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Abstract
Modal Transition Systems (MTSs) provide an appropriate framework for modelling software

behaviour when only a partial specification is available. A key characteristic of an MTS is that
it explicitly models events that a system is required to provide and is proscribed from exhibiting,
and those for which no specification is available, called maybe events. Incremental elaboration of
maybe events into either required or proscribed events can be seen as a process of MTS refinement,
resulting from extending a given partial specification with more information about the system
behaviour. This paper focuses on providing automated support for computing strong refinements
of an MTS with respect to event traces that describe required and proscribed behaviours using
a non-monotonic inductive logic programming technique. A real case study is used to illustrate
the practical application of the approach.
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1 Introduction

A Modal Transition System (MTS) is a state-transition formalism for specifying and verify-
ing system behaviour. It extends conventional models such as Labelled Transition Systems
(LTSs) by introducing modalities over transitions. Hence, an MTS not only models the
events that a system is required to provide and is proscribed from exhibiting, but also expli-
citly models the events which system being modelled cannot guarantee to admit or prohibit,
called maybe events.

Though MTSs have been introduced for over twenty years [9], it is only recently that
the software engineering community has begun to develop automated support for stepwise
elaboration of system requirements through MTSs. Intuitively, an MTS can be seen as a
class of possible system implementations, each generated by changing maybe transitions into
either required or proscribed. Within this context, a key notion is that of modal refinement
[8]. Modal refinement is the process of incrementally refining an MTS, as more information
about the system becomes available, by modifying possible behaviours into behaviours that
must be provided or prevented by every system implementation of the given MTS. A final
refined MTS would therefore be an LTS with just required events, where all unspecified
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events are assumed to be proscribed. We refer to this refined model as an implementation.
Much work has been done on theoretical aspects of modal refinement and different notions of
refinements have been presented (i.e. strong, weak and branching refinement[4]). However,
how to compute these different refinements remains still an open problem.

The aim of our work is to provide a formal, tool-supported platform for incremental
refinement of MTSs. This paper presents a first step towards such a general framework, in
which it is shown how inductive learning can be used to compute strong refinements of MTSs
from event traces. We consider a partial system description, consisting of a specific class
of safety properties expressed in temporal logic, and assume that traces and the transitions
to be required or proscribed are either provided by the user or automatically computed by
model checking a given MTS with respect to some property. This description is encoded into
an Event Calculus (EC) logic program, whose language is close to existing logic formalisms
used in MTS synthesis and verification, and which allows explicit representation of event oc-
currences at different (time) points, through its time structure. We deploy a non-monotonic
Inductive Logic Programming (ILP) system to generate new safety properties from event
traces that would either require and proscribe transitions, and show how the learned prop-
erties characterise a class of implementations of the original MTS with respect to the given
traces. The proposed approach is much influenced by our recent work on the elaboration of
software requirements through ILP [1, 2] where we have shown how non-monotonic learning
can be used to compute an implementation (i.e. an LTS) that satisfy a given set of proper-
ties from scenarios. In this paper, we show how inductive learning can be used to computes
classes of implementations.

The paper is organised as follows. Section 2 describes background work on MTSs and the
specification language used to construct and verify MTSs. Section 3 describes the proposed
methodology. Section 4 presents a case study used to evaluate the our refinement process
and Sections 5 and 6 conclude the paper with a discussion of related and future work.

2 Background

A Modal Transition System is a formalism used for modelling and reasoning about the
behaviour of a system. A formal definition of an MTS is given below.

I Definition 1 (Modal Transition System). A Modal Transition System is a tuple M =
(S,Act,∆r,∆p, s0) where Act is the alphabet of label events, S a set of state, ∆r ⊆ S×Act×S
the set of required transitions, and ∆p ⊆ S × Act × S the set of possible transitions, such
that ∆r ⊆ ∆p. Transitions that are possible but not required are called maybe transitions.
An MTS is said to have a required transition on a, denoted s a−→r s

′, if (s, a, s′) ∈ ∆r. It is
said to have a possible transition on a, denoted s a−→p s

′, if (s, a, s′) ∈ ∆p.

An implementation is an MTS (S,Act,∆r,∆p, s0) where ∆r = ∆p, also referred to as an
LTS. An MTS can be represented as a directed graph in which nodes correspond to states
and the edges between two nodes represent the transition relation. Maybe transitions are
denoted with a question mark following the event label. System executions are represented as
sequences of transitions called traces. A trace can be either required, possible or proscribed.
A formal definition is given below. The definition of a trace presupposes that only one event
can occur at a single position in a trace, i.e. events cannot occur simultaneously.

I Definition 2 (Traces). Let M = (S,Act,∆r,∆p, s0) be an MTS. A trace σ = a1, a2, ...

where ai ∈ Act is said to be a required trace in M if there exists in M an infinite sequence of
transitions s0

a1−→r s1, s1
a2−→r s2...; it is said to be a possible trace in M if there exists in M
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an infinite sequence of transitions s0
a1−→p s1, s1

a2−→p s2..., where (si, ai+1, si+1) ∈ ∆p for
each i ≥ 0, and there is at least one transition relation in the sequence that is in ∆p −∆r.
Otherwise, it is said to be a proscribed trace in M.

In this paper, we refer to traces that should be possible in a model as positive traces, and
to traces that should be proscribed as negative traces. The notion of modal refinement
is defined between two MTSs and states when one MTS is “more defined” than another.
Given two MTSs N and M , N is said to refine M if N preserves all the required and all
the proscribed transitions of M . In this paper we assume a particular notion of refinement
relation, called strong refinement, which assumes that all MTSs share the same alphabet [9].
This is defined as follows.

I Definition 3 (Strong Refinement). Let ℘ be the universe of all MTSs for a given alphabet
Act. An MTS N = (U,Act, δr, δp, u0) is a refinement of an MTS M = (S,Act,∆r,∆p, s0),
written as M � N , if there exists some refinement relation R ⊆ S × U such that, for all
s ∈ S and u ∈ U , if (s, u) ∈ R, the following holds for every label a in Act:

if (s a−→r s
′), then for some u′ ∈ U , (u a−→r u

′ ∧ (s′, u′) ∈ R); and
if (u a−→p u

′), then for some s′ ∈ S, (s a−→p s
′ ∧ (s′, u′) ∈ R).

An MTS can be synthesised from and verified against formulae expressed in some form
of temporal logic. We give here a brief description of FLTL[7] as the language used by
the MTSA model checker [3]. In FLTL, a fluent f is defined by a tuple consisting of a
set If of initiating events, a set Tf of terminating events and an initial truth value (tt
or ff), such that If ⊆ Act, Tf ⊆ Act and If ∩ Tf = ∅. We write f = 〈If , Tf , Init〉 as a
shorthand for a fluent definition, where Init∈ {tt,ff}. Every event label a ∈Act defines a
fluent ȧ = 〈a,Act\{a},ff〉. We refer to such fluents as event fluents.

Given the set of fluents F , FLTL formulae can be constructed using the standard boolean
connectives and temporal operators

tt | ff | f | ¬φ | φ ∨ ψ | φ ∧ ψ | Xφ | φUψ | Fφ | Gφ

Given a set of traces Σ over Act and a set D of fluent definitions, a fluent is said to be true
in a given trace σ = 〈a1, ...., an〉 at position i with respect to D, denoted σ, i |=D f , if and
only if either of the following conditions hold:

f is defined initially true and ∀j ∈ N . ((0 < j ≤ i)→ aj 6∈ Tf );
(∃j ∈ N . (j ≤ i) ∧ (aj ∈ If )) ∧ (∀k ∈ N .((j < k ≤ i)→ ak 6∈ Tf )).

In other words, a fluent f holds if and only if it is initially true or an initiating event
for f has occurred, and no terminating event has occurred since. The semantics of boolean
connectives are defined in the standard way. The semantics of the temporal operators are
defined as follows:

σ, i |=D Xφ, if and only if σ, i+ 1 |=D φ

σ, i |=D φUψ, if and only if ∃j ≥ i. σ, j |=D ψ and ∀i ≤ k < j. σ, k |=D φ

σ, i |=D Gφ, if and only if ∀j ≥ i. σ, j |=D φ

σ, i |=D Fφ, if and only if ∃j ≥ i. σ, j |=D φ

Given that MTSs represent a set of possible implementations, it is often necessary to
reason about properties that hold in some or all implementations or none. Thus the satis-
faction of FLTL formulae over MTSs is given a 3-valued semantics. An MTS M is said to
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satisfy a property φ with respect to D, if φ is satisfied in every possible trace of M with
respect to D. It is said to be violated in M , if there is a required trace in M that refutes
it or if all possible traces in M violate it. Otherwise, the satisfaction of φ is unknown,
meaning that some implementations satisfy φ while others do not. Two FLTL formulae φ
and ψ are consistent if there exists a model M that satisfies the formula φ ∧ ψ. For the
remainder of this paper, we use ℘(φ) to denote an MTS that satisfies φ with respect to D.
Furthermore, we consider only safety properties of the form (G (

∧
0≤i fi → X(¬)ȧ)) where

fi is a literal over event or non-event fluent, and a is an event label. We also assume that
the MTS synthesised from given safety properties is the least refined MTS that satisfies the
given properties (for further detail see [13]).

3 Approach

The aim of our work is to develop an automated approach for refining MTSs, given a set
of traces that represent required and proscribed system behaviour. In this paper we focus
on the notion of strong refinement given in Definition 3 and on FLTL safety properties of
the form (G (

∧
0≤i fi → X(¬)ȧ)) described above. The input to our approach is a set D

of fluent definitions, a set Γ = {γi} of safety properties and two disjoint sets of positive
and negative traces, Σ = Σ+ ∪Σ− that are possible traces in the MTS M synthesised from
Γ. The input D, Γ and Σ are encoded into an Event Calculus (EC) logic program, and a
non-monotonic ILP system is used to learn rules about required and proscribe transitions
that can be translated back into FLTL safety properties Φ satisfying the following property:
the MTS N synthesised from the (refined) property

∧
γi ∧ Φ is a strong refinement of the

given MTS M where every trace in Σ+ is a possible trace in N and every trace in Σ− is a
proscribed trace in N .

I Definition 4 (Refinement with respect to traces). Let M = 〈S,Act,∆r,∆p, s0〉 and let
Σ = Σ+ ∪ Σ− be a set of positive and negative traces that are possible in M . An MTS
N = 〈U,Act, δr, δp, u0〉 is a correct refinement of M with respect to Σ if and only if N is a
refinement ofM (M � N) and every trace σ+∈ Σ+ is a possible trace in N , and every trace
σ−∈ Σ− is a proscribed trace in N .

I Definition 5 (Refinement Task). Let Γ = {γ1, ..., γn} be a set of FLTL safety properties,
let D a set of fluent definitions, let M = ℘(

∧
γi) be an MTS that satisfies Γ w.r.t D and

Σ = Σ+ ∪ Σ− a set of positive and negative traces that are possible in M . The refinement
task is to find an FLTL safety property Φ such that the MTS N = ℘(

∧
γi ∧ Φ) is a correct

refinement of M with respect to the traces in Σ. We call Φ a consistent extension of Γ.

3.1 An Event Calculus for MTSs
The Event Calculus is a widely-used logic programming formalism for reasoning about ac-
tions and time [12]. The definition of an EC language in this paper includes terms of
four different types: event terms, fluent terms, time (here referred as position) terms and
trace terms. Position terms are represented by the non-negative integers 0, 1, 2, . . . , events
correspond to actions that can be performed, fluents correspond to time-varying Boolean
properties, and traces are constants denoting different (independent) time lines.

The EC ontology includes the basic predicates happens, initiates, terminates, initially
and holdsAt. The atom happens(e, p, c) indicates that event e occurs at position p in a
trace c, initiates(e, f) (resp. terminates(e, f)) means that, if event e were to occur, it would
cause fluent f to be true (resp. false) immediately afterwards. The predicate holdsAt(f, p, c)
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110 An Inductive Approach for Modal Transition System Refinement

indicates that fluent f is true at position p in a trace c, and initially(f) means that fluent f is
initially true. The formalism also includes an auxiliary predicate clipped(p1, f, p2, c) which is
defined as an event that terminates f occurs between positions p1 and p2 in a trace c. The
interactions between these EC predicates are governed by the set of domain-independent
core axioms defined below, where not denotes negation by failure.

clipped(P1,F,P2,C) : − happens(E, P, C), terminates(E, F), P1 ≤ P<P2.

holdsAt(F,P2,C) : − happens(E,P1,C), initiates(E,F), (1)
P1 < P2, not clipped(P1,F,P2,C).

holdsAt(F,P,C) : − initially(F), not clipped(0,F,P,C).

To capture in EC the different types of MTS transitions we have extended the lan-
guage with the predicates required, proscribed, and maybe. The atom required(e, p, c) (resp.
proscribed(e, p, c)) means that event e’s occurrence is required (resp. proscribed) at position
p in a given trace c. The atom maybe(e, p, c) is defined in (2) below and means that the
occurrence of event e at position p in trace c has not yet been specified.

maybe(E,P,C):- not required(E,P,C), not proscribed(E,P,C). (2)

Auxiliary predicates are also introduced to refine and appropriately constraint the notion of
occurrence of event: req_happens(e, p, c) is used to capture the fact that all required events
must happen, and may_happens(e, p, c) defines that a maybe event may happen at some
position in a trace if executed at that position in that trace. They are related to the happen
predicate by the following axioms:

req_happens(E,P,C):- required(E,P,C). (3)
may_happens(E,P,C):- executed(E,P,C), maybe(E,P,C). (4)

happens(E,P,C):- may_happens(E,P,C). (5)
happens(E,P,C):- req_happens(E,P,C). (6)

Integrity constraints over these predicates are captured by the following denial rules1:

false:- required(E,P,C), proscribed(E,P,C). (7)
false:- required(E,P,C), not executed(E,P,C). (8)
false:- happens(E1,P,C), happens(E2,P,C), not eq(E1,E2). (9)

Constraint (7) states that an event cannot be required and proscribed at the same position in
a trace, whereas constraint(8) states that a required event must be executed at the position
where it is required. A weaker semantics for required transitions is discussed in Section 5.

In addition to the above domain-independent axioms, our EC program is equipped with
domain-dependent axioms that capture properties of the given partial system description.
The following definition shows how FLTL partial specifications are encoded into domain-
dependent EC axioms.

I Definition 6 (EC Encoding). Let Γ = {γ1, ..., γn} be a set of safety properties, D a set of
fluent definitions and Σ a set of finite traces, such that every trace in Σ is a possible trace
in MTS M = ℘(

∧
γi). The EC encoding of Γ and D, denoted EC (Γ ∪ D ∪ Σ), is the EC

program Π constructed as follows:

1 Denial rules take the form false :- (not)b_1, . . . , (not)b_n where b_i can be any atom defined in
the language.
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add to Π, for each fluent definition f = 〈{ai}, {bi}, Init〉 in D,
the set of facts initiates(ai, f) and terminates(bi, f),
the fact initially(f) if f is defined in D as initially true,

add to Π, for each safety property of the form �(
∧

0≤i≤k(¬)fi →©¬ȧ),
the rule proscribed(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C)2,
add to Π, for each safety property of the form �(

∧
0≤i≤k(¬)fi →©ȧ),

the rule required(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C),
add to Π, for each trace σj = 〈a1, ..., an〉 ∈ Σ,
the set of facts executed(ai, i− 1, cj), where 0 < i ≤ n and cj denotes the trace σj .

The EC program described above is a normal logic program for which we use the notions
of stable model semantics and entailment under credulous stable model semantics [6]. Hence
we say that an EC program Π entails an expression π, denoted Π |= π, if and only if π is
satisfied in at least one stable model of Π. The following theorem proves that the above EC
encoding is sound.

I Theorem 7 (Soundness of EC Encoding). Let Γ be a set of safety properties, D be a set of
fluent definitions and M = (S,Act,∆r,∆p, s0) an MTS that satisfies Γ with respect to D.
Let σ = 〈a1, ..., an〉 be a finite possible trace in M . Let Π be the EC logic program given by
EC(Γ ∪D ∪ σ) and let I be a stable model of Π. Then, for each fluent f in D and position
p in σ, where 0 ≤ p ≤ n, f is true at position p in σ if and only if holdsAt(f, p, σ) ∈ I;
for every event a ∈ Act and position p in the trace σ, where 0 ≤ p ≤ n, there is a required
transition on a at position p in M if and only if req_happens(a, p− 1, σ) ∈ I and there is a
maybe transition on a at p in M if and only if may_happens(a, p− 1, σ) ∈ I.

The proof is by induction of the position p in the trace σ, using the fact that Π is a locally
stratified program and, as such, has a unique stable model.

3.2 Refining MTS using Inductive Logic Programming
Inductive Logic Programming (ILP) is concerned with the computation of hypotheses H
that extend a prior background theory B to entail a set of examples E, i.e. B ∪ H |= E

[10]. The hypotheses H are assumed to be part of a set of clauses HS, called the hypothesis
space, which defines all hypotheses that would be accepted as a solution.

I Definition 8 (Inductive Solution). Given a normal logic program B, a set of ground literals
E, and a set of clauses HS, the task of ILP is to find a normal logic program H ⊆ HS,
consistent with B, such that B ∪H |= E under the stable model semantics. H is called an
inductive solution for E with respect to B and HS.

In our refinement approach, the inductive learning task is to compute hypotheses H from a
background B, given by the EC encoding of a partial system specifications, that is consistent
with the given specification, and that entails, together with B, require and proscribe event
transitions specified in a given set of traces. The (possible) traces in a given Σ are therefore
translated into facts about what is required to happen and what should be proscribed
from happening in the refined model. These facts constitute the set E of examples for our
inductive learning task.

2 (not) preceding a literal is a shorthand for either the positive or negative form of that literal.

ICLP 2011



112 An Inductive Approach for Modal Transition System Refinement

I Definition 9 (EC encoding of event traces into examples). Let Γ = {γ1, ..., γn} be a set
of safety properties, D a set of fluent definitions and Σ+ ∪ Σ− a set of finite positive and
negative traces, such that every trace in Σ is a possible trace in MTS M = ℘(

∧
γi). The

EC translation of traces in Σ into examples E, denoted EC(Σ), is constructed as follows:
for each trace σ+

j = 〈a1, ..., am〉 ∈ Σ+ where s0
a1−→p s1, ..., sm−1

am−→p sm in M
add to E facts req_happens(ai, i− 1, cj) for every transition si−1

ai−→p si that should
be required, where 1 ≤ i ≤ m,
add to E facts happens(ai, i− 1, cj) for all other transitions, where 1 ≤ i < m,

for each trace σ−k = 〈b1, ..., bn〉 ∈ Σ−, where s0
b1−→p s1, ..., sn−1

bn−→p sn in M
add to E the fact not happens(bn, n− 1, ck).

So transitions in the traces of Σ+ that are intended to be required in the refined model are
formalised as req_happens atoms, and transitions in the traces of Σ− that are intended to be
proscribed are encoded with not happens literals. All other transitions that are not defined
as required or proscribed, are represented as happens atoms.

To learn safety properties rules, we defined theHS to be the set of clauses with proscribed
or required in the head and holdsAt literals in the body. Because the examples are given
in terms of req_happens and (not) happens, and given our EC background knowledge, our
learning task requires an ILP algorithm capable of non-observational predicate and non-
monotonic learning. For this we have used the ILP system in [11].

In brief, for every transition that is assumed to be executed, and for which the background
knowldge B does not include any proscribed rule, the consequence that it may happen can be
derived from the background knowledge. This is inconsistent with the examples req_happens
or not happens given in E for the same event. So the learning algorithm explains the example
(consistently) by abducing a set A of ground required and proscribed facts for these trans-
itions. These then are used to form the head of the learned rules. Body literals are grounds
holdsAt literals derived from B∪A at the same positions of the traces of the adbuced literals.
These constructed ground rules are then generalised in a way that preserves consistency with
the integrity constraints included in the background knowledge. The learning may produce
alternative solutions. Once a solution H is chosen, this is translated back into FLTL. Rules
of the form proscribed(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C) are trans-
lated back into safety properties of the form �(

∧
0≤i≤k(¬)fi →©¬ȧ), while rules of the form

required(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C) are translated back into
FLTL properties of the form �(

∧
0≤i≤k(¬)fi →©ȧ). The soundness of the learning step is

proved by Lemma 10 and Theorem 11.

I Lemma 10. Let Γ = {γ1, ..., γn} be a set of properties expressed in FLTL, D a set of
fluent definitions and Σ = Σ+ ∪ Σ− a set of traces, such that every trace in Σ is a possible
trace in the MTS M = ℘(

∧
γi). Let Π = EC(Γ∪D ∪Σ) be the EC translation of Σ, D and

Γ, and let E = EC(Σ) be the encoding of Σ into examples. Let H be an inductive solution
for E with respect to Π, within the hypothesis space HS. Then FLTL(H) is consistent with
the given specification Γ.

The proof is by contradiction were Γ and FLTL(H) are assumed to be inconsistent and show
that it falsifies the assumption of H be an inductive solution.

I Theorem 11. Let Γ = {γ1, ..., γn} be a set of safety properties expressed in FLTL, D a set
of fluent definitions and Σ = Σ+∪Σ− a set of traces, such that every trace in Σ is a possible
trace in the MTS M = ℘(

∧
γi). Let Π = EC(Γ∪D ∪Σ) be the EC translation of Σ, D and

Γ, and let E = EC(Σ) be the encoding of Σ into examples. Let H be an inductive solution
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for E with respect to Π, under the hypothesis space HS. Then FLTL(H) is a consistent
extension of Γ with respect to the traces in Σ.

4 A Case Study

In this section we illustrate an application of our approach to a real case study, the Philips
Television Set Configuration reported in [14], which describes an industrial protocol for
a product family of Philips television sets. We used the MTSA tool described in [3] to
construct an MTS from the available (partial) system description and to verify the resulting
refined MTS.

The system comprises multiple tuners, a video output device and a switch that can
be configured by the television user to display several signals in different configurations.
The protocol is concerned with controlling the signal path to avoid visual artefacts ap-
pearing on video outputs when a tuner is changing frequency. The alphabet is composed
of {set_Active_t1, set_Active_t2, t1_tune, s_restore, t1_dropReq, s_dropAck_t1}. The
fluent definitions are given by the following tuples:

Active_t1 =<set_Active_t1, set_Active_t2, tt>
Tuning_t1 =<t1_tune, {s_restore, set_Active_t1, set_Active_t2}, ff>
WaitingDropAck_t1 =<t1_dropReq, s_dropAck_t1, ff>
Dropped_t1=<s_dropAck_t1, t1_restore, ff>

Figure 1 shows an MTS generated from the initial descriptions. Note that the numbered
nodes are used for reference and do not designate a particular state in ∆p. The positive and
negative traces Σ+ ∪ Σ− include:

Σ+ = {〈start, t1_tune〉} (10)
Σ− = {〈start, t1_tune, t1_newValue, t1_tune〉, 〈start, t1_tune, t1_newValue,

t1_dropReq, s_dropAck_t1, t1_restore, t1_tune〉} (11)

0 1

start

set Active t1?
set Active t2?

t1 tune?
t1 dropReq?
t1 restore?

t1 newValue?
s dropAck t1?

Figure 1 An initial MTS M for the Philip TV set

In the traces given in Σ the proscribed transitions are last occurrence of transition t1_tune
in each trace in Σ−, whereas the required transitions are the transition t1_tune in Σ+.
To learn safety properties that would ensure that only those MTS refinements that would
meet these proscribed and required transitions are generated, we translate the given fluent
definitions into EC domain-dependent axioms and the given traces in Σ into EC narratives
and examples as defined in Section 3. Part of this translation is given below.
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initiates(set_Active_t1,active_t1). terminates(set_Active_t2,active_t1).
initially(active_t1).
initiates(t1_tune,tuning_t1). terminates(s_restore,tuning_t1).
terminates(set_Active_t1,tuning_t1). terminates(set_Active_t2,tuning_t1).
initiates(s_dropReqAck_t1,dropped_t1). terminates(t1_restore,dropped_t1).
initiates(t1_dropReq,waitingDropAck_t1). terminates(s_dropAck_t1,waitingDropAck_t1).

executed(start,0,c1). executed(t1_tune,1,c1).
executed(start,0,c2). executed(t1_tune,1,c2).
executed(t1_newValue,2,c2).

executed(t1_tune,3,c2). executed(start,0,c3).
executed(t1_tune,1,c3). executed(t1_newValue,2,c3).
executed(t1_dropReq,3,c3).executed(t1_tune,4,c3).

examples:-
happens(start,0,c1), req_happens(t1_tune,1,c1),
not happens(t1_tune,3,c2), not happens(t1_tune,4,c3).

At the beginning, as no domain specific properties are included in the background know-
ledge, all event transitions are by default maybe transitions. Hence in the stable model of
the EC program we have maybe(e,p,c) for every combination of event e, position p and trace
c given in the language. Furthermore, the model contains happens(e,p,c) for those events
where also executed(e,p,c) has been added to the narrative of the background knowledge. In
other words, before the learning, the background knowledge entails that all executed events
happen as maybe events. However, the examples state that last t1_tune executed in traces
c2 and c3 should not occur and that the same event is required to happen in trace c1. So
the given background knowledge does not entail the given examples. The ILP task then
computes the following set of hypotheses:

required(t1_tune,X1,X2):-holds_at(f_start,P,C).

proscribed(t1_tune,X1,X2):-holds_at(tuning,P,C). (12)
not holds_at(waitingDropAck_t1,P,C).

The above rules are translated back into the safety properties

G(start→ X (t1_tune))
G((Tuning_t1 ∧WaitingDropAck_t1)→ X ¬(t1_tune)) (13)

The MTS generated from the conjunction of learned assertions in (13) is shown in Figure
2. It is easy to show that the refined model is a strong refinement of the initial model given
in Figure 1 since every possible transition in the refined MTS is a possible transition in the
initial MTS, and every required transition in M , in this case just the single transition start
from the initial state, is also preserved in the refined model.

5 Discussion

In our present approach, we have focused on learning universal properties that force one
required transition from states that satisfy the properties’ conditions. The choice to adopt
this semantics was inspired by existing work on synthesising MTSs that satisfy properties
universally and existentially. Weaker semantics, whereby there can be several required
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Figure 2 A refined MTS N for the Philip TV set

transitions from a single state to satisfy existential properties, can be modelled in our EC
programs by adding an executed literal to the body of the definition of req_happens in (3)
and dropping the constraint (8).

In defining our refinement, we have considered the MTSs that are generated from the
conjunction of a given set of formulae instead of constructing an MTS for each formula
and merging the single MTS models as proposed in [5]. Though only argued in [5] to be
equivalent fro the case of safety properties and MTSs with the same alphabet, we have
now verified through our refinement approach that this is indeed the case. We have also
compared our work with techniques that synthesise MTS from scenarios directly [13] and
found that such approaches do not support the use of negative scenarios which are crucial
in our case to avoid over generalising the learned conditions.

In [1], we have presented an approach for detecting and resolving incompleteness in op-
erational specifications using ILP. The this previous work the system models are Labelled
Transition Systems which are less expressive than MTS as they are based on a comple-
tion assumption by which the system behaviour is strictly classified as either proscribed
or required. The properties that were learned aimed at pruning undesirable traces from
the initial Labelled Transition System. In this paper, the learning task is more general as
it prunes traces where current possibly transitions should instead be proscribed, and also
forces possible traces to be required. Both sets ∆r and ∆p of a given MTS are therefore
consistently refined, whilst preserving the refinement relation between the MTS of the given
description and that of the refined specifications.

6 Conclusion and Future Work

The overall aim of the work presented in this paper is to provide a formal and tool-supported
approach for incremental software development through modal refinement by means of in-
ductive learning. In brief, we have described the use of EC logic programs and ILP for
computing strong refinements of MTSs from given event traces. We have shown how the
EC language can sufficiently capture the different notions of the system models and how
non-monotonic learning preserves the conditions of a strong refinement. We have argued
that our computed hypothesis characterise a set of implementations of the original MTS.

As part of our future work, we intend to extend the approach to a wider class of safety
properties, both as initial partial system descriptions and as learned properties, and to
other forms of refinements such as weak refinement. This will enhance the applicability of
our methodology to problems where the incremental refinement requires extending the given
alphabet of events as new descriptions become available. We would also like to explore the
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use of ILP to reason and refine non-deterministic MTSs, so fully exploiting the benefit of
the EC representation.
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