] add independent mechanisms for observing
the flow of data through a cloud environment and can mitigate data
disclosure before it occurs. The drawback is that they incur high

overheads when tracking data at a fine granularity [68] and typi-
cally require changes to the cloud platform and applications [60].

In contrast, we observe that, since failures of inter-tenant iso-
lation potentially affect multiple tenants in a cloud environment,
there is an incentive for tenants to collaborate for detecting data
leakage. Collaborative approaches for threat detection have proven
successful in various domains, including network security [49], fi-
nance [30] and retail [72], because they offer benefits to participat-
ing organisations, such as reduced individual costs.

Instead of preventing data leakage, our goal is therefore to pro-
vide a monitoring system that can discover data leakage between
tenants in a PaaS cloud. The system should (a) not interfere with
the management operations of cloud providers in order to be easily
deployable with today’s PaaS platforms; (b) not have a high perfor-
mance impact in terms of the throughput and latency of processed
web requests; (c) be robust against misconfigurations even if they
are caused by the cloud provider; and (d) enable tenants to do dam-
age control after a data leakage incident.

We describe CloudSafetyNet (CSN), a collaborative monitoring
system that examines the data flows of distributed tenant applica-
tions in a PaaS cloud in order to discover occurrences of data leak-
age. The idea behind CSN is that each tenant includes security tags
in a subset of its client requests in a web application, which are
then logged by a set of network monitors, distributed throughout
the cloud environment. When tagged data breaches the isolation
boundary of a tenant and is observed by another tenant’s monitor,
it indicates data leakage. The CSN approach makes few assump-
tions about the internals of a PaaS platform and is thus compatible
with a wide range of existing platforms.

In more detail, CSN consists of three parts:
Client-side data tagging. To add security tags to data in web re-
quests, CSN uses a JavaScript library, which is imported automati-
cally as part of the client-side code of a deployed web application.
The CSN library adds opaque security tags to functionally taggable
text fields in an HTTP request, i.e. ones that are not affected by tags.
A security tag consists of an application identifier and part of the
field data, encrypted under the tenant’s public key. A subset of all
data is tagged to limit the performance impact of tag monitoring.
Socket-level tag monitoring. Tenants or the cloud provider de-
ploy a set of monitors that, through dynamic library pre-loading,
intercept TCP flows between processes of a distributed web appli-
cation on the PaaS platform. Monitors are associated with appli-
cation components, such as a tier in a multi-tier web application.
Since monitors only observe incoming and outgoing network flows
passively, they incur a low performance impact.

Each monitor records observed tags in a tag log, which is peri-
odically retrieved by the tenant. To ensure the correct operation of
monitors, tenants can issue probe requests. These requests contain
a known set of probe tags that are indistinguishable from regular
tags. A tenant can check for the existence of probe tags in their
logs to verify the correct operation of the monitors.
Inter-tenant data leakage detection. Tenants attempt to decrypt
the tags in their logs, and foreign tags that cannot be decrypted may
belong to other tenants, indicating possible data leakage. Tenants
cooperate with each other to confirm the source of leakage: they
advertise foreign tags to other tenants out-of-band, e.g. through a
mailing list, thus notifying the tenant whose data has leaked.

We deploy a prototype implementation of CSN on the Open-
Shift [62] and AppScale [14] PaaS platforms running on top of
CloudStack [17]. Using real-world web applications (Fofou [28]
and WordPress [92]), we show that CSN can detect data leakage
caused by several representative classes of misconfigurations and

PaaS
Cloud

 Isolation Group

App1

System
Support

Public Network

...
App1

System
Support

Appi

System
Support

Load
Balancer

Shared
Component
(Datastore,
Cache,...)

...

Private Network

Clients

Container

http

Figure 1: Overview of the architecture of a PaaS cloud, showing
web applications deployed in containers

software bugs. We also demonstrate that the CSN monitors incur
only a low reduction in request throughput, even with a large num-
ber of tracked tags.

2. ACCIDENTAL DATA LEAKAGE
Over the years, a wide range of PaaS platforms have been de-

veloped, including Google App Engine [36], OpenShift [62] and
CloudFoundry [16]. In a PaaS platform, As shown in Fig. 1, a PaaS
platform can host applications belonging to multiple tenants. An
application consists of distributed application components, such as
front-end web servers, application servers and database back-ends.

Each application serves a set of clients that make requests and
get responses. Data from clients is submitted through web forms,
which are translated into parameters of HTTP GET or POST request
methods to tenant applications. HTTP requests are sent to a web
server residing in the PaaS cloud.

The components of applications are deployed on a set of vir-
tualised nodes. Access to system resources such as file systems,
memory and the network needs to be segregated correctly between
different tenants. Typically this is done using a container mecha-
nism [12], such as Linux containers [54]. All containers belonging
to a given tenant form an isolation group—application data may
flow between containers within the same group but should not flow
from one group to another.

Tenants therefore want to discover any lapses in security that
may lead to such data leakage between isolation groups. A flaw
in the isolation mechanism can potentially affect any tenant—this
provides an incentive for tenants to cooperate in order to detect data
leakages.

2.1 Threat model
As business entities, cloud providers are conscious of their rep-

utation among tenants. It is therefore in their interest to follow
security best practices when managing their infrastructure to avoid
data leakage between tenants. However, despite their best inten-
tions, cloud providers are not immune to security incidents. Past
press coverage [25, 69] shows that they are susceptible to occur-
rences of data leakage caused by (i) accidental misconfiguration
due to human errors or (ii) unknown software bugs as part of the
PaaS platform (see §2.2).

In the event of a data leak occurring, however, the interests of
the cloud provider are at odds with those of the affected tenants—
cloud providers may delay the notification of data leaks to their
tenants either intentionally to protect their reputation or they may
underestimate the importance of the incident altogether, not priori-
tising actions appropriately [74]. This prevents tenants from taking
urgent remedial action, e.g. contacting financial institutions after
credit card data was released.

To describe this threat model, we term cloud providers to be “im-
perfect and selfish” in dealing with security—i.e. susceptible to ac-
cidental data leaks and selfish about revealing such leaks to tenants.
Note that we do not assume that cloud providers actively attempt
to disclose tenant data. Since they have full control over the PaaS
platform, tenants could only protect their data by encrypting it [75],
but this would require changes to existing web applications, reduce
performance and introduce complex key management issues.

In addition, we do not target the case of an active adversary who
tries to exploit bugs in the cloud platform or the applications in
order to steal data. This is an orthogonal problem, and these types
of attacks can be dealt with by using existing boundary security
approaches, such as firewalls.

Our approach can defend against malicious tenants or clients
who introduce false positives into the leakage detection approach
to slander the cloud provider (see §3.4). We cannot deal with the
case in which multiple tenants collude to create artificial data leaks.
Instead, by using a third-party service to authenticate tenants (see
§3.3), we make such attacks harder to carry out, e.g. by preventing
Sybil attacks.

2.2 Misconfigurations and bugs
Cloud providers manage the servers, network and storage that are

necessary to deploy a PaaS platform. Next we describe represen-
tative, previously reported, classes of accidental misconfigurations
or software bugs in PaaS platforms. Such issues may result in ten-
ant data from one application leaking to another application, to the
PaaS platform or the public Internet.
Isolation failure between containers. Containers offer weaker
isolation than traditional OS-level VMs but also incur lower over-
head by sharing portions of the host kernel and OS instance. Linux
containers [54] and its derivative Docker [22] are used by a new
crop of PaaS platforms [20, 23, 64], while other platforms [65, 16,
38] use custom container technology.

To support containers, globally-visible resources, such as pro-
cess IDs, file systems and network interfaces, must be wrapped in
a namespace layer, which provides each container with its own iso-
lated view. Some aspects of Linux kernel namespace isolation are
still evolving [51]—this lack of maturity carries an increased risk
of undiscovered bugs in the software [26].

Accidental misconfiguration of container mechanisms makes it
easy to violate the isolation boundaries between tenants. For exam-
ple, OpenShift uses the pam_namespace mechanism [59] to pro-
vide poly-instantiation (i.e. multiple instances) of the /tmp and
/var/tmp directories. Different applications on the same node can
therefore use these directories as they normally would without in-
terfering with each other.

The pam_namespace mechanism relies on a configuration file
in /etc/security/namespace.d/ to determine which directories
need to be poly-instantiated. For example, the following config-
uration creates separate application-specific instances of the tmp
directories under $HOME/.tmp/: (lines are wrapped for display)

/tmp $HOME/.tmp/ user:iscript =/usr/sbin/oo-namespace -init
root ,adm ,apache

/var/tmp $HOME/.tmp/ user:iscript =/usr/sbin/oo-namespace -
init root ,adm ,apache

If two applications created identical files under /tmp, they would
thus not observe each other’s files. A configuration mistake, such
as omitting the above lines, however, would result in shared vis-
ibility of the files. If there were two applications that both ac-
cessed /tmp/log.txt without poly-instantiation, they would read
each other’s data, leading to an inter-tenant data leak.

Some PaaS platforms, such as Google App Engine and App-
Scale, achieve container isolation by applying white-lists to Java
or Python classes or methods, thus preventing access to particular
system calls [39]. Mistakes in the white-listing have resulted in
inter-tenant data leaks, e.g. through access to the file system [10].
Isolation failure in shared components. To save resources, PaaS
platforms, such as AppScale and Heroku, share application com-
ponents, including load-balancers, caches and data stores, across
tenants [38]. Shared components cannot rely on container isolation
and instead must implement their own isolation mechanisms, e.g.
based on namespace identifiers. For example, AppScale initially
lacked namespace isolation for its memcached service, with the ex-
pectation that users want to share data between applications. It was
pointed out that this could lead to inter-tenant data leakage [9].
Incorrect web request routing. A major benefit of PaaS platforms
is that they allow applications to be scaled automatically or man-
ually [63] by (de-)allocating resources based on the workload. In
response to workload surges, the PaaS platform deploys the appli-
cation on additional containers and uses a load-balancer to route
requests between them.

Subtle bugs in the request routing logic may lead to unintended
data leakage. For example, Amazon’s Elastic Load Balancer [5],
which routes requests dynamically between EC2 server instances,
returns an IP address from a global pool of addresses. When an
application is scaled down, the IP addresses are returned to the pool
to be used by other applications. Due to DNS resolution caching,
clients that ignore the time-to-live (TTL) set by Amazon continue
using the old IP address, and their requests may be routed to the
application of another tenant.
Incomplete data deletion. The file system accessible to applica-
tions can breach tenant isolation on PaaS platforms. When data is
deleted by an application, it must be eliminated completely from
all disks. Recently an incident of data leakage was reported for a
cloud provider, which did not scrub block devices used by VMs.
This permitted application components of future tenants to read the
data of prior tenants [21].
Incorrect access control configuration. Access control mecha-
nisms, such as SELinux [71] and AppArmor [8], are used by PaaS
platforms to enforce access policies for containers when using files
and processes. While permitting expressive policies, these policies
can be complex to configure. A mistake in a policy configuration
file may result in the incorrect labeling of resources, thus allow-
ing data leaks. Cloud providers may also turn them off when they
interfere with legitimate operations of tenant applications [47, 84].

All of the above cases involve some aspect of a breakdown of
isolation between containers: data leaves the confines of one ap-
plication’s container and enters the container of another applica-
tion. To detect such leaks, cross-container data propagation must
be tracked to determine whether or not it constitutes a data leak.

2.3 Requirements and existing solutions
We outline the requirements of a solution that detects acciden-

tal data disclosure in PaaS clouds and describe why existing ap-

proaches do not satisfy all of these requirements. We discuss re-
lated work in more detail in §6.
R1: Ease of deployment. Any solution that detects data leakage
should be easily deployable in today’s PaaS environments. Existing
information flow tracking (IFT) systems [83] can track the propa-
gation of data through a system but require substantial changes to
the OS or cloud stack, or make specific assumptions about the ar-
chitecture of applications [52, 98, 58]. Approaches for remotely
verifying the software installed on cloud platforms based on trusted
hardware [80] require costly hardware and software upgrades in a
cloud environment.

Another challenge is that existing PaaS platforms differ in the
degree of control that tenants can exert over the underlying infras-
tructure. For example, some platforms permit tenants to execute
arbitrary processes whereas others restrict actions through prede-
fined APIs. This makes it difficult to determine how, where and by
whom a data leakage solution can be deployed.

Our solution for data leakage detection should be compatible
with existing PaaS platforms and web applications, and require
minimal per-application modifications.
R2: Low performance impact. To convince cloud providers and
tenants to adopt a given solution, it should not reduce substantially
the performance of applications. Existing solutions typically try
to achieve complete isolation between tenants and thus pay a high
performance cost. For example, fine-grained IFT [68, 83] can re-
duce execution performance by orders of magnitude. Accountable
VMs [42] can offer tenants assurance that their VMs execute cor-
rectly but require tenants to have local resources in order to repro-
duce all execution. Approaches that encrypt all tenant data can give
strong security guarantees but incur costs of encryption and com-
putation on encrypted data [35, 75].

We argue that it is acceptable to offer weaker security guarantees,
which in turn have a negligible performance impact. Our solution
should not attempt to prevent all data leakage but instead discover
the majority of instances in a timely fashion.
R3: Robustness against misconfiguration. Since our threat model
assumes that the cloud provider may introduce misconfigurations,
we cannot assume that a given solution for data leakage detection
is deployed and configured correctly. While approaches based on
trusted hardware [80] can operate in untrusted environments, they
withdraw control from the provider over their own infrastructure.

We want to provide a solution in which tenants can check the
correct operation of data leakage detection without relying on ex-
ternal hardware support. In addition, data leakage detection itself
should not jeopardise the confidentiality of data.
R4: Enable data leakage response. A tenant whose data has expe-
rienced data leakage should have a chance to respond to the incident
before it becomes public, as in the case of vulnerability disclosure.
Tenants may want to take quick remedial action, such as asking
their clients to change passwords in a timely fashion.

Our solution should therefore not expose the identity of tenants
who were affected by data leakage to other unaffected tenants.

3. CloudSafetyNet DESIGN
To meet the aforementioned requirements, we describe the de-

sign of CloudSafetyNet (CSN), a system that monitors the data flow
within a distributed tenant application on a PaaS platform to dis-
cover occurrences of accidental data leakage. The main idea be-
hind CSN is to add monitors to applications in order to capture the
propagation of a subset of all client data in network flows, which is
tagged. If the subset is sufficiently large, tagged data is likely to be
affected in the event of data leakage.

 Ingress Monitor

App1

Public Network

App1

Private Network

 Monitor

 tag (http request)
 untag (http response)

i

m m

i

m

Tenant
(T1)

Tenant
(T2)

1

App2
Tag Log Tag Log

2

3

Tag
Exchange

Client -side
tagging

Socket-level
tag monitoring

Inter-tenant data leakage detection

Figure 2: Design of the CSN monitoring system

The monitors may be deployed either by cloud providers or ten-
ants depending on the specific PaaS platform. The cloud provider
would deploy monitors in platforms, such as AppScale, in which
tenants have no control over the underlying infrastructure beyond
the ability to upload their application code and set configuration
options. Other PaaS platforms, such as OpenShift, are closer to
infrastructure-as-service (IaaS) offerings—tenants exert greater con-
trol over the infrastructure. In such cases, they can deploy monitors
independently, without cooperation from the cloud provider.

Tenants then cooperate with each other to discover data leakage.
Based on collaborative efforts in other fields, such as security threat
information sharing [31, 89, 72], it has been shown that even com-
petitive tenants find it mutually beneficial to share information that
helps identify data leakage in a cloud platform. We use a trusted
third-party service that authenticates tenants and allows them to
exchange information about data leaks, similarly to software vul-
nerability databases [1].

As shown in Fig. 2, a deployment of the CSN system in a PaaS
cloud consists of three main parts, which we introduce below:
(1) Client-side data tagging. Form-field data in HTTP requests
is appended automatically with opaque security tags at the client-
side. This is done using a JavaScript library that is imported as
part of the client-side code of a deployed web application. Tags
indicate to a monitor what to log, and they are encrypted with a
tenant’s public key. To avoid having to modify web applications in
order to support in-band tags, CSN adds tags to a subset of form
fields, which are functionally taggable, as explained in §3.1. By
tagging only a subset of all data, the overhead of data flow tracking
is reduced (requirement R2).
(2) Socket-level tag monitoring. Socket-level monitors intercept
network flows between processes of a distributed web application
on the PaaS platform. Monitors log the tags that they observe in a
tag log. If foreign tags belonging to other tenants are recorded in a
tag log, it may indicate inter-tenant data leakage.

Tenants can periodically issue probe requests, which contain a
known set of probe tags. Since these probe tags should be present
in the tag logs, they allow tenants to check if monitors operate cor-
rectly. This makes CSN robust against accidental misconfiguration
by the cloud provider (requirement R3).
(3) Inter-tenant data leak detection. To detect foreign tags in
their tag logs, tenants try to decrypt the tags. If the decryption fails,
it indicates that the tag belongs to another tenant and must have

Tag Log:
1. TAG1
2. TAG2

TAG1

 Detect Foreign Tags:
 a) Cannot decrypt TAG2 using SKA
 b) TAG2No ingress entry for

TAG2

Tag Log:
1. TAG2

Tag
Exchange:

Data
Leak:

TAG2

TAG2 + sign

Client Ingress
Monitor

Other
Monitors

Other
Monitors

Ingress
Monitor Client

3

5 6 Detect Data Leaks:
a) Verify signature
b) Decrypt TAG2 with SKB; get app-idB

Tenant A Tenant B

TAG2

TAG1:
ENC(PKA, {app-idA, data-frag})

Tag Log:
1. TAG2 (ingress)

TAG2:
ENC(PKB, {app-idB, data-frag})

Tag Log:
1. TAG1(ingress)

TAG1

4

2
1

Figure 3: Tagging, logging and data leakage detection in CSN

breached the isolation group to have been observed by a monitor.
Tenants exchange such foreign tags with each other out-of-band in
order to confirm the source of data leaks cooperatively.

Fig. 3 illustrates the overall process of tagging, monitoring and
leakage detection in a sample scenario with two tenants, tenant A
and tenant B. The individual steps are discussed in detail in the
following sections.

3.1 Client-side tagging
Clients tag form-field data in web requests, which enables mon-

itors to observe how this data propagates within the PaaS plat-
form (see Fig. 2). The tagging approach is driven by the require-
ment that we want to make few if any changes to distributed web
applications (requirement R1). As a result, CSN is limited to track-
ing form-field data that we call functionally taggable, which is de-
fined by two conditions on how the application uses the data:

DEFINITION 1 (FUNCTIONALLY TAGGABLE). Data D from
a form field is considered functionally taggable in application A if
(1) D is not modified by A and (2) appending data to D does not
change the outcome of any operations performed on D by A .

Tags are constructed to be unique, i.e. they have low probabil-
ity of occurring naturally as part of client requests. This means
that applications can perform operations such as keyword searches
on tagged data. For example, WordPress lets users create blogs
through a web form with fields for “topic” and “content”. The
only operations performed on data in both fields is keyword-based
search, making both fields candidates for tagging. On the other
hand, fields that store dates or postcodes are not functionally tag-
gable because they may be subject to comparison operations.

Prior work [76] has shown that a majority of functionality in
today’s web applications is related to storing and sharing of data.
Therefore a significant amount of data processed by these applica-
tions, especially personal information, such as first and last names,
addresses and posts, are functionally taggable.
Format of tags. Tags serve two purposes. They (i) indicate to
monitors what to look for in intercepted data flows; and (ii) help
tenants identify the source of a leak. A tag has the following format:

(tag-marker, ENC(PKtenant,{app-id, data-fragment})

To keep monitors simple and efficient (requirement R2), we use
a single tag-marker that all monitors search for. The marker is a
unique string that has a low probability of occurring naturally as
part of the application data.

To pinpoint the source of a data leak (requirement R4), tags relate
back to the application and field data that they are associated with.

They contain an application identifier (app-id) to determine which
application the data belongs to, and a data-fragment of the original
form-field data. This allows tenants to understand what data leaked
and take remedial action. Since form field data can be large, only a
small fixed portion of it is stored in the data-fragment.

To protect the information in the tag, each tenant has a pub-
lic/private key pair (PKtenant, SKtenant), and the app-id and data-
fragment are encrypted with the public key of the tenant PKtenant.
Encrypting the app-id serves two purposes: (i) it allows a tenant to
determine if it can successfully decrypt the tag; and (ii) it hides the
identity of the affected tenant in the event of a data leak (require-
ment R4). Encrypting the data-fragment protects against acciden-
tal data disclosure by the CSN system itself (requirement R3), e.g.
due to exposed tag log files, and hides the data from other tenants
during tag exchange (see §3.3).
Selection of tagged fields. The number of form fields that are
tagged influences the probability with which CSN can detect data
leaks—leaks of untagged fields go undetected. On the other hand,
tagging every field impacts performance and the size of tag logs.
The fact that we consider only functionally taggable form fields
limits the number of fields that are tagged.

We assume that tenants have sufficient knowledge about their ap-
plications to determine which fields are functionally taggable. They
specify all such fields to be tagged, which maximises the probabil-
ity of data leak detection. Previous work [76] has shown that such
fields can be identified automatically using program analysis.

Fig. 3 shows two tags, Tag 1 and Tag 2, that are used to tag form-
field data of two applications belonging to tenant A and tenant B,
respectively. Tagging is done by the CSN JavaScript library in a
client’s web browser (see §4).

3.2 Tag monitoring
Monitors execute within tenant containers and observe the net-

work flows of the application. As shown in Fig. 2, each application
component, such as a web front-end or a data store, has a moni-
tor attached to it that tracks incoming and outgoing data. Monitors
examine intercepted data to search for tag-markers, as introduced
by the client-side. If a monitor observes a marker, it writes the
encrypted tag data that follows it to a tag log.

To detect a data leak, a tenant must determine if data entered its
application through valid means, i.e. through one of its designed
entry points such as a web server that accepts client requests. We
assume that leaked data does not enter through such entry points.
Monitors that are deployed at the entry points to an application are
termed ingress monitors, e.g. they observe incoming client HTTP
requests from the public network (see Fig. 2). Depending on the
application deployment, there may be multiple ingress monitors.

Fig. 3 shows the order in which tags that are introduced at the
client-side are observed, first by the ingress monitor (step 1) and
then by other monitors (step 2).
Socket-level monitoring. Our objective is to monitor all incoming
and outgoing tenant data in an application without making changes
to the application and without being tied to the specifics of a given
PaaS platform (requirement R1). We assume that data that leaks
to another tenant eventually is observed at the network level, either
as a response to a client request, or when it is processed by an
application component residing in a different container.

To detect inter-tenant data leaks, we want to know if a tag was
observed entering or leaving a particular isolation group via the net-
work. We therefore deploy monitors using socket-level interception
within each tenant container. Sockets sit at the entry and exit points
at which network data enters and leaves a container.

Tag logs. As illustrated in Fig. 3, monitors record the tags that
they observe in a tag log. It stores the encrypted portion of the
tags without further processing. This design enables monitors to
be kept deliberately simple—since they passively observe network
flows, they do not introduce a substantial overhead during applica-
tion execution (requirement R2).

Below we give an example of the entries in a tag log. It contains
the encrypted app-id and data-fragment. In addition, if a log entry
was generated by an ingress monitor, an ingress flag is set to 1 to
identify it as part of a client request from the public network:

MWRkNmUyY2VhZGQ5NWFlODUwNGI0M2UyYmFiNDEyY ... 1
NKosty42GhITQ3NW2BTODUwJGL8MKUpYrFiIEyYPP ... 0
MWRkNmUyY2VhZGQ5NWFlODUwNGI0M2UyYmFiNDEyY ... 0

Probe requests. Monitors themselves may be misconfigured or
deployed incorrectly, e.g. a cloud provider may accidentally deac-
tivate a monitor. Tenants should therefore be able to check if their
monitors operate as expected (requirement R3). They cannot assess
the correct operation of monitors by considering the tag logs alone
because they do not know the requests issued by external clients.

As a solution, tenants periodically have a special client issue
probe requests, which are valid web application requests but con-
tain a set of probe tags only known to the tenant. Probe tags lead to
a deterministic sequence of entries in the tag logs of an application.
After issuing a probe request, a tenant can check if the logs contain
the corresponding probe tags. If probe tags are missing, tenants
know that the monitors are not functioning correctly, and they can
take remedial action. From the perspective of monitors, however,
the probe tags are indistinguishable from regular tags.

The frequency of probe requests is decided by the tenant and
depends on how much they trust the correct deployment of the CSN
system, and how much of their application’s resources they can
afford to allocate towards processing of probe requests.

3.3 Data leakage detection
Tenants periodically retrieve the tag logs of all monitors that are

part of their isolation group. They audit the logs by trying to de-
crypt each log entry using their private tenant key SKtenant. A suc-
cessful decryption indicates that the tenant can see their own app-
id. If decryption fails, this tag could have leaked from another ten-
ant’s application. The tenant then has to validate that decryption
failure is due to a genuine data leak, as described below.
Validating data leaks. Since a tenant’s public key PKtenant and
app-id are known publicly, a malicious client could spoof data leak-
age to damage the reputation of a cloud provider. For example,
a malicious client of tenant A can send a request with a tag that
contains the app-id of tenant B and is encrypted using B’s public
key PKB. When tenant A is unable to decrypt the tag, it would
assume that this is a leaked tag.

To protect against this, a tenant checks if the tag was observed
by an ingress monitor. If there is a corresponding entry for the tag
with the ingress flag set, the tag originated from one of the clients
of that application and therefore does not constitute a data leak.

In Fig. 3, we see that, due to a data leak (step 3) from tenant B to
tenant A, Tag 2 is present in tenant A’s tag log. Tenant A determines
that Tag 2 is a foreign tag because the tenant is unable to decrypt it
and does not have an ingress entry for it (step 4).
Tag exchange. After a tenant discovers a foreign tag without an
ingress entry, it shares the tag out-of-band with other tenants, who
can determine if the tag belongs to their application. We propose
using a trusted third-party service that authenticates tenants and al-
low them to post data leaks in a database, which can be searched
by other tenants, similarly to vulnerability databases for software

bugs [1, 3, 2]. Authenticating tenant identities makes them reputation-
conscious and deters false claims. It also prevents a malicious ten-
ant from creating multiple identities in order to post and confirm
false data leaks, slandering the cloud provider.

In Fig. 3, tenant A shares Tag 2 through the tag exchange mech-
anism (step 5), and it is received by tenant B. Tenant B checks the
signature, decrypts the tag with its secret key SKB and finds its
own app-id (step 6). This indicates that it was the source of the
data leak.

3.4 Discussion
Does the tag log grow too large? Over time, the sizes of tag logs
will grow. Tenants can control log sizes by selecting the number
of tagged form fields. However, the actual workload can affect log
sizes beyond tenant control. For example, a SELECT query in Word-
Press may return 100 responses based on a keyword match of post
titles. If CSN tags the “title” form field, this results in 100 corre-
sponding entries in tag logs.

There are ways in which log sizes can be reduced: (i) duplicate
entries need not be stored in tag logs, because tenants need only
observe the first occurrence of a tag; and (ii) tag logs may be ro-
tated after tenants have audited them: once a tenant has checked a
tag, there is no further need to store it (unless the cloud provider
requires the log for dispute resolution).

Ingress tag entries from logs, however, must be stored for longer
because they help determine if a data leak is genuine. Typically
the number of ingress tag entries is equal to the number of unique
client requests made to an application. Since only existence testing
is required for ingress tag entries, they may be compacted using
Bloom filters [13].
Does CSN detect all data leaks? CSN detects leaks only along
monitored data paths. We made a deliberate design choice to place
monitors as part of the application components at the network level,
because, ultimately, the data must be seen at the network before
it reaches clients. For example, a file-system leak between two
colocated tenants will be detected by our approach if and when that
data reaches the network.

To gain greater visibility into data propagation in a cloud envi-
ronment, monitors may also be deployed in other parts of a PaaS
platform such as file system implementations, shared data stores,
caches, etc. This would require, however, more substantial changes
to the PaaS platform.

Even when a monitor observes network traffic between applica-
tion components, if that traffic is encrypted, the monitor is unable
to detect tagged data. In particular, with HTTPS client connections,
socket-level ingress monitors will not observe tags. Encrypted traf-
fic can be managed by intercepting communication at higher layers
of the software stack. For example, to handle HTTPS ingress com-
munication, a library pre-loading mechanism could intercept at the
TLS/SSL layer in the webserver instead of the socket level [29], or
traffic could be monitored by a reverse proxy.

Finally, CSN can only handle cases where tags propagate un-
modified with the data, including when data is exposed through a
data leak. We justified this assumption in §3.1.
Can an attacker spoof data leaks? An attacker may try to slander
the reputation of a cloud provider by spoofing a data leak using
CSN. Since all the information needed to construct a tag is public,
an attacker may act as a client of two tenant applications and try to
introduce the same data with the same tag into both applications.
As described in §3.3, we can detect such an attack using ingress
logs: when a tenant cannot decrypt a foreign tag, it validates it as a

genuine data leak by ensuring that there is no corresponding ingress
log entry.

If an attacker can gain control of a tenant, it could try to act as
a client of another tenant’s application, insert a tag into that appli-
cation and introduce the same tag into its own application out-of-
band. To prevent this attack, ingress monitors have to be extended
to add a random nonce to each observed tag. This permits tenants to
ignore foreign tags received through the tag exchange mechanism
that decrypt successfully but whose nonce does not match an entry
in their ingress logs. Preventing this attack comes at the cost of
making monitors active, thus increasing their performance impact.

The above strategy cannot defend against an attacker that is per-
mitted to gain control of multiple, colluding tenants. However, such
an attacker can only demonstrate spoofed data leaks between appli-
cations that they control and not applications of other tenants.
How many participating tenants does CSN need? The success
of CSN in detecting a given data leak depends on how pervasive
the leak is and the number of tenants participating in CSN that will
report a leak. The probability p that a data leak is reported is:

p = 1−
(

n− j
k

)/(
n
k

)
where n is the total number of tenants in the cloud environment, j
is the number of participating CSN tenants and, k is the number of
tenants affected by the leak. For example, if 15% of tenants par-
ticipate in CSN, and a given data leak affects a random 15% of the
tenants, the probability of the leak being reported is 93%. There-
fore, even with a small incremental deployment of CSN, tenants
benefit from better security.

4. IMPLEMENTATION
Our implementation of CSN consists of three main components:

(i) a JavaScript library for client-side tagging; (ii) a library that
implements socket-level monitoring; and (iii) a service for clients
to retrieve tag logs.
Client-side tagging library. To support a wide range of modern
web applications, we use JavaScript as a basis for implementing
client-side tagging of data. Our client-side tagging library has only
160 LOCs and uses the pidCrypt library [73] for encryption sup-
port needed to generate security tags. We use RSA for encryption
with a 2048-bit key and apply salt to strengthen the encryption’s
protection against cypher-text matching attacks. We assume the
use of an encryption scheme that maintains key-privacy.

Ahead of deployment of a given web application, a tenant needs
to decide on the set of fields in a web form to extend with security
tags (see §3.1). Web pages that include sensitive form fields have to
be modified as described in the following before they are deployed
as part of the tenant’s application.

The listing in Fig. 4 shows an example of an HTML page, with
the modifications to add security tags using our JavaScript library
underlined. First, the tagging library is added to a web page (line 3).
The class attribute is used to indicate that a form is subject to data
leakage detection (line 7). Form fields that should include a tag are
marked with another class annotation (lines 9–10).

The creation of security tags occurs after the form was filled with
data in a client’s web browser and is about to be submitted to the
application’s web server. Our tagging library intercepts onSubmit
events of forms that are annotated with the csn-tagged-form class
and adds security tags to annotated form fields. For this, the CSN
library has to include the tenant’s public key PKtenant and the app-
id required for generating application-relatable security tags.

1 <html>
2 <head>
3 <script_src =" csnlib.js"></script >
4 ...
5 </head>
6 <body>
7 <form action="some.php" class="csn -tagged -form">
8 <input type="text" name="title">
9 <input type="text" name="full_name"

class ="csn -tagged -field">
10 <textarea name="comment"

class ="csn -tagged -field"></textarea >
11 <input type ="submit" value="Submit">
12 </form>
13 ...
14 </body>
15 </html>

Figure 4: Use of the CSN JavaScript library for client-side tagging

Similarly, when data is returned from the web server as part
of an HTTP response, security tags must be removed from the
data. The tagging library registers a handler for DOMContentLoad
events, which are issued by the browser when a page is loaded.
Upon receiving this event, the library traverses the Document Ob-
ject Model (DOM) [24] tree and removes tags from content ele-
ments before the page is displayed.

Besides handling the transparent addition and removal of tags for
web forms, the tagging library also exposes two functions, tag()
and untag(), which developers can use to control the tagging of
non-form data explicitly, e.g. when using AJAX [34].
Socket-level monitor library. We want to provide an implemen-
tation of monitors that can observe all incoming and outgoing data
to and from a tenant container (a) independently of the specifics of
a given PaaS platform and (b) with a low performance impact. We
implement monitors as a C-library, which intercepts socket connec-
tions at a process level and monitors network streams for security
tags. This makes it easy to support existing applications without
requiring kernel-level changes.

The monitor library intercepts data of a process by wrapping the
libc library functions responsible for socket communication (i.e.
read, write, send and recv). The library is pre-loaded at process-
creation time using the LD_PRELOAD mechanism. This makes it
straight-forward to integrate it with processes used by existing PaaS
platforms such as OpenShift. OpenShift starts components such as
MySQL through start-up scripts, which are modified to load mon-
itors by setting two environment variables, LD_PRELOAD to preload
the CSN library and CSN_LOG_FILE to specify the location of the
tag log file to be used by the monitor:

LD_PRELOAD =/usr/lib/libcsnmon.so \
CSN_LOG_FILE =$ OPENSHIFT_DATA_DIR/csn/mysql.log \
usr/bin/mysqld_safe --defaults -file= \
$OPENSHIFT_MYSQL_DIR/conf/my.cnf > /dev/null 2>&1 &

5. EVALUATION
Our evaluation goals are to investigate the ability of CSN to de-

tect instances of data leakage and to measure its impact on per-
formance. We reproduce the different classes of data leakage, as
discussed in §2.2, and investigate how CSN is able to detect them.
We also explore the performance of CSN under a realistic web ap-
plication workload and in micro-benchmarks.

5.1 Experimental set-up
All experiments use a set of 4 GHz VMs with 6 GiB of RAM

running as part of a local CloudStack deployment. The operating
system is either CentOS 6.4 64-bit for experiments that relate to

Table 1: Instances of misconfigurations and bugs that can lead to accidental inter-tenant data leakage. The rightmost three columns indicate
the particular platform used in experiments.

Class Instance Affected platforms Platform
used Description Data leak

Isolation failure
between containers

Shared kernel
namespace

OpenShift, CloudFoundry,
Heroku, Dokku, Deis, Flynn

OpenShift Omitted /tmp config
line in pam_namespace

Apps read same file
in /tmp

Language/library
whitelisting

Appscale, App Engine

Isolation failure in
shared component

Shared cache
namespace

App Engine, AppScale,
Windows Azure

AppScale Removed app id from
_GetKey in memcached

App reads /tmp file
of another app

Shared data
store namespace

Appscale, App Engine,
Heroku, Force.com

Incorrect request
routing

Load balancer OpenShift, AppScale,
CloudFoundry

OpenShift Wrong IP address in
haproxy.conf

Requests forwarded
to wrong app

Incomplete data
deletion

Tenant data not
deleted

All OpenShift Filesystem remounted
with old data

App sees /tmp files
of another tenant

OpenShift or Ubuntu 12.04 64-bit for all other experiments. For
OpenShift, we use version 2 of the open-source implementation
OpenShift Origin; experiments with AppScale run on version 1.11.

5.2 Data leakage detection
Table 1 summarises the instances of misconfigurations and bugs

that we evaluate that cause data leaks between tenants’ applica-
tions. For each instance, we send a client request to the application
in order to trigger the data leak and check if CSN can detect it.
Isolation failure between containers. We show that CSN detects
data leaks caused by misconfiguring pam_namespace [59], which
OpenShift uses to provide container-specific instances of the /tmp
and /var/tmp directories. Without isolated instances of the /tmp
directory, two deployed applications can end up using the same file,
resulting in a data leak. To recreate this problem, we use a minimal
PHP application, which accepts data from a single form field and
writes it to a file named /tmp/request.txt. It then returns the
contents of the file to the client.

Misconfiguration. To introduce this data leak, we omit the direc-
tive within /etc/security/namespace.d/tmp.conf that instructs
pam_namespace to create isolated instances of the /tmp directory.
We also disable SELinux on the node running the containers.

Tagging and deployment. We mark the form field of the appli-
cation to be tagged at the client-side. We deploy two instances of
the application in our OpenShift installation. Instance A receives a
client request, then instance B receives one. Since there is only one
container per application, each tenant has one tag log.

Leak detection. Instance A logs two tags: an ingress and a non-
ingress tag for the request and response, respectively. It is able to
decrypt both tags successfully.

Instance B, however, has three tags in its tag log: one ingress and
non-ingress tag from its own client and a third tag, corresponding
to instance A’s data that leaked through the /tmp file. It was logged
by the monitor when sent as part of the response to the client of
instance B. Instance B is unable to decrypt this tag. Since there is
no ingress entry for this tag, instance B advertises it as a data leak.
Instance A decrypts the tag and confirms the data leak.
Isolation failure in shared component. In Google App Engine
and AppScale, a memcached service is shared between applica-
tions by default [37]. We introduce a previously-reported bug in
the AppScale platform when using memcached [9]. To observe
data leakage, we use a Python forum application called Fofou [28],
which lets clients create forums and post comments.

Misconfiguration. In AppScale, the keys that are used for mem-
cached lookups are prefixed with an application identifier. We

modify the code of the _GetKey function in /AppServer/google/
appengine/api/memcache/memcache_distributed.py to remove
this application identifier.

Tagging and deployment. We mark the form field “title” in Fo-
fou for tagging and deploy two separate instances, instance A and
instance B, of the application on our AppScale deployment. One
client of each application instance sends a request to create a fo-
rum. The client of instance B then requests a list of forum topics
and is able to see the forum created in instance A.

Detection. Instance A only has two identical tag entries, an
ingress and a non-ingress one; the latter corresponds to the data
being sent to the container that runs memcached. It is able to de-
crypt both tags.

Instance B has six tag entries in its log: (1) an ingress entry
for its own data; (2) its own data propagating to the memcached
container; (3) instance A’s data retrieved from the memcached con-
tainer; (4) its own data retrieved from the memcached container;
(5) instance A’s data sent to the client; and (6) its own data sent to
the client. It is unable to decrypt tags (3) and (5), and has no ingress
entries for them. It forwards them to instance A, which can decrypt
them, indicating a data leak.
Incorrect request routing. When applications are scaled in Open-
Shift, the haproxy [45] service is used to load-balance between
multiple containers serving the same application. We introduce an
error in the configuration file read by haproxy to decide how to
route requests between different containers.

Misconfiguration. We deploy two instances, A and B, of Word-
Press and manually scale them to use two containers for handling
client requests. The haproxy of instance A load-balances between
containers 1 and 2, and the haproxy of instance B load-balances
between containers 3 and 4. We then change the configuration file
of instance A in ~/haproxy/conf/haproxy.cfg to replace the IP
address of container 2 with that of container 4.

Tagging and deployment. We select the form fields “post-title”
and “content” for tagging. Since the load-balancing is performed
in a round-robin fashion, the second client request to instance A is
routed to container 4 serving instance B.

Detection. Since the instances are scaled, there are two tag logs
per instance, corresponding to the two containers serving the in-
stances. Containers 1 and 3 have the ingress monitors for instances A
and B, respectively, because they run the haproxy services. Due to
the leak, instance B sees two entries in the tag log of container 4,
caused by the data entering container 4 and leaving container 4 to
go to the MySQL container. Instance B is unable to decrypt these
two tags and has no ingress entries for them. Instance A decrypts
them successfully.

0
2
4
6
8

10
12
14
16
18
20
22

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e
tim

e
(i

n
m

s)

Size (in KB)

Without CSN
With CSN

Figure 5: Response times for different sizes
of HTTP response data

0
2
4
6
8

10
12
14
16
18
20

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(i

n
m

s)

Number of tagged fields

Without CSN
With CSN

Figure 6: Response time for different num-
bers of tagged fields

0
500

1000
1500
2000
2500
3000
3500
4000

0 10 20 30 40 50 60 70 80 90 100

L
at

en
cy

(i
n

m
s)

Number of concurrent clients

Without CSN
With CSN

Figure 7: Response time with different num-
ber of concurrent clients

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

R
eq

ue
st

s
pe

rs
ec

on
d

Number of concurrent clients

Without CSN
With CSN

Figure 8: Request throughput with different number of concurrent
clients

Incomplete data deletion. In this scenario, a system administrator
inadvertently forgets to delete and recreate a file system. Instead the
file system, which used to belong to a previous tenant, is assigned
to a new tenant. Deployed applications rely on specifically named
files such as app_{id_number}.txt. If application identifiers are
tenant-specific, a new application may thus read a file that belonged
to the previous tenant.

Misconfiguration. Consider two instances, A and B, of the mini-
mal PHP application discussed earlier, both deployed with the same
application identifier 100. After sending a client request to in-
stance A, the data is stored in /tmp/app100.txt. Next, the file
system containing this file is exposed to instance B.

Tagging and deployment. Both instances add tags to the form
field. When a client of instance B makes a request, it receives data
from instance A.

Detection. Instance A has a tag log with two entries, which it
can decrypt. Instance B has three tag entries, one of which is the
tag that corresponds to instance A’s data. Since instance B does not
have an ingress entry for it, it constitutes a data leak.

5.3 Performance overhead
Next we want to evaluate the performance impact of CSN with

a realistic deployment of the the WordPress [92] content manage-
ment system and using micro-benchmarks. Our results show that,
even under a significant concurrent request load, the performance
reduction due to CSN is low: the reduction in the request through-
put even for a large number of concurrent users is less than 10%.
Request throughput. We explore the performance impact that
CSN has on request throughput with a realistic web application.
We use WordPress [92] version 3.7.1, a widely-used open-source
content management system that uses the Apache HTTP server
for serving requests and MySQL as its storage backend. We de-
ploy two concurrent instances of WordPress on our OpenShift in-
stallation: one with CSN and one without. For the CSN version,
we modify OpenShift to attach monitors automatically to the web
server and database containers. All incoming and outgoing traffic
for the application components is thus monitored for security tags.

For a realistic client workload, we use Apache JMeter [7] to gen-
erate HTTP requests based on the following workflow. Each client:

1. visits the main page and goes to the log-in page;
2. logs in and is redirected to the main admin page;
3. goes to the “New post” page and creates a new post;
4. visits the new post and adds a comment;
5. goes to the “Post overview” admin page, deletes the post and

logs out.
We select three text fields that are part of the above workflow

to be extended with security tags: the post title, the post text and
the comment text. The number of concurrent clients is increased
over time—adding a new client every 5 seconds. Each client per-
forms the above sequence of actions in a loop. The test results are
averaged for 5 of these runs for two experiments—one with CSN
deployed and one without.

Fig. 7 shows the response times as we increase the number of
concurrent clients. The results show that there is little difference
between the performance of both instances of WordPress: even
with a high number of concurrent clients, the changes in response
time for the WordPress instance with CSN appear to be well within
the variance caused by other factors in the network and web server
environment. With more than 70 clients, the deployment becomes
overloaded, and the web server carries out admission control, re-
sulting in rejected requests.

Fig. 8 shows the request throughput as a function of the num-
ber of concurrent clients. We can see that the throughput for the
instance with CSN is only slightly lower than for the one without
CSN. With more than 15 clients, the throughput of WordPress—
irrespective of CSN–drops, and we speculate that WordPress be-
gins to experience contention. Above 70 clients, requests are re-
jected due to admission control. We conclude that, in practice, a
deployment is likely to scale out its infrastructure before the CSN
overhead would become a problem.
Size of HTTP response data. For the micro-benchmarks, we de-
ploy lighttpd [53], a lightweight web server on our local Cloud-
Stack deployment, as described in §5.1. We use ApacheBench [6],
an HTTP performance measurement tool, to generate a request
workload and record response times. First we evaluate the overhead
of running CSN to monitor for security tags. We use ApacheBench
to generate requests for files varying from 100 KB to 3 MB, which
are served by lighttpd. None of the data contains security tags.

Fig. 5 shows the median response time for varying sizes of HTTP
responses with and without CSN. CSN introduces negligible over-
head in this scenario: even for large responses of 3 MB, the change
in the median response time is significantly less than the variance
due to network effects. Since the CSN monitors passively observe
socket streams, their performance impact is low.
Number of tagged fields. We investigate how the number of ob-
served security tags affects the response time of HTTP requests.
We deploy a FastCGI script [27] on the web server that accepts

an HTTP POST request and returns its form-field parameters and
values in the HTTP response. The field values consist of random
50-byte strings. With CSN, each form field contains a security tag
that is 357 bytes in size.

Fig. 6 shows the change in response times as the number of tagged
fields increases. Even for an unrealistically large number of close
to 100 tagged fields, the median response increases only by ap-
proximately 4.2 ms. The observed increase in latency is due to two
effects: (i) each tag is seen twice by the monitor, which must pro-
cess and record it in the tag log; and (ii) the relative size of tags
compared to the rest of the field data is large—for larger field sizes,
the processing of the tags is amortised as part of the overall cost of
request handling.

6. RELATED WORK
The goal of CSN of improving tenant’s trust of cloud platforms

is shared by work on remote attestation and accountability. Its tag-
based approach to monitoring data flows is related to information
flow control techniques, encryption and digital watermarking. We
now survey this related work in more detail.
Remote attestation enables users to verify the precise version of
software installed on a remote machine. Most remote attestation
systems rely on cryptographic hardware support in the form of a
Trusted Platform Module (TPM) [90] to securely bootstrap the in-
frastructure [79]. Proposals for software-based attestation target
simple devices [86] or cannot be used over wide-area networks [85].

Remote attestation has several drawbacks as a mechanism for
preventing data leakage. First, it hinders the management flexibil-
ity of cloud providers, making it harder to apply software upgrades,
patches or configuration changes [44]. Some approaches such as
Excalibur [80] attempt to overcome this issue by using high-level
attribute-based attestation instead of hashes, but this limits a ten-
ant’s ability to catch misconfigurations. In contrast, CSN does not
interfere with current management practices of cloud providers.

Second, it requires cloud providers to expose internals of their
infrastructure. For commercial or security reasons, cloud providers
are reluctant to do so [80, 78]. EVE [50] is an attestation-like ap-
proach for verifying the execution of cloud-hosted web applica-
tions that avoids these concerns. It models web applications as
object stores and uses a collaborative probing mechanism to detect
intra-tenant inconsistencies, which is different from our focus on
inter-tenant data leakage. In general, CSN avoids disclosing exact
configuration details.

Other work has used attestation to improve security in virtualised
environments [33, 70]. An important issue is to minimise vulnera-
bilities in the trusted computing base (TCB). Proposed techniques
include exploiting new hardware protection capabilities in AMD
and Intel processors [56], reducing the size of the TCB [99] and
narrowing the VM management interface [61]. This helps prevent
malicious users from compromising the security of the cloud plat-
form, but is orthogonal to our goal of detecting errant data leakage.
Accountability. CSN can be viewed as a mechanism for improving
the accountability [94, 95] of cloud platforms with respect to data
leakage. Early work on accountability investigated application-
specific techniques for ensuring integrity of network storage ser-
vices [96] and peer-to-peer systems [57].

PeerReview [43] is a technique for ensuring accountability in dis-
tributed systems. By keeping a secure record of the messages ex-
changed between components, PeerReview detects when a compo-
nent’s behaviour deviates from that of a given reference implemen-
tation. However, PeerReview assumes deterministic components,
which is challenging in cloud environments.

To work around this limitation, Haeberlen et al. [42] propose ac-
countable virtual machines (AVMs). AVMs record all external com-
munication and non-deterministic input of applications in a tamper-
evident log. To check for misbehaviour, auditors replay inputs from
the log on a reference VM—a heavyweight process.The same au-
thors argue that accountability in cloud computing is important, but
note that existing techniques do not address data leakage [41].
Information flow control (IFC) techniques have been employed in
a variety of contexts, including at the OS [97, 52], middleware [58]
and language levels [93, 67], databases [82] and in distributed set-
tings [98].

SilverLine [60] is an IFC system for ensuring data and network
isolation in cloud services. Tenant-provided policy is used to la-
bel data, which SilverLine leverages to provide strong enforcement
guarantees in addition to data-flow tracking. However, SilverLine
relies on a modified OS kernel, does not present performance re-
sults and does not allow tenants to check whether it is working
correctly. In general, CSN differs from work on IFC in that it at-
tempts to detect data leakage but not prevent it. It therefore has
lower runtime overhead and avoids substantial modification of ap-
plications, OS kernels, databases or hypervisors. It also permits
tenants to check the operation of monitors.

Closer to our approach is CloudFence [68], which uses binary
byte-level taint tracking and an append-only audit log to moni-
tor the propagation of user data in a cloud environment. Finer-
granularity tracking means CloudFence can detect a wider range of
data leaks than CSN but at the cost of a higher performance penalty:
CloudFence reduces the request throughput for a CPU-bound web
application by an order of magnitude, compared to the negligible
performance impact of CSN.

Ganjali and Li [32] use IFC to deter malicious administrators in
cloud environments. Their system records all data flows between
VMs and administrators in a secure audit log. Unlike CSN, they fo-
cus on detecting malicious behaviour and not accidental data leaks.

Shu and Yao [87] propose a fuzzy fingerprinting technique to
detect undesirable data flows without requiring a plaintext database
of sensitive data. CSN differs in its goal of detecting inter-tenant
data leakage—e.g. it must distinguish between genuine data leaks
and data of different tenants that is coincidentally the same.
Data Marking techniques for multimedia [46] and relational data [4]
involve perturbing data in a way that is difficult to detect, without
affecting application semantics. In contrast CSN does not try to
hide the presence of its markers from users.
Encryption Functionally encryptable data can be extracted auto-
matically and encrypted without impacting application semantics
as demonstrated in Silverline et al. [76]. However, if data remains
sensitive for years, even leaks of encrypted data may be undesir-
able [88]. Since data in CSN remains unencrypted, there is less
overhead, and applications can perform additional operations on
tagged data such as keyword search.

7. CONCLUSIONS
In complex cloud environments, data leakage due to acciden-

tal misconfigurations and bugs in cloud platforms increases. Prior
proposals to prevent data leakage constrain cloud providers in their
management activities or introduce a large performance overhead.

Instead, we described CloudSafetyNet (CSN), a lightweight ap-
proach for monitoring data propagation in PaaS clouds in order to
discover data leakage between tenants. CSN adds security tags to a
subset of all client HTTP request fields and uses a set of monitors
to observe the propagation of tags, discovering data leakage. CSN
can increase the confidence of tenants that their data remains iso-

lated and is compatible with a wide range of PaaS platforms while
requiring only minimal changes to existing cloud environments.

8. ACKNOWLEDGEMENT
This work was supported by grant EP/K008129/1("CloudSafetyNet:

End-to-End Application Security in the Cloud") from the UK En-
gineering and Physical Sciences Research Council (EPSRC).

9. ADDITIONAL AUTHORS

10. REFERENCES
[1] National vulnerability database. http://nvd.nist.gov/.
[2] Open source vulnerability database. http://osvdb.org/.
[3] Secunia. http://secunia.com/community/advisories/.
[4] AGRAWAL, R., AND KIERNAN, J. Watermarking relational

databases. In VLDB (2002).
[5] AMAZON. AWS security center.

http://aws.amazon.com/elasticloadbalancing/, 2014.
[6] APACHEBENCH. Apache HTTP server benchmarking tool.

http:
//httpd.apache.org/docs/2.2/programs/ab.html.

[7] APACHEJMETER. https://jmeter.apache.org/.
[8] APPARMOUR. http:

//wiki.apparmour.net/index.php/Documentation/.
[9] APPSCALE. Add namespacing to Memcache. http://code.

google.com/p/appscale/issues/detail?id=172, 2010.
[10] APPSCALE. Change AppServer to prevent file system

access. http://code.google.com/p/appscale/issues/
detail?id=167, 2010.

[11] APPSCALE. Autoscaling in AppScale.
http://www.appscale.com/blog/2013/11/02/
autoscaling-in-appscale/, 2013.

[12] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource
containers: A new facility for resource management in server
systems. In OSDI (1999).

[13] BLOOM, B. H. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM 13, 7 (1970).

[14] CHOHAN, N., BUNCH, C., PANG, S., ET AL. Appscale:
Scalable and open appengine application development and
deployment. In Cloud Computing. Springer, 2010.

[15] CLOUD SECURITY ALLIANCE. Cloud computing
vulnerability incidents: A statistical overview.
http://goo.gl/oaQYaH, 2013.

[16] CLOUDFOUNDRY. https://www.cloudfoundry.com/,
2014.

[17] CLOUDSTACK. http://cloudstack.apache.org/, 2014.
[18] COMPUTERWEEKLY. Cloud revenues to touch $20bn by

2016 with PaaS as the fastest growing segment.
http://goo.gl/spqRMF, 2013.

[19] DAWSON, G., AND DAWSON, M. Introduction to Java
Multitenancy. https://www.ibm.com/developerworks/
java/library/j-multitenant-java/, 2013.

[20] DEIS. http://deis.io, 2014.
[21] DIGITALOCEAN. Digital Ocean API is not told to scrub

(securely delete) VM on destroy.
https://github.com/fog/fog/issues/2525, 2013.

[22] DOCKER. https://www.docker.io/, 2014.
[23] DOKKU. https://github.com/progrium/dokku, 2014.
[24] DOM. The Document Object Model. http://www.w3.org/,

2014.

[25] DROPBOX. The Dropbox Blog: Yesterday’s Authentication
Bug. https://blog.dropbox.com/2011/06/yesterdays-
authentication-bug/, 2011.

[26] EDGE, J. LSS: Secure Linux containers.
https://lwn.net/Articles/515034/, 2012.

[27] FASTCGI. http://www.fastcgi.com/, 2014.
[28] FOFOU.

http://blog.kowalczyk.info/software/fofou/.
[29] FOUNDATION, A. S. Apache module mod_so, LoadFile

directive.
http://httpd.apache.org/docs/2.2/mod/mod_so.html,
2014.

[30] FSISAC. Financial services information sharing and
analysis center. https://www.fsisac.com, 2014.

[31] GAL-OR, E., AND GHOSE, A. The economic incentives for
sharing security information. Information Systems Research
16, 2 (2005).

[32] GANJALI, A., AND LIE, D. Auditing cloud management
using information flow tracking. In ACM workshop on
Scalable trusted computing (2012).

[33] GARFINKEL, T., PFAFF, B., CHOW, J., ET AL. Terra: A
virtual machine-based platform for trusted computing. ACM
SIGOPS Operating Systems Review 37 (2003).

[34] GARRETT, J. J. Ajax: A new approach to web applications.
http://www.adaptivepath.com/ideas/ajax-new-
approach-web-applications/, 2005.

[35] GENTRY, C. Fully homomorphic encryption using ideal
lattices. In STOC (2009).

[36] GOOGLE. Google AppEngine.
https://developers.google.com/appengine/, 2014.

[37] GOOGLE. Google AppEngine Memcache Java API
overview. https://developers.google.com/appengine/
docs/java/memcache/, 2014.

[38] GOOGLE. Implementing multitenancy using namespaces.
https://developers.google.com/appengine/docs/
java/multitenancy/multitenancy, 2014.

[39] GOOGLE. The JRE class white list. https://developers.
google.com/appengine/docs/java/jrewhitelist, 2014.

[40] GOOGLE. Storing data in Google AppEngine.
https://developers.google.com/appengine/docs/
python/storage, 2014.

[41] HAEBERLEN, A. A case for the accountable cloud. ACM
SIGOPS Operating Systems Review 44, 2 (2010).

[42] HAEBERLEN, A., ADITYA, P., RODRIGUES, R., AND
DRUSCHEL, P. Accountable virtual machines. OSDI (2010).

[43] HAEBERLEN, A., KOUZNETSOV, P., AND DRUSCHEL, P.
PeerReview: practical accountability for distributed systems.
ACM SIGOPS Operating Systems Review 41, 6 (2007).

[44] HALDAR, V., CHANDRA, D., AND FRANZ, M. Semantic
remote attestation: a virtual machine directed approach to
trusted computing. In USENIX Virtual Machine Research
and Technology Symposium (2004).

[45] HAPROXY. http://haproxy.1wt.eu, 2014.
[46] HARTUNG, F., AND KUTTER, M. Multimedia watermarking

techniques. Proceedings of the IEEE 87, 7 (1999).
[47] HAYDEN, M. http://stopdisablingselinux.com/, 2014.
[48] IDG ENTERPRISE. Cloud computing survey.

http://goo.gl/hGDus0, 2012.
[49] ITISAC. Information technology information sharing and

analysis center. http://www.it-isac.org, 2014.
[50] JANA, S., AND SHMATIKOV, V. EVE: Verifying correct

execution of cloud-hosted web applications. In HotCloud
(2011).

[51] KERRISK, M. Namespaces in operation, part 5: User
namespaces. http://lwn.net/Articles/532593/, 2013.

[52] KROHN, M., YIP, A., BRODSKY, M., ET AL. Information
flow control for standard OS abstractions. ACM SIGOPS
Operating Systems Review 41, 6 (2007).

[53] LIGHTTPD. http://www.lighttpd.net, 2014.
[54] LXC. Linux Containers. http://linuxcontainers.org,

2014.
[55] MARNIX DEKKER, DIMITRA LIVERI, M. L. Incident

reporting for cloud computing. http://www.enisa.
europa.eu/activities/Resilience-and-CIIP/cloud-
computing/incident-reporting-for-cloud-computing,
2010.

[56] MCCUNE, J. M., LI, Y., QU, N., ET AL. TrustVisor:
efficient TCB reduction and attestation. In IEEE Security and
Privacy (S&P) (2010).

[57] MICHALAKIS, N., SOULÉ, R., AND GRIMM, R. Ensuring
content integrity for untrusted peer-to-peer content
distribution networks. In NSDI (2007).

[58] MIGLIAVACCA, M., PAPAGIANNIS, I., EYERS, D. M.,
SHAND, B., BACON, J., AND PIETZUCH, P. Distributed
middleware enforcement of event flow security policy. In
Middleware (2010).

[59] MORGAN, A. G., AND KUKUK, T. The Linux-PAM System
Administrator’s Guide. http://www.linux-
pam.org/Linux-PAM-html/Linux-PAM%5FSAG.html, 2010.

[60] MUNDADA, Y., RAMACHANDRAN, A., AND FEAMSTER,
N. SilverLine: data and network isolation for cloud services.
In HotCloud (2011).

[61] MURRAY, D. G., MILOS, G., AND HAND, S. Improving
Xen security through disaggregation. In VEE (2008).

[62] OPENSHIFT. https://www.openshift.com/, 2014.
[63] OPENSHIFT. External load balancing in OpenShift.

http://goo.gl/aLZVQN, 2014.
[64] OPENSHIFT. The future of OpenShift and Docker

containers. https://www.openshift.com/blogs/the-
future-of-openshift-and-docker-containers, 2014.

[65] OPENSHIFT. OpenShift Gears.
http://openshift.github.io/documentation/oo_
system_architecture_guide.html, 2014.

[66] OPENVZ. http://openvz.org, 2014.
[67] PAPAGIANNIS, I., MIGLIAVACCA, M., AND PIETZUCH, P.

PHP Aspis: using partial taint tracking to protect against
injection attacks. In USENIX WebApps (2011).

[68] PAPPAS, V., KEMERLIS, V. P., ZAVOU, A., ET AL.
CloudFence: data flow tracking as a cloud service. In
Research in Attacks, Intrusions, and Defenses. Springer,
2013.

[69] PCWORLD. Microsoft BPOS service hit with data breach.
http://goo.gl/xLuPAZ, 2010.

[70] PEREZ, R., SAILER, R., AND VAN DOORN, L. vTPM:
virtualizing the trusted platform module. In USENIX Security
(2006).

[71] PETER LOSCOCCO, N. S. A. Integrating flexible support for
security policies into the linux operating system. In USENIX
ATC (2001).

[72] PHAM, T. The importance of information-sharing in
countering security threats. http://goo.gl/Iz4HmB, 2014.

[73] PIDCRYPT. https://www.pidder.de/pidcrypt, 2014.
[74] PONEMON INSTITUTE. Security of cloud computing

providers study. http://goo.gl/SkT3Jx, 2011.
[75] POPA, R. A., REDFIELD, C., ZELDOVICH, N., AND

BALAKRISHNAN, H. Cryptdb: protecting confidentiality
with encrypted query processing. In SOSP (2011).

[76] PUTTASWAMY, K. P., KRUEGEL, C., AND ZHAO, B. Y.
Silverline: toward data confidentiality in storage-intensive
cloud applications. In ACM Symposium on Cloud Computing
(2011).

[77] REED, J. Following incidents into the cloud.
http://www.sans.org/reading-
room/whitepapers/incident/incidents-cloud-33619,
2010.

[78] RISTENPART, T., TROMER, E., SHACHAM, H., AND
SAVAGE, S. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In CCS
(2009).

[79] SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN,
L. Design and implementation of a TCG-based integrity
measurement architecture. In USENIX Security (2004),
vol. 13.

[80] SANTOS, N., RODRIGUES, R., GUMMADI, K. P., AND
SAROIU, S. Policy-sealed data: A new abstraction for
building trusted cloud services. In USENIX Security (2012).

[81] SCHIFFMAN, J., MOYER, T., VIJAYAKUMAR, H., ET AL.
Seeding clouds with trust anchors. In ACM workshop on
Cloud computing security (2010).

[82] SCHULTZ, D., AND LISKOV, B. IFDB: decentralized
information flow control for databases. In EuroSys (2013).

[83] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All
you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to
ask). In IEEE Security and Privacy (S&P) (2010).

[84] SELINUX. Oddjob can’t work. https://www.openshift.
com/forums/openshift/oddjob-cant-work, 2012.

[85] SESHADRI, A., LUK, M., SHI, E., ET AL. Pioneer:
verifying code integrity and enforcing untampered code
execution on legacy systems. ACM SIGOPS Operating
Systems Review 39, 5 (2005).

[86] SESHADRI, A., PERRIG, A., VAN DOORN, L., AND
KHOSLA, P. Swatt: Software-based attestation for embedded
devices. In IEEE Security and Privacy (S&P) (2004).

[87] SHU, X., AND YAO, D. D. Data leak detection as a service.
In Security and Privacy in Communication Networks.
Springer, 2013.

[88] SINGH, J., EYERS, D. M., AND BACON, J. Disclosure
control in multi-domain publish/subscribe systems. In DEBS
(2011).

[89] TRUSTED COMPUTING GROUP. Collaborative defense.
http://goo.gl/3A7Ke8, 2013.

[90] TRUSTED COMPUTING GROUP. Trusted Platform Module
(TPM). http://www.trustedcomputinggroup.org/, 2014.

[91] W KUAN HON, C. M., AND WALDEN, I. Cloud Computing
Law. OUP Oxford, 2013, ch. Negotiated Contracts for Cloud
Services.

[92] WORDPRESS. https://www.wordpress.com, 2014.
[93] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK,

M. F. Improving application security with data flow
assertions. In SOSP (2009).

[94] YUMEREFENDI, A. R., AND CHASE, J. S. Trust but verify:
accountability for network services. In ACM SIGOPS
European workshop (2004).

[95] YUMEREFENDI, A. R., AND CHASE, J. S. The role of
accountability in dependable distributed systems. In HotDep
(2005).

[96] YUMEREFENDI, A. R., AND CHASE, J. S. Strong
accountability for network storage. ACM Transactions on
Storage (TOS) 3, 3 (2007).

[97] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÃĹRES, D. Making information flow explicit in
HiStar. In OSDI (2006).

[98] ZELDOVICH, N., BOYD-WICKIZER, S., AND MAZIERES,
D. Securing distributed systems with information flow
control. In NSDI (2008).

[99] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B.
Cloudvisor: retrofitting protection of virtual machines in
multi-tenant cloud with nested virtualization. In SOSP
(2011).

