
Learning Operational Requirements from Goal Models

Dalal Alrajeh‡ Jeff Kramer‡

‡ Department of Computing,
Imperial College London, UK

{da04, jk, ar3, s.uchitel}@doc.ic.ac.uk

Alessandra Russo‡∗ Sebastin Uchitel‡†

† Departamento de Computaciòn, FCEyN, UBA
Buenos Aires, Argentina

suchitel@dc.uba.ar

Abstract

Goal-oriented methods have increasingly been recog-
nised as an effective means for eliciting, elaborating,
analysing and specifying software requirements. A key
activity in these approaches is the elaboration of a cor-
rect and complete set of opertional requirements, in the
form of pre- and trigger-conditions, that guarantee the
system goals. Few existing approaches provide support
for this crucial task and mainly rely on significant ef-
fort and expertise of the engineer.

In this paper we propose a tool-based framework that
combines model checking, inductive learning and sce-
narios for elaborating operational requirements from
goal models. This is an iterative process that requires
the engineer to identify positive and negative scenar-
ios from counterexamples to the goals, generated using
model checking, and to select operational requirements
from suggestions computed by inductive learning.

Keywords: Goal-oriented requirements engineering,
scenarios, inductive learning.

1. Introduction

Requirements Engineering (RE) is an integral part
of the software development life-cycle, concerned with
elicitation, elaboration, specification, analysis and doc-
umentation of the goals of a system-to-be. Each of
these activities contributes to the development of a
software requirements specification that is complete
and correct with respect to the system goals [16].

A number of goal-based techniques have been devel-
oped to support the process of requirements acquisition
[7, 19], but only few have focused on the elaboration of
operational requirements from high-level goals. Letier
and van Lamwsveerde [16] have developed an approach

∗Dr. Russo’s research is continuing through participation in
the International Alliance sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defense.

based on operationalisation patterns which allows the
derivation of operational requirements in the form of
pre- and trigger-conditions from goals expressed in Lin-
ear Temporal Logic (LTL). Requirements generated by
this approach are guaranteed to be correct. However,
patterns are restricted to a collection of goal and re-
quirement templates, and their application requires a
fully refined goal model. Consequently, the elabora-
tion of operational requirements from goals remains
constrained to the set of templates and can be labour
intensive and error-prone. The availability of a more
systematic and automated approach would therefore
benefit the process of operationalising goals.

In this paper, we propose a formal, tool-supported
framework that combines model checking, inductive
learning and scenarios to elaborate operational require-
ments, in the form of pre- and trigger-conditions, that
are correct and complete with respect to a given set of
system goals. The framework is defined as an iterative
process that consists of four conceptual phases. First,
in the analysis phase, an existing partial specification
of operational requirements is verified against a given
goal model using a model checker. If verification is
unsuccessful, the counterexample automatically gener-
ated is used in the scenario elaboration phase where an
engineer elaborates it into a set of positive and nega-
tive scenarios. In the learning phase, the partial spec-
ification of operational requirements and scenarios are
used by a non-monotonic inductive learning system to
compute a set of operational requirements that covers
all positive scenarios and eliminates all negative ones.
Finally, in the selection phase, the engineer selects the
operational requirements to be added from the list pro-
posed by the learning phase. The four phases are then
repeated until no goal violation is detected.

In summary, we provide a tool-supported approach
for learning operational requirements from goals in
which the detection of the incompleteness of the re-
quirements with respect to the goals and the genera-
tion of possible “repairs” is fully automated. The engi-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 265

neer’s intervention is required only for the elaboration
of scenarios and the selection of operational require-
ments from the suggested repairs.

This paper is organized as follows. Section 2 illus-
trates the problem using a simplified version of the
Safety Injection System described in [4]. Section 3 de-
scribes the main features of our approach. Section 4
provides an illustrative case study on a real event-
driven system, the Mine Pump System [12]. Section 5
discusses some of the outcomes of the case studies and
how the approach relates to other applications of learn-
ing techniques to requirements engineering. A sum-
mary and some remarks about future work conclude
the paper.

2 Motivation

Consider the safety injection system described in [4, 14]
where an Engineered Safety Feature Actuation System
(ESFAS) is needed to prevent or minimize damage to
the coolant system whenever a fault occurs such as loss
of coolant. The system includes a built-in sensor which
measures the pressure levels. If it detects an fall below
a preset threshold then it sends a safety injection signal
to the safety feature component which is responsible
for dealing with the incident. Suppose the engineers
identifies the goals: G1 = “The safety injection sig-
nal should be on when the water pressure is below the
low set point while the safety injection is not overrid-
den” and G2 = “The safety injection signal should be
on when the water pressure is below the low set point
while the reactor is on”. The problem of elaborating
operational requirements from such goals lies in iden-
tifying the system operations and characterizing their
pre- and trigger-conditions (i.e. the conditions under
which an event can and must happen respectively) such
that they guarantee the satisfiability of the goals over
(discrete time) event-based models [15].

The ESFAS operations are startSignal and stopSig-
nal for turning the safety injection signal on and off,
and enableSignal and overrideSignal for enabling and
overriding the safety injection signal. An example of
operational requirement that needs to be elaborated
for the operation stopSignal, given the above goals, is
the pre-condition “the water pressure is not low or the
safety injection signal is overridden”, meaning that if
the water pressure is ‘Low’ and the safety injection
signal is not ‘Overridden’ at the beginning of a time
unit, then stopSignal cannot occur during that time
unit. Another example of operational requirement is
the trigger-condition for startSignal of the form “the
water pressure is low and the safety injection signal is
not overridden”, meaning that if the water pressure is

‘Low’ and the safety injection signal is not ‘Overridden’
at the beginning of a time unit, then startSignal must
occur during that time unit.

How can pre- and trigger-conditions over operations
be derived in a systematic way and so that they guar-
antee the system goals? In this paper we propose a
formal tool-assisted approach for supporting the elab-
oration of operational requirements like those described
above. It is an iterative process that makes use of stan-
dard model-checking, scenarios and inductive learning
to elicit new operational requirements in each cycle.

Let us assume that the initial specification includes
a trigger-condition for startSignal and the following
domain knowledge about the operations startSignal,
stopSignal, enableSignal and overrideSignal : startSig-
nal turns the safety Injection on, stopSignal turns it off,
enableSignal enables it and overrideSignal overrides it.

A valid implementation of such an operational spec-
ification allows the scenario depicted in Figure 1. Sce-
narios are represented as Message Sequence Charts
[11], where the clock labels the beginning/end of time
units. Figure 1 describes a situation in which initially,
the water pressure is below low, the safety injection
signal is off and overridden. Then enableSignal occurs
making the safety injection signal enabled, followed by
a rise and a drop in the water pressure occurs. Subse-
quently, startSignal turns the safety injection signal on
and then a rise in the water pressure happens. Finally,
stopSignal is commanded. Notice, in Figure 1, the last
time unit (i.e. between the last two clock labels) starts
with the water pressure being below low and the safety
injection signal not overridden and ends with the safety
injection signal being off. This is a violation of goal G1
described above.

Figure 1. A violation of goal G1.

An engineer, faced with this example could recognize
this scenario as an example of an incorrect occurrence
of stopSignal and could easily provide an example of
a correct occurrence of the same event. Alternatively,
the engineer could identify the trace as an undesirable

266

occurrence of startSignal since there is no point in
sending the signal if the signal is initially overridden.
Let us assume the latter, and that the engineer provides
the scenario in Figure 2 as an example of desirable
occurrence of startSignal.

Figure 2. Desirable Occurrence of startSignal

From these two scenarios it is possible to learn the
pre-condition for startSignal “the safety injection sig-
nal is not overridden”, which could be validated by the
engineer and then added to the specification. The new
specification would no longer allow traces of the form
given in Figure 1. The process above could be repeated,
presenting the engineer with other examples of goal vi-
olations (if any). For instance, checking the new speci-
fication against G2 would result in the counterexample
shown in Figure 3. The engineer must then provide an
example of how the system should have behaved (e.g.,
Figure 4) from which the new trigger-condition, “the
water pressure is below low while the reactor is on”, for
startSignal could be learned. Such a procedure could
be continued until the complete operational specifica-
tion shown in Figure 5 is produced.

Figure 3. A violation of goal G2

In this paper we shall demonstrate how counterex-
amples to system goals are automatically generated
(see Section 3.1), how an engineer can elaborate from
these counterexamples positive and negative scenarios

Figure 4. Desirable Occurrence of startSignal

Pre(startSignal) =¬Overridden
Pre(stopSignal)=¬LowWaterPressure ∨ (Overridden

∧ ¬ReactorOn)
Trig(startSignal)=LowWaterPressure∧

(¬Overridden ∨ ReactorOn)

Figure 5. A complete set of operational requirements
with respect to the ESFAS goals

(see Section 3.2), how proposals for operational require-
ments are automatically induced from these scenarios
(see Section 3.3) and how an engineer may pick between
the various proposals (see Section 3.4).

3 Approach

Starting from a collection of system goals (or goal
model), G, and operational requirement specification,
Spec, that does not satisfy the system goals, our ap-
proach provides a systematic way for extending the
specification with pre- and trigger-conditions for sys-
tem’s events so that the derived new specification Spec′

satisfies the goals. The approach is composed of four
phases (see Figure 6).

3.1 Phase 1: Analysis Phase

This phase is concerned with automatically checking
whether a given operational requirement specification
Spec satisfies a given goal model G.

Goals and operational requirements are expressed in
asynchronous Fluent Linear Temporal Logic (FLTL)
[10], a flavour of linear temporal logic for describing
event- and state-based properties using fluents. Fluents
are propositions whose truth value changes over time
and are defined with respect to an initiating and termi-

267

Figure 6. Approach overview

nating set of events. A fluent becomes true (resp. false)
whenever an event from its predefined initiating (resp.
terminating) set of events occurs. For instance, the
fluent SafetyInjection has the events startSignal and
stopSignal in its initiating and terminating events. The
fluent definitions for this system are given in Figure 8.

The asynchronous FLTL formalization of goals and
operational requirements uses a tick event to explicitly
model time. Following the approach in [15], we require
goals to be true only at the occurrence of a tick. For
example, the informal goals G1 and G2 described at
the beginning of Section 2 are formalized in Figure 7.
Note that these properties can be automatically gener-
ated from formulae written in synchronous FLTL [15],
a logic that abstracts away tick events.

G1 = �(tick → ((LowWaterPressure ∧ ¬Overridden) →
© (¬tick W (tick ∧ SafetyInjection)))

G2 = �(tick → ((LowWaterPressure ∧ReactorOn) →
© (¬tick W (tick ∧ SafetyInjection)))

Figure 7. ESFAS goals expressed in asynchronous FLTL

The input to the analysis phase is a set of system goals,
G, and a partial specification, Spec, including fluent
definitions and existing operation requirement, all for-
malised in asynchronous FLTL. Analysis consists in
using the LTSA model-checker [17] to verify if Spec

satisfies G. This is done by first automatically synthe-
sising from Spec its least constrained LTS model M (as
presented in [15]), and then by checking M against G
using the tool’s model checking algorithm. The result
of the model checker can be either that Spec satisfies
G, in which case the process successfully terminates, or
that a counterexample is computed showing that Spec
violates G. The counterexample is a system execution
that satisfies all operational requirements in Spec yet
does not satisfy at least one of the goals in G.

fluent SafetyInjection =
〈{startSignal}, {stopSignal}〉

fluent Overridden =
〈{overrideSignal}, {enableSignal}〉initially True

fluent LowWaterPressure =
〈{lowerBelowLow}, {raiseAboveLow}〉initially True

fluent PressureAbovePermit =
〈{raiseAbovePermit}, {lowerBelowPermit}〉

Figure 8. Fluent definitions for Safety Injection System

Returning to the safety injection system, let us as-
sume the fluents definitions to be as in Figure 8 and
the existing operational requirements to be initially
composed of only the trigger-condition for startSignal,
given by Trig(startSignal) = (LowWaterPressure∧¬
Overridden) and automatically formalised in asyn-
chronous FLTL as:

�(tick → ((LowWaterPressure ∧ ¬Overridden)∧
¬PumpOn →©(¬tick U startSignal)))

268

Figure 9. LTS model of initial specification

The first activity of this phase is to construct an LTS
(Figure 9) that characterizes Spec. The second activity
is to check the synthesised LTS against the system goals
G given in Figure 7. In this case, LTSA generates the
following violation trace, where the events in the left
column show the shortest path leading to goal violation
and the text on the right shows the fluents that are true
after the execution of each event.
Trace to property violation in

SafetyInjectionWhenLowPressureAndNotOverridden:

tick LowWaterPressure && Overridden

enableSignal LowWaterPressure

raiseAboveLow

lowerBelowLow LowWaterPressure

startSignal LowWaterPressure && SafetyInjection

tick LowWaterPressure && SafetyInjection

raiseAboveLow SafetyInjection

stopSignal

tick

Analysed in: 5ms

The above counterexample shows an execution that
satisfies Spec but violates the goal G1. In fact, it cor-
responds to the scenario depicted in Figure 1. The vi-
olation indicates that the existing operational require-
ments are incomplete, and provides the basis for pro-
ducing positive and negative scenarios from which new
operational requirements can be learned.

3.2 Phase 2: Scenario Elaboration

This phase requires the involvement of an engineer
to elaborate, from the counterexample generated by
the analysis phase, examples of how the system should
and should not behave. The aim is then to elaborate a
set of positive and negative scenarios from a given vio-
lation trace. Scenarios are finite sequences, 〈e1, ..., en〉,

of event transitions. Such a sequence is accepted (resp.
rejected) by an LTS if there is (resp. not) a trace in the
LTS that has this sequence as its prefix. Positive (resp.
negative) scenarios are desirable (resp. undesirable) se-
quences of event transitions, which may be accepted or
not by an LTS. The aim of the next phases is to extend
the operational requirements so that the LTS synthe-
sised from it accepts the positive scenarios and rejects
the negative scenarios identified in this phase.

In the counterexample produced by the analysis
phase, there is at least one event that occurs and that
should not have done so at that point in the trace. As
the approach is concerned with developing operational
requirements, we allow selecting only system controlled
events and the tick event as undesirable events. Con-
sequently, the engineer is required to elaborate from a
given violation trace a negative scenario of the form
〈e1, ..., en〉 where en is either an undesirable system
event or the tick event. In general, if en is a tick event
the negative scenario would indicate that at least one
system event e should have been triggered before the
tick event en for the goal to be satisfied in that trace. If
the undesirable event en is a system event then the neg-
ative scenario would show that the event en should not
have occurred for the goal to be satisfied in that trace.
For instance, in the counterexample shown in Figure
1, according to the discussion in Section 2, stopSig-
nal is an undesirable event. Once such an event is
identified, the prefix of the violation trace up to and
included the undesirable event constitutes a negative
scenario. For instance, the sequence 〈tick, enableSig-
nal, raiseAboveLow, lowerBelowLow, startSignal, tick,
stopSignal〉 would be the negative scenario elaborated
from the feedback given in Figure 1.

269

Whereas the selection of the negative scenario is nat-
urally implied by the violation trace and the goal it vi-
olates, the elaboration of positive scenarios is less rigid.
The main underlying principle is that the positive sce-
nario should be: i) a sequence of events exemplifying
a desirable occurrence of the event en in question, ii)
accepted by the LTS model of the given operational
specification, and iii) consistent with all the goal.

In cases where the negative scenario ends with tick,
the positive scenario should include, before this tick
event, the occurrence of an event that will make it per-
missible. If the negative scenario has a system event
as the last event en, then a positive scenario could,
in principle, be any finite sequence of events starting
from the initial state and ending with en, that is ac-
cepted by the LTS model and satisfies all goals. The
engineer could use the animation feature of the LTSA
system to animate the LTS model synthesised in the
previous phase through the same prefix of the viola-
tion trace up to but excluded the event en and then
follow alternative event transitions until the event en is
subsequently encountered and the goal is satisfied. An
heuristic for elaborating positive scenarios as counter-
parts to a negative scenario 〈e1, ..., en〉 is then to detect
sequences of the form 〈e1, . . . , en−1, ek1, . . . , ekm, en〉
where 〈e1, . . . , en−1〉 is a prefix of the negative scenario,
and the sequence ek1, . . . , ekm, en is an alternative, but
this time desirable, sequence of transitions ending with
the event en.
The question that naturally arises here is how different
should the positive scenarios be from an elaborated neg-
ative scenario? A possible heuristic is the richness of
positive scenarios with respect to a negative scenario.
This can be measured by how many state-based fluents
share the same truth value in the state where the con-
ditions of an operational requirement (either pre- or
trigger-conditions) are evaluated, over the collection of
positive and negative scenarios elaborated by the engi-
neer. The fewer these fluents are the richer the collec-
tion of positive scenarios is with respect to the negative
scenario. Our case study indicates that there is a linear
dependancy between the richness of the scenarios and
that of pre- and/or trigger-conditions computed during
the learning phase.

3.3 Phase 3: Learning

The objective of this third phase is to compute sug-
gestions of operational requirements, pre- and trigger-
conditions, that added to the specification resolve the
violation detected during the analysis phase. The input
to this phase includes a (partial) specification of op-
erational requirements, and the positive and negative
scenarios elaborated by the engineer. By construction,

the previous phase guarantees that both the positive
and negative scenarios are accepted by the LTS syn-
thesised in the analysis phase, so the outcome of the
learning phase has to be a set of operational require-
ments that together with the current specification, will
yield an LTS that still accepts the positive scenarios
but none of the negative ones.

In non-monotonic inductive learning terms [20], this
problem is expressed as the task of learning a set of hy-
pothesis that, added to a given specification, removes
the negative examples E− from the current set of con-
sequences, while preserving the positive examples E+.
Our learning phase uses the non-monotonic learning
system XHAIL [20]. This takes in input a set of Prolog
rules, Π, and a set of positive and negative examples,
E+ and E−, also expressed in Prolog, and computes a
set of new (Prolog) rules, H, that added to Π derives
E+ but not E−. The computation of H is performed
within a search space defined by a language bias, also
given to the XHAIL system in input to define the syn-
tactic form of the rules that can be learned.

The first step of our learning phase is to encode the
FLTL specification and the scenarios into Prolog. An
automated encoding function has been developed [1]
that provides a sound implementation of an FLTL spec-
ification into an Event Calculus [18] Prolog program
(see Theorem 1 in [1]) to reason about time and ef-
fect of events. The positive and negative scenarios are
also encoded into appropriate Prolog facts (E+ and
E−). The language bias must be pre-set for the sys-
tem. For validation purposes, in our case studies, we
have mainly focused on the syntactic form of pre- and
trigger-conditions considered by the KAOS approach
[16], and corresponding Prolog-based language bias has
been defined [1]. But, as discussed in Section 5, the
approach is general enough to support the computa-
tion of more elaborate temporal rules. The XHAIL
system is then used as a “back-end” tool on the au-
tomatically generated Prolog program and examples.
The outcome is then also automatically translated back
into the FLTL syntactic form of pre- and/or trigger-
conditions and returned to the engineer. As the encod-
ing function from FLTL and scenario into Prolog and
vice-versa are automatically done, the learning phase
is essentially a “black-box” process of our approach.
No expertise is required by the engineer of Prolog and
of the usage of the learning system. The formal cor-
rectness of this “black box” process has been shown in
[1] for the case of learning pre-conditions. The correct-
ness of the process of learning trigger-conditions is a
natural extension of these results. In simple terms, it
can be shown that the pre- and trigger rules learned
by the XHAIL system to cover given positive examples

270

and none of the negative ones, translated back into the
FLTL representation provide the operational require-
ments needed to be added to the current specification
in order to remove the negative scenario while preserv-
ing the positive one.

Within the context of the safety injection sys-
tem, given the specification in Subsection 3.1 and the
elaborated negative and positive scenarios illustrated
in Subsection 3.2, the learning phase would return
Pre(startSignal)= ¬Overridden indicating “safety in-
jection signal not overridden” as a pre-condition for
startSignal formally expressed as:

�(tick → (Overridden →©(¬startSignal U tick))

In the next analysis phase, the new specification ob-
tained after adding these new requirements, produces
an LTS model that still accepts the positive scenarios
but now rejects the negative ones and therefore rejects
the trace identified in the previous analysis phase.

3.4 Phase 4: Selection

The outcome of the learning phase consists of a set of
operational requirements. The engineer is required to
select from the proposed operational requirements and
add his/her selection to the current specification. Any
of the produced solutions are formally correct, meaning
that any choice will remove the violation detected in
the analysis phase, cover the positive and not cover
the negative scenarios1.

The choice of operational requirement to include in
the specification has an impact on the overall elabo-
ration process. For instance, pre-conditions that are
too strong (e.g. a pre-condition that restricts the oc-
currence of events more than necessary) may constrain
the new specification too much and impair the learning
process in subsequent iterations. On the other hand,
pre-conditions that are too weak may only marginally
constraint the specification and lead to a larger number
of iteration steps before termination. The role of the
engineer during this phase is therefore crucial. Provid-
ing automated guidance for this phase is discussed in
Section 5.

3.5 The Cycle
The above describes the steps applied in a single it-

eration of the approach. The process is assumed to
be repeated until all the necessary pre-conditions and
trigger-conditions have been learned, which, together
with the initial specification allow only those behav-
iors that satisfy the goals. Consider again the exam-

1In case the engineer provides scenarios that are inconsistent
with the given specification, the learning phase will fail to find
requirements that are consistent with the given specification and
scenario, and return a warning message

ple. Running the analysis again on the model of the
extended specification results in the following violation
trace.
Trace to property violation in

SafetyInjectionWhenReactorOnAndLowPressure:

tick PressureBelowLow

raiseAboveLow

raiseAbovePermit

startUpReactor

tick

lowerBelowPermit

lowerBelowLow PressureBelowLow

stabilizeReactor ReactorOn && PressureBelowLow

tick ReactorOn && PressureBelowLow

raiseAboveLow ReactorOn

tick ReactorOn

Analysed in: 7ms

This counterexample is the basis for the positive and
negative scenarios depicted in Figures 3 and 4, which
in turn lead to the learning two alternative trigger-
conditions for startSignal.

The termination of this cycle is based upon the in-
variant property that from one iteration to another,
the number of violation traces for the violated goal pro-
gressively reduces. This means that assuming that two
iterations are needed to satisfy the goal model G, the
traces in the LTS model of Speci, that violate the goals
G strictly includes the set of traces in the LTS model
of Speci+1 that violate the goals. This is because the
addition of a pre-condition and/or trigger-condition to
the current specification reduces the number of vio-
lation traces, provided that the initial set of violation
traces accepted by the LTS model generated from Spec
is finite and no further goals are added to G. The ap-
plication of our approach to two case studies, the Mine
Pump System [12] and Injection System [4], has so far
successfully confirmed the termination of the cycle and
its convergence to the computation of a complete set
of requirements that are complete with respect to the
given goal model.

4 Case Study

This section reports on a case study we conducted
to validate our approach. We report here in detail on
a Mine Pump Controller case study taken from [12]. ,
and briefly discuss our experience of applying the ap-
proach to the London Ambulance System case study
defined in [9].

For each of the systems studied, we had an informal
description of the system-to-be, a linear temporal logic
representation of its high level goals and a formal oper-
ationalisation of the goals, that is, a set of operational
requirements that is complete with respect to the goals.
It is important to note that all these elements, informal
description, goals, and operational requirements, were
produced by a third-party. The case studies consisted

271

in starting from the high-level goals and applying the
iterative method described in this paper. Human inter-
ventions required by the approach were performed by
one of the authors based on her understanding of the
informal description of the system and the high-level
goals. Having completed all iterations, the operational
requirements learned were compared to the ones pro-
vided. In all cases, we were able to learn the provided
operational requirements, however, in some cases we
were also able to identify alternative operationalisa-
tions of the high-level goals.

In addition to the LTSA and the XHAIL systems,
the case studies were conducted using a number of au-
tomated translation tools that support sound conver-
sion of the various formalisms used in our approach.
Note that the case studies were executed on a stan-
dard desktop computer (Core2Duo, 1 GB RAM) and
that each iteration within a single case studies required
less than 11 seconds of computation time.

4.1 Mine Pump Controller
The controller of a mine pump [12] is expected

to monitor and control water levels in a mine, to
prevent water overflow. It is composed of a pump for
pumping mine-water up to the surface and sensors for
monitoring the water levels and methane percentage.
The pump must be activated once the water has
reached pre-set high water level and deactivated once
it reaches low water level. Moreover, the pump must
be switched off if the percentage of methane in the
mine exceeds a certain critical limit. The goals are
expressed in asynchronous FLTL as:

G[PumpOnWhenHighWaterANDNoMethane]
= �(tick → ((HighWater ©¬Methane) →

©(¬tickW (tick ∧ PumpOn))))
(1)

G[PumpOffWhenLowWater]
= �(tick → (LowWater →

©(¬tickW (tick ∧ ¬PumpOn))))
(2)

G[PumpOffWhenMethane]
= �(tick → (Methane →

©(¬tickW (tick ∧ ¬PumpOn))))
(3)

G[AlarmWhenMethane]
= �(tick → (Methane →

©(¬tickW (tick ∧Alarm))))
(4)

The fluents appearing in the goal formalisation are
defined as follows:

fluent PumpOn=< {switchPumpOn}, {switchPumpOff} >
fluent HighWater=< {raiseWaterLevel[High-1]},

{lowerWaterLevel[High]} >
fluent LowWater=< {lowerWaterLevel[Low+1]},

{raiseWaterLevel[Low]} >
initially True

fluent Methane=< {signalMethane},

{signalNoMethane } >
fluent Alarm =< {raiseAlarm}, {stopAlarm} >

where High and Low are preset thresholds equal to 10
and 3 respectively.

We start the case study assuming no pre- and
trigger-conditions are known. What follows is a sum-
mary of some of the iterations resulting from the ap-
plication of our approach.

Iteration 1
Analysis: The analysis phase resulted in the following
violation trace:

Trace to property violation in PumpOffWhenLowWater:

tick LowWater

switchPumpOn LowWater && PumpOn

tick LowWater && PumpOn

Analysed in: 0ms

This trace exemplifies a possible system behaviour
which violates the goal PumpOffWhenLowWater since
the goal requires the pump to be off at the last tick.

Scenario Elaboration: The switchPumpOn is
identified as the undesirable event. The negative
scenario 〈tick, switchPumpOn〉 is elaborated. A
possible positive scenario is 〈tick, raiseWaterLevel.0,
tick, raiseWaterLevel.1, tick,..., raiseWaterLevel.10,
tick switchPumpOn〉.

Learning: The learning phase produces the two
alternative pre-conditions for switchPumpOn:

Pre(switchPumpOn) = ¬LowWater
�(tick → ((LowWater) →

©¬switchPumpOn U tick))
(5)

Pre(switchPumpOn) = HighWater

�(tick → ((¬HighWater)) →
©¬switchPumpOn U tick))

(6)

Selection: Pre-condition (6) is added to Spec.
Iteration 2

The second iteration starts from the extended
specification Spec2 =Spec ∪ (6).

Analysis: The following violation trace is identified in
the second iteration.

Trace to property violation in PumpOffWhenLowWater:

tick LowWater

raiseWaterLevel.0 LowWater

tick LowWater

raiseWaterLevel.1 LowWater

tick LowWater

.

.

.

raiseWaterLevel.10

tick

switchPumpOn PumpOn

tick PumpOn

272

lowerWaterLevel.11 PumpOn

.

.

.

lowerWaterLevel.4 LowWater && PumpOn

tick LowWater && PumpOn

tick LowWater && PumpOn

Analysed in: 0ms

This trace exemplifies another system behaviour
which violates the goal PumpOffWhenLowWater.

Scenario Elaboration: The last tick is identified as
the undesirable event. The negative scenario hence
becomes 〈tick, raiseWaterLevel.0, tick, raiseWater-
Level.1, tick,..., lowerWaterLevel.4, tick, tick〉. A
possible positive scenario is 〈tick, raiseWaterLevel.0,
tick, raiseWaterLevel.1, tick,..., raiseWaterLevel.4,
tick, switchPumpOff, tick〉.

Learning: The learning phase in this case results in
the following alternative solutions:

Trig(switchPumpOff) = LowWater

�(tick → ((LowWater ∧ PumpOn) →
©¬tick U switchPumpOff))

(7)

and Trig(switchPumpOff) = ¬ HighWater

�(tick → ((¬HighWater ∧ PumpOn) →
©¬tick U switch.PumpOff))

(8)

Selection: The trigger-condition (7) is selected and
added to the specification after which the approach is
applied again.

Iterations 3 to 7
We omit these iterations due to lack of space. The
operational requirements learned in these iterations
are the following:

Trig2(switchPumpOff) = Methane

�(tick → ((¬Methane ∧ ¬PumpOn) →
©¬tick U switchPumpOff))

Pre(switchPumpOn) = ¬Methane
�(tick → ((Methane) →

©¬switchPumpOn U tick))
Trig(switchPumpOn) = HighWater ∧ ¬Methane
�(tick → ((HighWater ∧ ¬Methane)

→©¬tick U switchPumpOn))
Trig(raiseAlarm) = Methane

�(tick → ((Methane ∧ ¬Alarm) →
©¬tick U raiseAlarm))

Pre(stopAlarm) = ¬Methane
�(tick → ((Methane) →©¬stopAlarm U tick))

(9)

Iteration 8
This iteration starts from the extended specification

Spec8 = Spec2∪ (9).

Analysis: The following violation trace is produced

Trace to property violation in

PumpOnWhenHighWaterANDNoMethane:

tick LowWater

raiseWaterLevel.0 LowWater

tick LowWater

.

.

.

tick

raiseWaterLevel.10 HighWater

tick HighWater

switchPumpOn HighWater && PumpOn

tick HighWater && PumpOn

switchPumpOff HighWater

tick HighWater

Analysed in: 16ms

This trace indicates a violation to the goal
PumpOnWhenHighWaterANDNoMethane.

Scenario Elaboration: switchPumpOff is indi-
cated as the undesirable one. The negative scenario
here becomes 〈 tick, raiseWaterLevel.0, tick,,
tick, switchPumpOn, tick, switchPumpOff 〉. Two
possible positive scenarios are 〈 tick, raiseWa-
terLevel.0, tick,, tick, switchPumpOn, tick,
signalMethane,tick, switchPumpOff 〉 as well as 〈 tick,
raiseWaterLevel.0, tick,, tick, switchPumpOn, tick,
lowerWaterLevel.10, tick,...., lowerWaterLevel.4, tick,
switchPumpOff 〉

Learning: The learning phase in this case results in
the following alternative solutions:

Pre2(switchPumpOff) = LowWater ∨ Methane

�(tick → ((¬LowWater ∧ ¬Methane) →
©(¬ switchPumpOff U tick)))

(10)

and Pre2(switchPumpOff) = ¬ HighWater ∨ Methane

�(tick → ((HighWater ∧ ¬Methane) →
©(¬ switchPumpOff U tick)))

(11)

Selection: The precondition (10) is added to Spec8.
Running the analysis again on Spec9 = Spec8∪ (10)
gives the following output:

No deadlocks/errors

Analysed in: 125ms

which indicates that a complete set of requirements has
been computed.

Due to space restrictions, we have shown only a sub-
set of the alternative proposals that the learning phase
computes within a single iteration. It is important to
note that not only did the learning phase propose all
the operational requirements that could be generated
manually in [16] but also, in some cases together with
the operational requirements chosen in [16], the tool
proposed stronger requirements that raised interesting
issues regarding the behaviour of the controller. For
instance, in addition to proposing ¬LowWater as the
precondition for switchPumpOn, the learning tool pro-
posed the pre-condition HighWater which is perfectly

273

sensible: the goals under specify the behaviour of the
pump when water is neither high or low.

4.2 London Ambulance System
This case study is based on a system for dispatch-

ing ambulances to incidents in London. We applied
our approach to a simplified version of the case study
originally described in [9] considering the goal “If an
incident form has been encoded an available ambulance
should be allocated with in allocation delay time units”.
The case study showed that our approach is capable of
learning requirements for complex goals such as the one
which need to be satisfied within a bounded time pe-
riod. In addition, the case study demonstrates certain
flexibility of the approach to learn operational require-
ments of different syntactic structure. For instance, the
approach computed a trigger-condition allocateAmbu-
lance of the form: “the incident form has been encoded
and the ambulance has not been allocated within alloca-
tion delay time units” formally expressed as (Encoded
S≤allocation delay¬ Allocated).

5 Discussion and Related Work
The approach described in this paper generalises

that proposed in [2], which also integrates model check-
ing and inductive learning. In [2], sets of pre-conditions
are learned to guarantee a time progress property. The
work described herein extends this approach, as it sup-
ports learning trigger-conditions and does not restrict
goals to a specific kind of liveness property.

In Section 3.5, we have presented an argument con-
cerning the termination of the cycle. Successful ter-
mination clearly holds in the case when the engineer
is successful in elaborating those negative and positive
scenario that directly contribute to learning complete
and correct set of pre- and trigger-conditions with re-
spect to the goals. Common to any technique that in-
volves user intervention, backtracking maybe required
in situations where the engineer fails to elaborate the
scenarios correctly.

The work which is most related to ours is [16]. In
[16], a pattern-based approach is proposed. From a
temporal logic representation of the goals, it is possi-
ble to derive operational requirements by applying the
appropriate pattern to terminal goals [8]. For instance
given the goals G1 and G2 it possible to derive the
trigger-conditions for startSignal and preconditions for
stopSignal by applying the immediate achieve pattern
to the goals[16]. However, because our approach relies
on analyses of behaviour traces rather than temporal
formulae, the processes such as goal refinement, obsta-
cle analysis and operationalisation [8] can be bypassed
provided the engineer gives the appropriate scenarios.

Other related work on the use of machine learning
techniques as automated support in various aspects of
requirements engineering include [13, 5, 3, 21]. Most
relevant to our work is the approach in [13], where goal
assertions, expressed in LTL, are iteratively inferred
from user-given scenarios. Each iteration takes a sin-
gle user scenario and generates a set of goal expressions
that satisfy the scenario under certain considerations.
These are added to the existing goal model, and the
extended model checked for obstacles. The inductive
learning process adopted in [13] does not take into ac-
count the current goal model as background whereas
one of the main advantages in using the XHAIL system
is the use of the current specification. Consequently the
goals learned in [13] may be inconsistent, obstacles may
be detected and a process of obstacle resolution may be
needed before a subsequent iteration is performed. In
our approach, however, the operational requirements
that are learned during one iteration are guaranteed to
be consistent with the current partial specification.

The work in [5, 6] uses grammar inference to support
automated behavior model synthesis from user-defined
scenarios. This involves generating an LTS that sat-
isfies all given positive scenarios and none of the neg-
ative ones. Starting from this initial LTS model, the
inference procedure attempts to generalise this model
by merging states of the LTS and still preserving the
initial set of scenarios. After each merge, the user is
requested to categorize specific paths of the new LTS
as positive or negative. To reduce the number of sce-
narios to be classified, a goal specification is assumed
and only paths satisfying the goals are presented to the
user. The generalisation process is based on a bottom-
up search. It starts with the most constrained LTS
(i.e. the LTS that only contains paths that cover the
initial set of scenarios) and progressively generalises it
by merging states and therefore including more behav-
iors. This generalization process, however, depends on
the order in which the states are considered for merg-
ing. On the other hand, the approach proposed in this
paper considers a top-down search. It starts from the
least constrained LTS model that satisfies the given
specification, and it refines it adding pre- and trigger-
conditions on system events that eliminate undesirable
behaviors. In contrast to [5, 6], this allows the addition
of information such as goals and even scenarios that ex-
tend the alphabet of the description, during the process
without requiring to start the process from scratch.

6 Conclusion

This paper proposes a tool-supported framework for
requirements operationalisation from high-level goals
that integrates model checking and inductive learning.
The process supports an important activity in goal-

274

based requirements engineering and complements ex-
isting approaches, by learning requirements that can-
not be derived from operationalisation patterns.

The approach complements standard model check-
ing techniques by providing automated refinement
via inductive learning. We believe the combination
of model-checking for automated counterexample
generation and inductive learning for automated
generation of declarative expressions can be applied
to a number of software engineering activities. In
particular, an interesting extension of this approach
would be to, support a component-based view of the
software-to-be. This would mean learning operational
requirements for individual components by taking into
account the underlying architecture which may also
increase the approach’s scalability to large systems.

Acknowledgement The work reported herein was
partially supported by EP/F023294, CONICET, ERC
204853/PBM, UBACyT X021, and ANPCyT PICT
32440 and King Saud University.

References

[1] D. Alrajeh, O. Ray, A. Russo, and S. Uchitel. Extract-
ing requirements from scenarios with ILP. In Proc. of
16th ILP Conf., pages 63–77, 2006.

[2] D. Alrajeh, A. Russo, and S. Uchitel. Deriving non-
zeno behavior models from goal models using ILP. In
Proc. of 10th FASE Conf., pages 1–15, 2008.

[3] E. Clarke, A. Gupta, J. Kukula, and O. Strichman.
SAT based abstraction-refinement using ILP and ma-
chine learning techniques. In Proc. of CAV, 2002.

[4] P.J. Courtois and D. L. Parnas. Documentation for
safety critical software. In Proc. of 15th ICSE, pages
315–323, 1993.

[5] C. Damas, P. Dupont B. Lambeau, and A. van Lam-
sweerde. Generating annotated behavior models from
end-user scenarios. IEEE TSE Journal, Special Issue
on Interaction and State-based Modeling, 31(12):1056–
1073, 2005.

[6] C. Damas, B. Lambeau, and A. van Lamsweerde. Sce-
narios, goals, and state machines: a win-win partner-
ship for model synthesis. In Proc. of FSE Symp, 2006.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. Science of Com-
puter Programming, 20(1):3–50, 1993.

[8] R. Darimont and A. van Lamsweerde. Formal re-
finement patterns for goal-driven requirements elab-
oration. SIGSOFT Softw. Eng. Notes, 21(6):179–190,
1996.

[9] A. Finkelstein. The london ambulance system case
study. In Proc. of 8th Intl. Workshop on Software Spec-
ification and Design, pages 5–19, 196.

[10] D. Giannakopoulou and J. Magee. Fluent model
checking for event-based systems. In Proc. of ACM
ESEC/FSE-11, pages 257–266, 2003.

[11] ITU. Message Sequence Charts. International
Telecommunications Union, Telecommunication Stan-
dardisation Sector, 1996.

[12] J. Kramer, J. Magee, and M. Sloman. Conic: An inte-
grated approach to distributed computer control sys-
tems. In IEE Proc., Part E 130, pages 1–10, 1983.

[13] A. Van Lamsweerde and L. Willemet. Inferring declar-
ative requirements specifications from operational sce-
narios. IEEE TSE Journal, 24(12):1089–1114, 1998.

[14] E. Letier. Goal-oriented elaboration of requirements
for a safety injection control system. Technical report,
Dèpartement d’Ingènierie Informatique, UCL, 2002.

[15] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriv-
ing event-based transition systems from goal-oriented
requirements models. ASE Journal, 15:175–206, 2008.

[16] E. Letier and A. Van Lamsweerde. Deriving opera-
tional software specifications from system goals. In
Proc. of 10th ACM FSE Symp., pages 119–128, 2002.

[17] J. Magee and J. Kramer. Concurrency : State Models
and Java Programs. John Wiley and Sons, 1999.

[18] R. Miller and M. Shanahan. Some alternative formu-
lation of event calculus. Computer Science; Compu-
tational Logic; Logic programming and Beyond, 2408,
2002.

[19] J. Mylopoulos, L. Chung, and B. A. Nixon. Represent-
ing and using nonfunctional requirements: A process-
oriented approach. IEEE TSE, 18:483–497, 1992.

[20] O. Ray. Using abduction for induction of normal logic
programs. In Proc. of 2nd Workshop on AIAI and
Scientific Modelling, pages 28–31, 2006.

[21] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An
abductive approach for analysing event-based require-
ments specifications. In Proc. of 18th ICLP, volume
2401 of LNCS, pages 22–37, 2002.

275

