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Abstract—The process of Requirements Engineering (RE) includes many activities, from goal elicitation to requirements specification.

The aim is to develop an operational requirements specification that is guaranteed to satisfy the goals. In this paper, we propose a

formal, systematic approach for generating a set of operational requirements that are complete with respect to given goals. We show

how the integration of model checking and inductive learning can be effectively used to do this. The model checking formally verifies

the satisfaction of the goals and produces counterexamples when incompleteness in the operational requirements is detected. The

inductive learning process then computes operational requirements from the counterexamples and user-provided positive examples.

These learned operational requirements are guaranteed to eliminate the counterexamples and be consistent with the goals. This

process is performed iteratively until no goal violation is detected. The proposed framework is a rigorous, tool-supported requirements

elaboration technique which is formally guided by the engineer’s knowledge of the domain and the envisioned system.

Index Terms—Requirements elaboration, goal operationalization, behavior model refinement, model checking, inductive learning

Ç

1 INTRODUCTION

1.1 Motivation

REQUIREMENTS Engineering (RE) is an integral part of
the software development process. It is concerned with

the elicitation of stake-holders goals, the elaboration of
these goals into requirements on the software behavior,
and the assignment of responsibilities for these require-
ments to agents [13]. Inadequacy in the execution of any of
these RE subtasks inevitably leads to development pro-
blems which are often difficult and costly to repair. This
has led researchers to seek rigorous and automated
methods to support the fulfillment of these tasks.

Goal-oriented approaches have been shown to be parti-

cularly effective for formal analysis and automated valida-

tion [6], [51], [46], [39]. Goals are objectives the system is

intended to achieve through the cooperation of agents in the

envisioned software and its environment [30]. “Reverse

thrust enabled when a plane is moving on the runway” is an

example of a goal for a Flight Control System (FCS). Agents,

such as autopilot and wheels-sensors, are active components
in the software and environment whose behavior can be

constrained to ensure the satisfaction of the goals. A

requirement is a goal which has been assigned to an agent in

the software being developed, while an expectation is a goal
which has been assigned to an agent in the environment. An
operational requirement captures the conditions under which a
system component may or must perform an operation to
achieve the goals (e.g., a required precondition for disabling
the reverse thrust is that the wheels’s pulse is on).

One of the difficulties in developing a system specifica-
tion is the elaboration of operational requirements that
guarantee the satisfaction of the goals. This is essentially a
manual task and hence is costly and error prone. Very little
systematic, rigorous support exists; among the exceptions
are the informal techniques explained in [6], [46] and the
formal approaches in [31]. However, such approaches lack
desirable characteristics such as automation and/or gen-
erality, making them less accessible to practitioners.

This paper addresses the problem of how formal, tool-
supported methods can be effectively used to identify and
resolve the incompleteness of a given set of operational
requirements with respect to a set of predefined goals. We
propose an integrated use of model checking to detect
incompleteness in a given partial operational requirements
specification, and inductive learning to resolve the incom-
pleteness. The model checking formally verifies the
satisfaction of the goals and produces a counterexample
when an incompleteness is detected in the partial opera-
tional requirements specification. We focus on two incom-
pleteness problems: 1) incompleteness of the operational
requirements with respect to goals expressed as safety
properties, and 2) incompleteness of the operational
requirements with respect to goals expressed as a particular
form of liveness properties called progress properties. In
this paper, we assume correctness of the initial specifica-
tion, and do not address the case in which model checker
detects faults caused by an erroneous specification.

The particular inductive learning technique we use, called
Inductive Logic Programming (ILP) [38], automatically
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generates missing operational requirements that are needed
to satisfy the existing goals. One of the main advantages of
using ILP is that it makes use of any existing knowledge
during the inference process. This has the benefit of
automatically ensuring consistency of the learned require-
ments with respect to the goals and the existing specification.
Witnesses and counterexamples are used to suggest infor-
mation about positive and negative scenarios (or examples)
that the inductive learner uses to compute the operational
requirements.

The proposed framework is defined as an iterative process
consisting of four phases. In the behavior analysis phase, the
existing (partial) specification of operational requirements is
verified against the given goals using a model checker. If the
verification is unsuccessful, the counterexample generated is
used in the scenario elicitation phase, where an engineer
extracts a set of positive and negative scenarios. In the
requirements inference phase, goals, existing operational
requirements, and scenarios are used by the ILP learning
system to compute a set of new operational requirements
that covers all positive scenarios and eliminates the negative
ones. If the learner produces a number of alternative
requirements, the engineer then selects the operational
requirements to be added from the list proposed in the
requirements selection phase. The cycle is then repeated until
no goal violation is detected. The steps are illustrated in
Fig. 1. The person shown in the figure indicates the points
where an engineer’s intervention is required.

The automated support provided by this framework is
intended to reduce the manual intervention of engineers
and hence avoids the introduction of errors, which are
frequent in a fully manual approach, as the learner
guarantees to produce correct solutions with respect to
the goals and the existing specification.

1.2 Contribution and Outline

The main contribution of this paper is a systematic, rigorous,
and tool-supported framework for the elaboration of
operational requirements from safety and progress goals,
using an integration of model checking and inductive
learning.

The approach proposed here also provides more specific
contributions. We provide a sound technique for transform-
ing a specification expressed in asynchronous Fluent Linear
Temporal Logic (FLTL) into a logic program, which in turn
lends itself to the use of reasoning methods based on logic
programming. We also prove the correctness of the ILP
solution with respect to the given scenarios.

More generally, we provide automated support for the
incremental development of behavior specifications that
satisfy progress and safety properties. We show how the
approach can be adapted and applied to other goal
operationalization problems such as operationalization of
goals that must be achieved within a bounded time interval.
This suggests that the approach is potentially applicable to
other event-based problems where a partial model exists
and needs to be refined.

The rest of this paper is organized as follows: Section 2
describes background work on goals, operational require-
ments, and behavior modeling. Section 3 defines the problem
this paper addresses. Section 4 describes in detail the
different phases of the framework. Section 5 discusses the
termination of the approach. Section 6 validates the proposed
requirements elaboration process using the London Ambu-
lance Service case study. A discussion and account of related
work are given in Sections 7 and 8, respectively. Section 9
summarizes our contributions and discusses future work.
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Fig. 1. Overview of the proposed approach.



2 BACKGROUND

In this section, we define the notions of goals, operational
specifications and behavior modeling used in the approach.
We also introduce some preliminaries on Event Calculus
(EC) logic programs and inductive learning. To illustrate
the concepts, we refer to excerpts of the flight control
system example introduced in [22].

2.1 Goal and Operational Requirements
Specifications

Goals are the objectives to be achieved by a system [31], [6].
They are often expressed declaratively in terms of state-
based properties that should be satisfied in the envisioned
system over some predefined temporal structure (e.g.,
“reverse thrust enabled when the plane is moving on the
runway”).

Operational requirements, on the other hand, express
constraints on the operations to be performed by the
system. They take the form of domain and required
conditions. A domain condition captures the basic state
transitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain
precondition (DomPre) and domain postcondition (Dom-
Post). Required conditions, on the other hand, capture
strengthened conditions on the software-controlled opera-
tions that contribute to the satisfaction of the goals. They are
expressed in the form of required pre, trigger-, and postcondi-
tions. Required preconditions (ReqPre) are conditions that
capture a permission to perform an operation. Required
trigger-conditions (ReqTrig) are conditions that capture an
obligation to perform an operation. Required postconditions
(ReqPost) specify the conditions that must hold after the
execution of an operation.

A set of operational requirements is said to be complete
with respect to a goal if satisfying the required conditions in
the set guarantees the satisfaction of the goal [31].
Otherwise, it is said to be partial.

Goals and operational requirements can be expressed in
some form of temporal logic. Such formalisms support the
use of existing automated behavior model synthesis and
verification techniques such as model checking. We use an
asynchronous form of FLTL [21] to specify goals and
operational requirements, and Labeled Transition Systems
(LTS) to model the corresponding system behavior. The
reason for using FLTL as the representation language is
twofold. First, FLTL is a language designed for reasoning
about event- and state-based properties together in event-
based models. Second, it is supported by existing model
checkers (e.g., LTSA [34]). However, this particular choice
of formalism is not essential to our approach. The approach
can be easily adapted to other formalisms such as standard
linear temporal logic.

2.1.1 Fluent Linear Temporal Logic

FLTL is a special form of linear temporal logic that makes
use of fluent. A fluent is a time-varying property of the
system. It is defined by a pair of disjoint sets of event labels,
referred to as the initiating (If ) and terminating (Tf ) sets of
events, and an initial truth value true or false. Event labels in
an initiating (respectively, terminating) set are those events

that, when executed, cause the fluent to become true
(respectively, false). For instance, assuming a fluent Wheel-
sTurning is initially false, meaning that wheels of the plane
are initially not turning, the definition for this fluent is
specified as

WheelsTurning ¼ hfspinWheelsg; fstopWheelsgi
fiinitiallyg false;

stating that the event spinWheels causes the fluent Wheel-
sTurning to become true, and the event stopWheels causes
the fluent WheelsTurning to become false. In other words,
WheelsTurning is a domain postcondition for the event
spinWheels. A fluent can be state based, such as the one
above, or event based. An event-based fluent fe signals the
occurrence of the event e. Its initiating set is the singleton set
feg and its terminating set is L� feg, where L is the
universal set of event labels. We use the convention that a
fluent is assumed to be initially false unless explicitly stated
to be true.

Given a set of fluents F , an FLTL formula can be
constructed using the classical connectives, :, ^, and ! ,
and the temporal operators � (next), meaning in the next
state, ut (always), meaning always in the future, � (even-
tually), meaning some time in the future and

S
(strong

until), meaning always in the future until. In addition,
bounded temporal operators [25] can be used such as ��d,
meaning some time in the future within the next d time
units, where d is a nonnegative integer. Other classical and
temporal operators can be defined as combinations of the
above operators (e.g., � _  � :ð:� ^ : Þ and �W �
ðut�Þ _ ð�U Þ). A well-formed FLTL formula is formulated
in the standard way [35].

FLTL, as defined in [21], is said to be an asynchronous
temporal logic. This means that its properties refer to
sequences of system states observed after each occurrence
of an event. Goals, however, are often defined over a discrete
linear structure of time. When expressing goals and opera-
tional requirements in asynchronous FLTL, a tick fluent is
introduced to mark the beginning of each time unit.

A goal can be expressed formally in four different
modes: achieve, cease, maintain, and avoid [12]. The
schemata for goals in the immediate achieve and cease
modes are expressed respectively as follows:

utðtick! ðP !�ð:tick W ðtick ^QÞÞÞ;
utðtick! ðP !�ð:tick W ðtick ^ :QÞÞÞ;

where P and Q can be any well-formed FLTL expression
containing state-based fluents only. For instance, assume an
FLTL language includes the state-based fluents ThrustEn-
abled, PulseOn, and MovingOnRunway, meaning “the reverse
thrust is enabled,” “the wheels’ pulse is on,” and “the plane
is moving on the runway,” respectively, and the event-based
fluents switchPulseOn meaning “switch the wheels’ pulse
on,” disableThrust meaning “disable the reverse thrust,” and
enableThrust which means “enable the reverse thrust.” The
goal “reverse thrust enabled when the plane is moving on
the runway” can be formally expressed in FLTL as

utðtick! ðMovingOnRunway

!�ð:tick W ðtick ^ ThrustEnabledÞÞÞÞ;
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which states that it should always be the case that whenever
the plane is moving on the runway, the reverse thrust
should be enabled by the next time point. Hence, goals refer
to what needs to be true or false at tick occurrences.

Operational requirements, on the other hand, express
constraints on events occurring between the tick transitions.
These are expressed in one of the following generic forms:

utðtick! ð:ReqPre!�ð:OP W tickÞÞÞ;
utðtick! ððReqTrig ^DomPreÞ ! �ð:tick W OP ÞÞÞ;
utðOP ! ð:tick W ðtick ^ReqPostÞÞÞ;

where OP is an event-based fluent and ReqPre, ReqTrig,
DomPre, and ReqPost are FLTL expressions containing
state-based fluents only.

For example, the domain precondition “the wheels’
pulse switch may not be pressed if the wheels’ pulse is
already on” is formalized as

utðtick! ðPulseOn!�ð:switchPulseOn W tickÞÞÞ

The required precondition “the wheels’ pulse is off” for
the operation disableThrust is specified in asynchronous
FLTL as

utðtick! ð:PulseOn!�ð:disableThrust W tickÞÞÞ;

while the trigger-conditions “the wheels’ pulse is on” for
the operation enableThrust is expressed as

utðtick! ðPulseOn!�ð:tick W enableThrustÞÞÞ:

Goals and operational requirements can be formally
expressed in a more compact way using other languages or
semantics. In synchronous LTL, for instance, the above goal
can be expressed without explicitly referring to ticks of the
clock as utðMovingOnRunway!�ThrustEnabledÞ. It is
understood implicitly that every state at which the assertion
is evaluated is the state immediately proceeding the
occurrence of a tick. Expressions of this form can be
automatically transformed into asynchronous FLTL speci-
fication using the technique described in [29].

2.1.2 Labeled Transition Systems

A Labeled Transition Systems [23] is a behavior model that
can be used to represent a system as a set of concurrent
components (or agents). Each component is defined as a set
of states and transitions between the states. Transitions are
Labeled with events denoting the interaction that the
component has with itself, the environment and other
components. The definition below is adapted from [20].

Definition 1 (Labeled Transition System). A Labeled
transition system A is a tuple ðS; L;R; s0Þ where S is a finite,
nonempty set of states including the error state, designated as �,
L is a finite nonempty set of event labels, called the alphabet, s0 is
an element of S, called the initial state, and R � S � f�g �
L� S is a nonempty set of transitions.

A trace � in A is a (possibly infinite) sequence of
transitions (denoted s0Re1

s1Re2
s2 . . . ) such that for each i 	

0 there is a transition ðsi; eiþ1; siþ1Þ 2 R. Note that we also
sometimes represent traces as sequences of event labels
(e1; e2; . . . ).

A scenario �
 is a finite sequence of labels of the form
he1; e2; . . . ; emi, where ei 2 L for 1 � i � m. It is said to be
accepted by an LTS A if there is a trace s0Re1

s1

Re2
s2 . . . sm�1Remsm in A such that ðsi; eiþ1; siþ1Þ 2 R for

all 0 � i < m. We call a trace � that accepts a scenario �
 an
accepting trace of �
.

LTSs can be generated automatically from declarative
expressions specified in asynchronous FLTL. The semantics
of an FLTL formula is defined with respect to traces in an
LTS and a valuation function that returns the set of fluents
that are true at a given position in a trace � in A according to
their fluent definition.

Given a set of fluent definitions D, a fluent f is evaluated
as true at position i in a trace � with respect to D, denoted
�; i �D f , if and only if either of the following conditions
hold:

. f is defined initially true in D and 8j 2 N ðð0 <
j � iÞ ! ej 62 TfÞ;

. ð9j 2 N :ðj � iÞ ^ ðej 2 IfÞÞ ^ ð8k 2 N :ððj < k � iÞ !
ek 62 TfÞÞ.

In other words, a fluent f is said to be true at position i if it
was initially true or an initiating event for f has occurred,
and no terminating event has occurred since. The semantics
of Boolean operators is defined with respect to the fluent
definitions over each position in a trace in a standard way.
For a given set of fluent definitions D, the semantics of the
temporal operators is defined inductively as follows:

. �; i �D �� iff �; iþ 1 �D �.

. �; i �D ut� iff 8j 	 i. �; j �D �.

. �; i �D �� iff 9j 	 i. �; j �D �.

. �; i �D � U  iff 9j 	 i. �; j �D  and 8i � k < j.
�; k �D �.

An FLTL formula � is said to be satisfied in a trace � with
respect to D if it is satisfied at position 0. The satisfaction of
FLTL expressions in a given LTS is defined below.

Definition 2 (FLTL Satisfaction and Entailment in LTSs).
Let � be a single FLTL formula, � a set of FLTL formulae, also
called a theory, and D a set of fluent definitions. The formula �
is said to be satisfied in an LTS A with respect to D if it is
satisfied in every trace in A with respect to D. The set of
formulae � is said to be satisfied in an LTS A with respect to D
if every formula in � is satisfied in A with respect to D. � is
said to be consistent if there is an LTS that satisfies it. A
formula � is said to be entailed by � with respect to D, denoted
as � �D �, if and only if every LTS that satisfies � also
satisfies the formula �.

Given a consistent FLTL theory, the Labeled Transition
System Analyzer (LTSA) tool [34] can be used to automati-
cally generate a least constrained LTS that satisfies it, i.e.,
maximal with respect to the traces it includes. This is done
using an adaptation [29] of a “temporal logic to automata”
algorithm used in model checking FLTL formulae [21].

2.2 Inductive Learning

We describe here the basic notions of an Event Calculus
logic program, which is a formalism understood by the
learning system. We also give a brief introduction to the
inductive learning algorithm deployed in the approach.
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Notation and terminology used for logic programs are given
in Appendix A. Readers may skip this section without loss
of continuity.

2.2.1 Event Calculus Logic Programs

The Event Calculus is a formalism, first introduced by
Kowalski and Sergot for reasoning about events and their
effects over time [24]. A number of extensions have been
introduced since. We use here the variation presented in [1].

The EC language includes the basic predicates happens,
initiates, terminates, holdsAt, impossible, and attempt. Their
definitions are given in Table 1.

Furthermore, additional predicates are defined to cap-
ture the notion of synchronous satisfaction in terms of
asynchronous semantics [2]. For instance, the predicates
holdsAt_Tick(f,p,s) (respectively, not_holdsAt_Tick(f,p,s))
means that a fluent f holds (respectively, does not hold)
when a tick occurs at position p in scenario s. An atom
holdsAt_PrevTick(f,p,s) (respectively, not_holdsAt_Prev-
Tick(f,p,s)) means a fluent f holds (respectively, does not
hold) at the previous tick in scenario s if it holds
(respectively, does not hold) at the last preceding position
where a tick occurred. The predicate nextTickAt(p2,p1,s) is an
auxiliary predicate that says that p2 is the next position
where a tick occurs after position p1 in scenario s. The
predicate occursSince_PrevTick(e,p,s) states that event e
occurs in a scenario s at some position between the current
position p and the last preceding tick.

Domain-independent axioms formalize the law of inertia: A
fluent that is initiated continues to hold until a terminating
event occurs. They also define when an event may happen.
For the definition of these axioms and the auxiliary
predicates, the reader is referred to Appendix B.

Domain-dependent axioms define the predicates initiates,
terminates, impossible, attempt, and happens used to represent
the particular problem in hand. Examples of these are given
in later sections.

2.2.2 Inductive Logic Programming

In general, an inductive learning task is defined as the
computation of an hypothesis H that is consistent with a
given background knowledge B and integrity constraints
IC, and that together with B explains a given set E of
examples [43], [37]:

B ^H ^ IC 6� false; ð1Þ

B ^H � E: ð2Þ

For instance, consider an EC program where the back-
ground knowledge includes the following information
about the FCS example:

B ¼ fattemptðenableThrust; 1; s1Þ;
holdsAtðthrustEnabled; 1; s1Þ;
attemptðenableThrust; 0; s2Þ;
not holdsAtðthrustEnabled; 0; s2Þ;
happensðE;T; SÞ : � attemptðE;T; SÞ;
not impossibleðE;T; SÞg:

ð3Þ

In this example, the background assumes at position 1 in
scenario s1 that the thrustEnabled fluent is true and there is
an attempt to enable the reverse thrust at the same position.
In scenario s2, thrustEnabled is not true at position 0 and an
attempt is made to enable the reverse thrust then. The last
rule states that an event E happens at position T in
scenario S if it is attempted and it is not impossible to occur.
From the above we can derive the facts happens(enable-

Thrust,1,s1) and happens(enableThrust,0,s2) as neither of the
events’ occurrences is defined as impossible in the program.
Now assume the following facts are observed:

E ¼fnot happensðenableThrust; 1; s1Þ;
happensðenableThrust; 0; s2Þg:

ð4Þ

Notice that the current background knowledge does not
entail the examples E in (4) as the fact happens(enable-

Thrust,1,s1) is provable from the current program. This
means that to explain the observations in E, B needs to be
extended with a set of rules H such that in a model of the
program B ^H, the fact happens(enableThrust,1,s1) is no
longer true.

In ILP systems, such as XHAIL [41], [42] and Progol
[37], the computation of H is constrained by a mode
declaration and the compression heuristic. The mode
declaration specifies the syntactic form of the rules that
can be learned. It includes a head declaration of the form
modehðr; sÞ and body declarations of the form modebðr; sÞ,
where r is an integer, called the recall, and s is a ground
literal called the scheme, possibly containing so-called
placemarker terms of the form þt, �t, and #t. These
respectively denote input variables, output variables, and
constants of type t. The recall is used to bound the number
of atoms a mode declaration can contribute to an
hypothesis. Where this is not important, an arbitrary recall
is denoted by an asterisk 
. The compression heuristic, on
the other hand, favors the inference of hypotheses contain-
ing the fewest number of literals, as motivated by the
scientific principle of Occam’s razor.

It is also common to restrict the search space to those
rules that satisfy some integrity constraints ICs. These are
rules with an empty head. For instance, the following IC
states that an impossible event cannot happen:

IC ¼ f:� happensðE;T; SÞ; impossibleðE;T; SÞ:g ð5Þ
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If the above rule is added to the program, then only those
Hs in the search space that satisfy the constraint are
computed.

Now, assuming the mode declaration is defined to learn
rules with the predicate impossible in the head of the rule
and the literals holdsAt and not holdsAt in the body, an ILP
solution for the examples E given in (4) may be

H ¼ fimpossibleðenableThrust;T; SÞ
:� holdsAtðthrustEnabled;T; SÞ

ð6Þ

which means that the reverse thrust cannot be enabled if it
is already enabled. Adding the above rule to B ensures that
the fact happens(enableThrust,1,s1) is no longer derivable
from the new program B [H, and that B [H � E.

3 PROBLEM DEFINITION

The problem in this paper addresses is how to system-
atically elaborate a set of operational requirements that
together with an existing partial specification ensures the
satisfaction of given goals.

Consider, for example, the goal [ReverseThrustEna-
bledWhenMovingOnRunway] formalized in asynchronous
FLTL as the following safety property:

utðtick! ðMovingOnRunway

!�ð:tick W ðtick ^ ThrustEnabledÞÞÞÞ:
ð7Þ

This states that if at the tick of a system clock, the plane is
moving on the runway, then by the next tick the reverse
thrust should be enabled.

Consider the definitions for the fluents ThrustEnabled,
WheelsTurning, PulseOn, and MovingOnRunway given in
Table 2.

Suppose that the given partial operational specification is
as formalized in Table 3. It expresses domain constraints on
the operations enableThrust and disableThrust stating that the
reverse thrust cannot be enabled (respectively, disabled) if it
is already enabled (respectively, disabled). Similarly, once
the fluents WheelsTuring, PulseOn, or MovingOnRunway
have been initiated (respectivley, terminated), they cannot
be initiated (respectively, terminated) again before the next
time point. The last two expressions are expectations on the
domain that express necessary conditions for the wheels to
be turning and the plane to be moving on the runway. Note
that, initially, this partial specification includes no required
conditions.

The LTS generated from the above specification using
the LTSA model checker contains 65 states and 273
transitions. Due to its large size, we show a minimized
LTS where only the events tick, landPlane, enableThrust, and

disableThrust are observable, i.e., those event relevant to the
satisfaction of the goal, and all other events are hidden or
represented by the label tau. The problem with this LTS is
that it allows behaviors that violate the goal [ReverseThrust
EnabledWhenMovingOnRunway]. For instance, inspection of
the full LTS shows that it accepts the scenario htick,
landPlane, turnWheels, switchPulseOn, tick, ticki, where the
plane lands on the ground, the wheels start turning and the
wheels’ pulse is switched on but the reverse thrust is not
enabled subsequently. The violation occurs when the last
tick occurs and the reverse thrust is not enabled.

This counterexample indicates that the current opera-
tional requirements are incomplete with respect to the
goals. The inclusion of the required trigger-condition for the
event enableThrust:

utðtick! ððPulseOn ^ :ThrustEnabledÞ
! �ð:tick W enableThrustÞÞÞ;

ð8Þ

which ensures that the reverse thrust must be enabled when
the wheels pulse is activated, would eliminate this violation.
We will show in the following section how inductive
learning can be used to compute such missing requirements.

The above example shows an instance of an incomplete-
ness with respect to a goal expressed as a safety property.
Incompleteness of an operational requirements can also be
with respect to a goal expressed as a progress property. For
instance, consider the LTS shown in Fig. 2, which is
generated from the operational specification in Table 3. It
includes the trace (tick, enableThrust, enableThrust, enable-
Thrust,. . . ), in which after the first tick event, no ticks occur.
This is an example of a behavior that vacuously satisfies the
goal [ReverseThrustEnabledWhenMovingOnRunway] but vio-
lates the expectation that time progresses, commonly
referred to as the Time Progress (TP) property. This is a
common property check in discrete-time LTSs and is
formalized as ut � tick. Though such violations cannot occur
in the real world, violations to this progress property
indicate a problem in the specification and may give rise to
additional operational requirements. In our example, this
trace exists because the safety goals require certain fluents
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to hold at fixed time points, but do not sufficiently constrain
the sequence of interleaved events that ensure that these
properties hold. These violations thus give rise to additional
operational requirements or expectations missing from the
specification in order to satisfy the goals. For instance, by
including an additional required precondition (:PulseOn)
for the event enableThrust expressed as

utðtick! ð:PulseOn
!�ð:enableThrust W tickÞÞÞ;

ð9Þ

the behavior described above would be eliminated.
In summary, systems implemented from partial opera-

tional requirements specifications may exhibit behavior that
violates goals expressed as either safety or progress proper-
ties. Existing model checking techniques and tools allow the
automatic detection of behaviors that violate such proper-
ties. However, completing the specification with respect to
these properties remains an open problem with no rigorous,
automated support.

In the following section, we show how an existing partial
operational specifications can be completed by computing
operational requirements such as those given in 8 and 9
through an integration of goal-based model checking and
inductive learning.

4 LEARNING OPERATIONAL REQUIREMENTS

The input to the requirements elaboration process is a set of
goals, fluent definitions, and a partial set of operational
specifications expressed in asynchronous FLTL that are
consistent with the goals. We consider that a partial
operational specification consists of domain preconditions,
required conditions (if any), and any domain specific
expectations. The task is to complete this partial specifica-
tion with new operational requirements to guarantee the
given goals are satisfied.

The proposed framework, as depicted in Fig. 1, is
defined as an incremental process composed of four phases:

1. Behavior analysis phase. The model checker is used
first to construct an LTS A from a partial operational
specification O with respect to fluent definitions D. It
is then used to verify the LTS A against the goals G.
The result of the analysis is either a notification that
no violation traces have been detected, in which case
the process successfully terminates, or that a
counterexample has been detected, in which case it
is displayed.

2. Scenario elicitation phase. If a counterexample is
found, an engineer elicits a set of positive and
negative scenarios (POS [ NEG) from the counter-
example and the LTS model. A negative scenario
represents a violation while a positive scenario
exemplifies an instance of some desirable behavior.

3. Requirements inference phase. The goals, partial
operational specification, fluent definitions, and
scenarios are translated into a logic program used
by an ILP system. The output of this phase is sets of
alternative required conditions fReqjg, each of
which permits all the positive scenarios, forbids all
the negative ones, and is consistent with the goals
and the existing operational specification.

4. Selection phase. From the list of alternative sets of
computed operational requirements proposed by the
learning phase, the engineer selects the set Reqj,
which is then added to the current operational
specification. This selection is domain dependent.

The four phases are then repeated until no violation is
detected during the analysis phase. The steps are explained
in what follows: Note that, without loss of generality, we
focus on learning two types of operational requirements:
required pre and trigger-conditions. Our approach can be
adapted to learn required postcondition. Further details on
this are given in Section 4.3.1.

4.1 Behavior Analysis

The analysis phase of the approach is concerned with
automatically checking whether a given partial operational
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specification entails a given FLTL property �, where �
maybe a safety or progress property. In the case of a
progress property, � is a conjunction of events.

Verifying an LTS model A against an FLTL safety property
� with fluents P , using the LTSA, requires generating a
tester automaton for � [21]. Fig. 3, for example, shows the
tester automaton for the goal [ReverseThrustEnabledWhen-
MovingOnRunway]. Any trace from the initial state to the
error state exemplifies one that violates the property �. All
traces that do not reach the error state are said to satisfy �. In
the case of the LTSA model checker, it produces the shortest
sequence of events from the initial state to the error state.

When checking an LTS A for the satisfaction of a
progress property �, the LTSA searches for all terminal
sets in A [34]. If there is at least one terminal set in which an
event e in � does not appear, then A is said to violate the
progress property with respect to that event. The violation
trace produced by the LTSA is the shortest sequence of
events from the initial state to the root of a terminal set
where the progress property is violated.

Consider the LTS model generated from the given FCS
partial operational specification. When checking against the
safety property [ReverseThrustEnabledWhenMovingOnRun-
way], the LTSA generates the violation trace shown below.

Trace to property violation in

ReverseThrustEnabledWhenMovingOnRunway:

tick

landPlane MovingOnRunway

turnWheels MovingOnRunway

switchPulseOn MovingOnRunway

tick MovingOnRunway

tick MovingOnRunway

Analyzed in: 4 ms

The column on the left represents the sequence of
consecutive transitions that occur starting from the initial
state and ending at the state in which the goal is violated.
The column on the right indicates the fluents that are true
immediately after the occurrence of the event to their left. The
violation shown above, for instance, is caused by the fact that
at the last observable state in the prefix htick, landPlane,
turnWheels, switchPulseOn, ticki, i.e., at position 5 of the trace,
the fluent MovingOnRunway is true and the fluent ThrustEn-
abled is false, and no initiating event occurs afterward. Hence
the fluent ThrustEnabled is evaluated to false at the tick
occurring at position 6 when it should have been true.

In the context of this work, the detection of a violation
trace signifies a missing operational requirement for some
software-controlled event occurring or not occurring within
the last time unit and hence an incompleteness in the
current operational specification.

4.2 Scenario Elicitation

Our aim is to identify required conditions on those events
whose presence or absence in the counterexample leads to a
goal violation.

From a logical standpoint, a number of correct solutions
could be proposed to eliminate the counterexample. Our
objective is to produce a solution that is relevant to the
particular problem domain at hand while relieving the
engineer from having to manually derive the full formal
operational specification. Hence, the engineer is asked to
provide some intuition on the cause of the violation in the
form of scenarios that exemplify good and bad system
behavior. The engineer is expected to identify, from the trace,
events which may have contributed to the violation, along
with other examples which are consistent with the property
being verified.
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As the approach is concerned with developing required
conditions, we only consider software-controlled events
and the tick event as potential causes of the violation. In the
following, we illustrate general guidelines for eliciting
negative and positive scenarios from violation traces.

4.2.1 Eliciting Negative Scenarios

In eliciting a negative scenario from a violation trace, the
engineer is required to identify an event in the violation trace
that should not have occurred at a particular position in the
trace. The sequence of event labels starting from the initial
state of that trace up to and including the violating event is
identified as a negative scenario. In general, given a trace of
the form ðe1; e2; . . . ; ek; . . .Þ, where ek is the violating event, a
negative scenario neg is the prefix he1; e2; . . . ; eki. The
intended meaning of the negative scenario he1; e2; . . . ; eki is
that if the system exhibits the sequence ðe1; e2; . . . ; ek�1Þ, then
ek should not happen immediately afterward.

In our models, the violating event is either a software-
controlled event appearing in the last time unit or the last tick
event of the trace produced. The former indicates the
identified software-controlled event should not have oc-
curred to avoid a goal be violated, while the latter suggests
that a software-controlled event should have occurred before
that tick for a goal to be satisfied. In general, in the LTSA the
position of the violating event can often be predicted,
depending on the pattern of the goal being checked.

Returning to our running example, the violation trace
given in Section 4.1 terminates with two consecutive tick
transitions with no software-controlled event occurring in
between. The engineer could reason from this that some
event e that initiates the fluent ThrustEnabled must occur
within the last time unit for the goal [ReverseThrustEna-
bledWhenMovingOnRunway] to be satisfied. The last tick
event is marked as the violating event since it should not
have occurred. The sequence from the initial state until this
last tick event in the violation trace constitutes a negative
scenario (see Fig. 4 where the event occurring below the
dotted line is the violating event).

4.2.2 Eliciting Positive Scenarios

Once the engineer has elicited a negative scenario terminating
with a violating event e, he must provide at least one scenario
which shows a positive occurrence of the same event e. The
positive scenario should be a sequence of events:

. exemplifying when the event e in question may or
must occur,

. accepted by the LTS of the given asynchronous
operational specification,

. consistent with all the goals,

. terminating with a tick event,

. extendable with at least one subsequent infinite
extension that satisfies the goals.

The first condition is to ensure that any requirement
inferred from the scenarios would preserve good behavior
in the model. The second and third are to ensure that any
requirement learned is consistent with the current specifi-
cation and goals. We require positive scenarios to terminate
with tick to ensure that the occurrence of the satisfying
event in the last time unit of the sequence does not violate
the goals in that sequence. The last condition is needed to
avoid the engineer providing a finite trace that satisfies the
goals but where all possible extensions to this trace would
violate them, and hence no completion to the initial set of
requirements would exist.

To ensure the specified characteristics are satisfied, the
engineer can use the built-in animation and deadlock
features of the LTSA system to generate a positive scenario
by first generating an LTS from the composition of the goals
and operational specification and then walking through the
LTS model by following a trace until the event e is executed.

We give an account of some general guidelines for
eliciting positive scenarios that support learning the missing
requirements. Consider a negative scenario of the general
form he1; e2; . . . ; ek�1; ei where the violating event e is a
software-controlled event. An associated positive scenario
has the general form he1; . . . ; e0l; e; ticki, where the sequence
he1; . . . ; e0li is either different from he1; . . . ; ek�1i or a prefix of
it. On the other hand, if the negative scenario terminates with
a tick event as its violating event, he1; . . . ; ek�1; ticki, then an
associated positive scenario would be a sequence with
he1; . . . ; ej; i as its prefix, where ej, is a tick-event occurring at
1 � j < k, showing that the occurrence of event e before the
last tick is necessary for the satisfaction of the goal.

For example, a positive scenario associated to the
negative scenario shown in Fig. 4 that satisfies the goal
[ReverseThrustEnabledWhenMovingOnRunway] enforces the
event enableThrust to occur before the last tick (see Fig. 5).

Note that because scenarios are finite traces, positive
scenarios do not exemplify traces that satisfy progress
properties. They merely capture desirable system behaviors
which are consistent with the given goals, and could be
subsequently extended with a sequence that satisfies a given
progress property. Furthermore, all elaborated scenarios
are assumed to include no hidden events in their sequence.
The main reason for this is that, as discussed below, when
computing an operational requirements specification, the
learning phase uses the fluents that are true and false at the
tick that precedes the violating event in the given sequence to
compute hypotheses. Hidden events may obviously affect
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the truth values of these fluents and hence would affect the
correctness of the requirements with respect to scenarios
elaborated in subsequent iterations. Note also that although
we only show examples for elaborating a single positive
scenario for each negative scenario, the engineer may elicit a
number of positive scenarios from a violation trace.

The question that naturally arises here is how different
should the positive scenarios be from the elaborated
negative scenario? A possible heuristic is the richness of
the positive scenarios with respect to a negative scenario.
The richness of a set of positive scenarios with respect to a
negative scenario is determined by the set of fluent literals
evaluated at the tick event proceeding the occurrence of the
satisfying event with respect to the fluent literals at the last
tick proceeding the violating event in the negative scenario.
This is expressed formally below.

Definition 3 (Rich set of Positive Scenarios). Given a set of
fluents F , a set D of fluent definitions, and an LTS model A,
let neg ¼ he1; e2; . . . ; ej; . . . ; gki be a negative scenario ac-
cepted in A, where j < k is the position of the tick that precedes
the violating event g. Let � ¼ ðs0Re1

s1 . . . sk�1RgkskÞ be an
accepting trace of neg in A. Let POS ¼ fpos1; . . . ; posng and
POS0 ¼ fpos01; . . . ; pos0mg be sets of positive scenarios ac-
cepted in A. Let fp1; . . . ; png and fp01; . . . ; p0mg be the sets of
the set of fluents that are true at the last tick preceding the
occurrence of the event g in each positive scenario in POS and
POS0, respectively. Then POS0 is said to be richer than POS
with respect to neg, denoted POS <neg POS0 iff

jð2p1 [ � � � [ 2pnÞÞ � 2sj j < jð2p01 [ � � � [ 2p
0
mÞ � 2sj j;

where the notation 2x denotes the power set of the fluent
valuations in set x.

This property characterizes a set of positive scenarios
that ensures that the learned requirements do not over-
constrain the behavior of the final system, i.e., eliminate
some behavior that may be considered in later iterations as
positive. We illustrate the concept of richness through an
extended example of the FCS.

Assume the fluent definitions include, in addition to
those in Table 2, a definition for a fluent EmergencyDecelera-
tion, meaning the pilot has requested a sudden drop in the
speed of the aircraft as follows:

EmergencyDeceleration ¼ hdropSpeed; fixSpeedi;

where the event dropSpeed means drop the speed of the
aircraft and the event fixSpeed means fix the speed of the
aircraft.

Assume the negative scenario neg ¼ htick; enableThrusti,
stating that enabling the reverse thrust after the first tick is
not permissible, is elicited where the event enableThrust is
the violating event. Consider two sets of positive scenarios
which show acceptable occurrences of the event enable-
Thrust. Let the first set include the single scenario

pos1 ¼ htick; landPlane; turnWheels;

switchPulseOn; tick; enableThrust; ticki;

which states it is acceptable to enable the reverse thrust
when the plane is moving on the runway, the wheels are

turning, and the wheels’ pulses are switched on. Suppose
the second set includes the two scenarios

pos01 ¼ htick; landPlane; turnWheels;

switchPulseOn; tick; enableThrust; ticki

and

pos02 ¼ htick; dropSpeed;tick; enableThrust; ticki;

which together state that it is acceptable to enable the
reverse thrust if the plane is moving on the runway, the
wheels’ pulse has been switched on, and the wheels are
turning, or when there is a request for the plane to drop in
speed. The sets of fluent literals evaluated to true at the last
tick preceding the occurrence of the event enableThrust in all
three positive scenarios are

p1 ¼ fMovingOnRunway; WheelsTurning; PulseOng;
p01 ¼ fMovingOnRunway; WheelsTurning; PulseOng;
p02 ¼ fEmergencyDecelerationg:

The power set for each of the above is computed. From
Definition 3, we check the value of jð2p1Þ � 2sj j ¼ j9� 1j ¼ 8
and jð2p01 [ 2p

0
2Þ � 2sj j ¼ j10� 1j ¼ 9. The number of ele-

ments after removing the power set of sj from the union of
the power set of p01 and p02 is greater than those as result of
removing the elements appearing in the power set of sj
from the power set of p1. This means that the positive
scenarios in the latter set consider different courses of
events before executing the desirable event and hence
cover more acceptable behavior. Hence, the second set is
said to be a richer set of positive scenarios with respect to
the given negative scenario.

Identifying a rich set of scenarios ensures that the
learning does not overgeneralize the learned hypotheses
and hence produces operational requirements that are too
restrictive, e.g., a required precondition that prevents the
occurrence of the enableThrust whenever the plane is not
on the runway.

4.3 Requirements Inference

The input to the learning phase is a set of goals G, a partial
operational specification O, a set of fluent definitions D, and
a set of elaborated positive and negative scenarios (POS [
NEG) accepted in an LTS of O. The output of this phase is a
set of operational requirements fReqjg that, together with
the given partial specification, defines an LTS that accepts
all positive scenarios in POS but none of the negative ones
in NEG, and is consistent with all goals in G.

We present here the main steps involved in this phase,
which are: 1) encoding the input into a language under-
standable by the learning system, 2) computing the new
operational requirements, and 3) translating the learned
requirements back into FLTL. It is important to note that these
steps are done automatically and hidden from the engineer.

4.3.1 Translating FLTL Specifications into EC

The corresponding EC logic program uses variables of four
sorts: events, fluents, time positions, and scenarios. Event
and fluent constants are, respectively, the event-based
fluents Fe and state-based fluents Fs of the FLTL language,
time positions are represented by the nonnegative integers
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0, 1, 2, . . . , corresponding to the positions in the traces of an
LTS, and scenario terms are constants introduced for each
elicited positive and negative scenario. Definition 4 below is
an adaptation of the encoding detailed in [1] which is
relevant to the examples given in this paper.

Definition 4 (Encoding Operational Specifications into EC

Programs). Let O be an operational specification expressed in

an asynchronous FLTL language. Let D be a set of fluent

definitions and A be an LTS model generated from O with

respect to D. Let NEG [ POS be a set of negative and positive

scenarios. The corresponding logic program � ¼ �ðOÞ ^
�ðDÞ ^ �ðNEG [ POSÞ is the EC program containing the

following clauses:

. initially(f,S) :- scenario(S).

for each fluent f defined to be initially true in D

. initiates(e,f,P,S):- position(P),

scenario(S).

for each event e2 If of fluent f in D

. terminates(e,f,P,S):- position(P),

scenario(S).

for each event e2 Tf of fluent f in D

. impossible(tick,P,S):- position(P),

scenario(S),

(not_)holdsAt_PrevTick(f_1,P,S),

. . .,

(not_)holdsAt_PrevTick(f_n,P,S),

not occursSince_LastTick(e,P,S).

for each trigger-condition assertion

utðtick! ðð
V

1�i�nð:ÞfiÞ ! �ð:tick W eÞÞÞ in O

. impossible(e,P,S):- position(P),

position(P),

scenario(S),

(not_)holdsAt_PrevTick(f_1,P,S),

. . .,

(not_)holdsAt_PrevTick(f_n,P,S).

for each precondition assertion

utðtick! ðð
V

1�i�nð:ÞfiÞ ! �ð:e W tickÞÞÞ in O

. :- position(P), scenario(S),

(not_)holdsAt_Tick(f_1,P,S),

. . .,

(not_)holdsAt_Tick(f_n-1,P,S),

not_holdsAt_Tick(f_n,P,S).

for each expectation assertion

utðtick! ðð
V

1�i�n�1ð:Þfi ! fnÞ in O

. :- position(P), scenario(S),

(not_)holdsAt_Tick(f_1,P,S),

. . .,

(not_)holdsAt_Tick(f_n-1,P,S),

holdsAt_Tick(f_n,P,S).

for each expectation assertion

utðtick! ðð
V

1�i�n�1ð:Þfi ! :fnÞ in O

. attempt(ej, j-1, sci) for each ej in sci where

sci 2 NEG [ POS,

We assume that the program �, resulting from the

encoding above, is always extended with a set of EC domain-

independent axioms (see Appendix B). For proof of

soundness of the encoding, the reader is referred to [1].

Note that the above translation considers pre and trigger-
conditions that prevent and require, respectively, the
occurrence of an event e before the next tick of the system
clock. The encoding may be adapted for other forms of
required conditions, e.g., those that require the occurrence of
an event after a number of tick occurrences in the past. This
is done by using auxiliary predicates in the body of the rules
such as holdsAt_ith_Prevtick(f,p,i,s), which means that f holds
at the ith tick occurring before position p in scenario s. The
definition may also be extended to encode required
postcondition as EC rules with the predicate happens in the
body and holdsAt_tick in the head. Both negative and
positive scenarios are translated into attempt facts. This is
to state that both scenarios are permitted by the current
specification. Note that, in the translation, one is subtracted
from the time position argument of the attempt facts. This is
because the EC program assumes that the effect of initiating
and terminating events on fluents is only observable at the
next time position in a scenario, as opposed to asynchronous
FLTL, which assumes events have immediate effects on
fluents in a given trace.

Table 4 shows an excerpt of the EC program for the FCS
example, including the rules generated by applying � to the
fluent definitions in 2, the operational specification de-
scribed in Table 3, and the scenarios in Figs. 4 and 5. For
instance, the clauses shown in lines 5-6 are generated from
the definition of the fluent ThrustEnabled, and the clause
shown in lines 20-21 is constructed from the domain
precondition of the event switchPulseOn.

4.3.2 Learning Requirements

To fully define the inductive learning task, a corresponding
translation of goals into EC integrity constraints and
scenarios into examples E must be specified. The former
is to ensure that all learned operational requirement do not
violate any of the goals. This encoding is given below.

Definition 5 (Encoding goals into integrity constraints).

Let G be a set of goals formulated as immediate achieve
expressions in FLTL. The corresponding set of integrity
constraints IC includes:

. :- position(P1), scenario(S),

(not_)holdsAt_Tick(f_1,P1,S),. . .,

(not_)holdsAt_Tick(f_n,P1,S),

position(P2), nextTickAt(P2,P1,S),

not_holdsAt_Tick(g,P2,S).

for each immediate cease goal utðtick! ðð:Þf1 ^ � � � ^
ð:Þfn !�ð:tick Wðtick ^ :gÞÞÞÞ in G,

. :- position(P1), scenario(S),

(not_)holdsAt_Tick(f_1,P1,S),. . .,

(not_)holdsAt_Tick(f_n,P1,S),

position(P2), nextTickAt(P2,P1,S),

not_holdsAt_Tick(g,P2,S).

for each immediate achieve goal utðtick! ðð:Þf1

^ � � � ^ ð:Þfn !�ð:tick Wðtick ^ gÞÞÞÞ in G.

Note that the corresponding EC integrity constraints
capture the negation of the FLTL goals. For instance, the
encoding of the asynchronous FLTL goal [ReverseThrustEna-
bledWhenMovingOnRunway], shown in lines 52-53, states

ALRAJEH ET AL.: ELABORATING REQUIREMENTS USING MODEL CHECKING AND INDUCTIVE LEARNING 371



that the constraint is violated if the fluent movingOnRunway

is true at a tick occurrence and the fluent thrustEnabled is

false at the next tick. The encoding of all the given goals is

assumed to be included in the EC program.
The encoding of scenarios into examples E is driven by

the violating event for which the required condition is to be

learned, i.e., the last event in the negative scenario. The

translation is given below.

Definition 6 (Encoding scenarios into EC examples). Let

NEG and POS be a set of negative and positive scenarios. The

corresponding set of examples is the program E given by

. for each negative scenario negj ¼ he1; . . . ; eni in NEG:

- E includes n� 1 facts of the form happen-

s(e_i,i-1,neg_j) with 1 � i � n� 1,
- E includes a fact of the form not hap-

pens(e_n,n-1, neg_j),
. for each positive scenario posj ¼ he1; . . . ; emi in POS:

- E includes m facts of the form happen-

s(e_i,i-1,pos_j) with 1 � i � m.

Note that to guarantee consistency of the learned
hypothesis with the positive scenarios elicited in previous
iterations, the translation of the latter is preserved
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throughout all iterations. The encoding of the scenarios
shown in Figs. 4 and 5 into examples is given in lines 57-61
of Table 4.

The task of learning required conditions is defined,

within the context of EC programs, as learning rules that

define an impossibility of a software and/or a tick event

from an EC encoding of goals G, operational specification O,

fluent definitions D, and scenarios (NEG [ POS). In our

running example, the EC encoding of the partial operational

specification and scenarios currently entails that both

positive and negative scenarios happen. The learning task

is hence required to find hypotheses that would prevent the

violating event in the negative scenario from happening.

The search space is defined by the following mode

declaration:

modehð
; impossibleð‘‘]tick event00; ‘‘þposition00;
‘‘þscenario00ÞÞ:

modehð
; impossibleð‘‘]sw event00; ‘‘þposition00;
‘‘þscenario00ÞÞ:

modebð
; holdsAt PrevTickð‘‘]fluent00; ‘‘þ position
00
;

‘‘þscenario00ÞÞ:
modebð
; not holdsAt PrevTickð‘‘]fluent00;

‘‘‘‘þ position00;þscenario00ÞÞ:
modebð
; not occursSince PrevTickð‘‘]sw event00;

‘‘þposition00; ‘‘þscenario00ÞÞ:

Given a corresponding EC program and mode declara-

tion, the actual computation is performed by the XHAIL

system, which is one of the few ILP systems designed for

nonmonotonic ILP. It is based on a three-phase Hybrid

Abductive Inductive Learning (HAIL) approach, intro-

duced by Ray et al. [43], which operates by constructing

and generalizing a preliminary ground hypothesis K, called

a Kernel Set of B and E.
For our running example, XHAIL computes the minimal

explanation as follows:

� ¼ fimpossibleðtick; 5; neg 1Þg; ð10Þ

The following ground rule is generated from the above

explanation

impossibleðtick; 5; neg 1Þ:�
positionð5Þ; scenarioðneg 1Þ;
not holdsAt PrevTickðmovingOnRunway; 5; neg 1Þ;
not holdsAt PrevTickðwheelsTurning; 5; neg 1Þ;
holdsAt PrevTickðpulseOn; 5; neg 1Þ;
not holdsAt PrevTickðthrustEnabled; 7; neg 1Þ;
not occursSince PrevTickðenableThrust;5; neg 1Þ:;

ð11Þ

and generalized to the following alternative solutions, each

with a minimal number of body literals that are needed to

cover the examples.

impossibleðtick; X1; X2Þ : �
positionðX1Þ; scenarioðX2Þ;
holdsAt PrevTickðpulseOn; X1; X2Þ;
not holdsAt PrevTickðthrustEnabled; X1; X2Þ;
not occursSince PrevTickðenableThrust; X1; X2Þ;

ð12Þ

impossibleðtick; X1; X2Þ : �
positionðX1Þ; scenarioðX2Þ;
holdsAt PrevTickðwheelsTurning; X1; X2Þ;
not holdsAt PrevTickðthrustEnabled; X1; X2Þ;
not occursSince PrevTickðenableThrust; X1; X2Þ;

ð13Þ

impossibleðtick; X1; X2Þ : �
positionðX1Þ; scenarioðX2Þ;
holdsAt PrevTickðmovingOnRunway; X1; X2Þ;
not holdsAt PrevTickðthrustEnabled; X1; X2Þ;
not occursSince PrevTickðenableThrust; X1; X2Þ:

ð14Þ

Once computed, our approach automatically transforms
the learned hypotheses into asynchronous FLTL assertions.
For instance, hypotheses 12, 13, and 14 are mapped back
into FLTL, respectively as

utðtick! ððPulseOn ^ :ThrustEnabledÞ
! �ð:tick W enableThrustÞÞÞ;

ð15Þ

utðtick! ððWheelsTurningÞ ^ :ThrustEnabledÞ
! �ð:tick W enableThrustÞÞÞ;

ð16Þ

utðtick! ððMovingOnRunway ^ :ThrustEnabledÞ
! �ð:tick W enableThrustÞÞÞ;

ð17Þ

stating that the reverse thrust should be enabled whenever
the wheels’ pulse is on, the wheels are turning, and the
plane is moving on the runway, respectively.

The effect of the compression mechanism deployed by the
learning system on the computed hypotheses is that our
approach learns operational requirements that eliminate
additional behavior sharing characteristics with the negative
scenarios while keeping those sharing characteristics with
the positive scenarios. However, the degree of the compres-
sion may be controlled by the richness of scenarios heuristic
discussed in Section 4.2.2.

4.4 Requirements Selection

When the learning phase produces alternative sets of
requirements, the engineer is required to select, from among
these, the best requirements that fit his understanding of the
system’s intended functionality. The reason why only one set
is selected is that, though each set of learned hypotheses is
consistent with the background and explains the examples,
the learning does not guarantee consistency among the
alternative solutions computed in a single iteration, and
hence selecting several solutions at once may invalidate
integrity constraints given in the program.

For instance, the learning phase produced three alter-
native required trigger-conditions for the event enableThrust.
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The former triggers the reverse thrust to be enabled when the
wheels’ pulse is on, the second when the wheels are turning,
and the last when the plane is moving on the runway. Any
would eliminate the violation trace for the goal [Reverse-
ThrustEnabledWhenMovingOnRunway] shown in Section 4.1.
The selection is subject to the engineer’s understanding of the
system and the goals the system must satisfy. We select the
first as it is the only one realizable by the autopilot agent. Note
that, although both are consistent with the current specifica-
tion and the goals, only one is selected to remove the
prescribed behavior and not both. Once the engineer makes
his selection, the operational requirement is added to the
current operational specification and a single iteration in the
overall framework is completed.

Any LTS model generated from the newly extended
specification does not accept the negative scenario elabo-
rated in the previous phase and accepts all the positive
scenarios. This fact, and the soundness of the learning step,
is proven in Theorem 1. The theorem states that, given a
partial operational specification O, fluent definitions D,
goals G, and a consistent set (NEG [ POS) of negative and
positive scenarios, any nonmonotonic ILP solution com-
puted by XHAIL can be translated back into a set of
operational requirements when added to the initial O; it
would allow traces that accept all positive behaviors in POS
but none of the negative ones in NEG.

Theorem 1 (Correctness of Learned Requirements). Let O
be an operational specification and G a set of goals both
expressed in asynchronous FLTL. Let D be a set of fluent
definitions, A an LTS model of O with respect to D, and
NEG [ POS a set of negative and positive scenarios. Let
� ¼ �ðOÞ ^ �ðDÞ ^ �ðNEG [ POSÞ, IC be the encoding of
the goals into integrity constraints, and E be the encoding of
the scenarios into examples. Let H be an inductive solution for
E, computed by the XHAIL algorithm, with respect to � and
IC, under the mode declaration MD, such that � [H � E.
Then the corresponding set Req of asynchronous FLTL pre and
trigger-conditions such that �ðReqÞ ¼ H, is a correct opera-
tional extension of O with respect to NEG [ POS.

The proof is given in [1]. Consequently, the newly
generated LTS is also guaranteed not to exhibit the violation
trace detected by the LTSA in the first phase (since it is a
trace that accepts a negative scenario). In addition to the
removal of all traces accepting the negative scenario
(including the detected violation trace), other traces sharing
common properties with the violation traces are eliminated.
This is a consequence of the generalization feature of the
learning system, which identifies common undesirable
properties from the negative scenarios.

5 TERMINATION

Within a given application of our framework, there may be
a number of iterations of the cycle depicted in Fig. 1. The
process is repeated until all the necessary required pre and
trigger-conditions have been learned: Those which, together
with the initial specification, allow only those behaviors that
satisfy the goals. The process terminates when no further
violations are detected in the analysis phase.

In the case of safety properties, the termination of the cycle
is reached once the error state is no longer reachable in the
composition of the LTS generated from the specification and
the negation of the property in question. If, in each iteration,
no new event labels are introduced, it can be shown that a
finite number of iterations is needed to make the error state
unreachable. The argument is based on the idea that each
state in the LTS generated in the analysis phase can be
characterized (through bisimulation) by a unique fluent
valuation. Given that there are a finite number of states and
fluents, then there is a finite number of fluent valuations to
characterize this LTS. As each rule that is learned removes at
least one transition from the generated LTS in a trace leading
to the error state, a finite number of iterations is required to
make the error state unreachable.

The argument as to why the states of an LTS resulting
from the composition of the LTSs for the operational
requirements specification and the property can be char-
acterized with a unique fluent valuation is as follows: LTSA
synthesizes the least constrained (with respect to trace
inclusion) minimal (with respect to bisimulation) LTS that
satisfies the operational requirements specification. By least
constrained we mean that the generated LTS includes all
possible traces that satisfy the operational specification,
while by minimal we mean the LTS is one which contains
the least number of states in comparison with any other
LTS satisfying the specification. This is also the case of the
LTS generated from the negation of the property. The value
of a fluent in a single state in the generated LTS may be
true or false, depending on the trace executed to reach that
state. States that have these characteristics are referred to as
top states [10]. However, a bisimilar finite state LTS can be
built that does not have any top states, i.e., each state in the
LTS has a particular fluent valuation that holds for all
traces leading to that state. An algorithm showing this
computation is given in [10]. Furthermore, this valuation is
unique as the operational requirements specification
language can only express behavior in terms of fluent
valuations. Hence, two states with the same valuation must
have the same behavior.

When checking a specification against a progress
property, the termination of the cycles is reached if in
every terminal set of the LTS, there is a reachable state with
an outgoing transition of each event in the progress. Similar
to the argument of termination when checking against
safety properties, since each learned rule removes at least
one transition, a finite number of iterations is required to
make a terminal set in which the transitions in the progress
set no longer appear unreachable.

The above cases consider what happens when the
elaboration process successfully terminates. In other cases,
the process may come to a premature termination point, i.e.,
before learning all requirements that would guarantee the
satisfaction of the desired property. Such termination often
occurs when the engineer discovers a positive scenario that
is inconsistent with the current specification during the
scenario elaboration. This case occurs if the requirements
learned in previous iterations are too strong (i.e., there is a
precondition that constrains the occurrence of events more
than is necessary or a trigger-condition that forces the
occurrence of events more than required).

The choice of requirements to include in the specification
also has an impact on the overall elaboration process. For
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instance, a precondition that is too strong may prevent the
system being modeled from behaving desirably and hence
affects the conditions of a requirement learned in subse-
quent iterations. On the other hand, conditions that are too
weak may marginally constrain the specification and lead to
a larger number of iteration steps before termination.

Having identified a premature termination point, the
engineer will have to backtrack to specific decision points in
previous iterations. The proposed approach has two main
junctures at which a choice is made: the elaboration of
scenarios and the selection of requirements. Backtracking to
the previous iteration will go to the immediately preceding
decision point. The engineer thus first backtracks to the
selection phase of the previous iteration in order to select
alternative requirements. Failing this, he will then backtrack
to the scenario elicitation phase of the previous iteration
and so on—if necessary, to previous iterations.

6 VALIDATION

Our general strategy for validation is to apply the proposed
framework to a number of case studies for which a formal
operationalization of the goals exists and compare the
outcome of our application with those obtained by other
existing techniques.

6.1 Methodology

For each case study, we consider a set of goals expressed in
LTL and a complete set of operational requirements with
respect to the goals. These are automatically translated into
an asynchronous FLTL specification using the techniques
described in [29].

We start from a set of goals and a partial operational
specification, and iterate through the four phases described
in this paper. We assume that the set of goals and initial
partial operational specification are consistent and that the
goals may vary from high-level to low-level ones. The final
set of operational requirements learned is compared to the
ones provided using the operationalization patterns in [29],
[28], and [27].

Whenever human intervention is required, we play the
role of the engineer. As this intervention is only required in
two activities, 1) scenario elicitation and 2) requirements
selection, we believe that our influence on the validation of
the approach is minimal. For 1), no understanding of the
underlying approach is needed, only understanding of
the problem domain. It may be argued that the choice of the
elicited scenario is biased by the understanding of the
underlying approach; however, this selection is done follow-
ing the heuristics set out in this paper regarding richness of
scenarios (see Section 4.2.2). For 2), human intervention is
limited to checking if one of the proposed requirements
automatically learned is part of the original specification
developed by a third party. All case studies are executed on a
standard desktop computer (Core2Duo, 1 GB RAM).

In what follows, we show an excerpt of the London
Ambulance Service System case study. Our aim for this case
study is to show that the approach is capable of handling
various forms of goal specifications; in this case the one
specified using the bounded achieve/cease pattern
utðtick! ðP ! ��dð:tick W ðtick ^ ð:ÞQÞÞÞ.

6.2 London Ambulance Service System

The LAS was implemented in 1992 for dispatching

ambulances to emergency incidents in London. The follow-

ing description is taken from [16].

The LAS despatch system is responsible for: receiving calls;
despatching ambulances based on an understanding of the nature
of the calls and the availability of resources; and monitoring the
progress of the response to each call. A computer-aided despatching
system was to be developed, and would include an automatic vehicle
locating system (AVLS) and mobile data terminals (MDTs) to
support automatic communication with ambulances. This system
was to supplant the existing manual system.

The initial set of goals is taken from the specification
provided in [27], where they are specified in first-order
logic LTL. For the purpose of applying our approach, we
transpose the formalization of goals and operational
requirements into propositional FLTL.

We assume the given goals are correct and show how

operational requirements can be derived for them. Only a

subset of the operational specification in [27] constitutes our

initial partial operational specification. We consider defini-

tions for the fluents Allocated, Mobilized, Available, and

Encoded, as well as the fluents Occurs_encode and Occurs_

alloc, which signal the occurrences of the encode and allocate

events, respectively, since the last clock tick. The last two

fluents are terminated by an event tock, which proceeds

every occurrence of a tick event. These are given below.

Allocated ¼ h{allocate},{deallocate}i,
Available ¼ h{free},{assign}i initially true,

Occurs_alloc ¼ h{allocate},{tock}i,
Mobilized ¼ h{mobilize},{demobilize}i,
Intervention ¼ h{intervene},{withdraw}i,
Encoded ¼ h{encode},{decode}i,
Occurs_encode ¼ h{encode},{tock}i.

The partial operational specification includes the follow-
ing required precondition:

utðtick! ð:Allocated!�ð:mobilize W tickÞÞÞ;

meaning that an ambulance may not mobilize if it has not
been allocated, and

utðtick! ððAllocated ^ :InterventionÞ
! �ð:demobilize W tickÞÞÞ;

stating that an ambulance may not demobilize if it is
allocated and has not intervened, as well as the domain
preconditions:

utðtick! ðAvailable!�ð:free W tickÞÞÞ;
utðtick! ð:Available!�ð:assign W tickÞÞÞ;
utðtick! ðAllocated!�ð:allocate W tickÞÞÞ;
utðtick! ð:Allocated!�ð:deallocate W tickÞÞÞ;
utðtick! ðMobilized!�ð:moblize W tickÞÞÞ;
utðtick! ð:Mobilized!�ð:demoblize W tickÞÞÞ;
utðtick! ðIntervention!�ð:intervene W tickÞÞÞ;
utðtick! ð:Intervention!�ð:withdraw W tickÞÞÞ;
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and the expectation

utðtick! ðAllocated$ :AvailableÞÞ;

stating that whenever an ambulance is allocated, it is not
available. The operational specification also contains do-
main preconditions that restrict repeated occurrences of
events between two consecutive ticks. Note that it is
possible to consider an empty operational specification
with fluent definitions only and iteratively generate all the
operational requirements needed to satisfy the goal.

We check this specification against two forms of goals:
safety and time progress. Our focus is on elaborating
required conditions for events of the CAD component which
is responsible for sending signals as well as allocating,
assigning, and mobilizing an ambulance. We assume the
CAD component monitors all information about the incident
and controls all ambulance events.

6.2.1 Safety Check

We consider the goal [AllocationBasedOnIncidentFormWhen
AmbAvailable], formalized as the following safety property
in asynchronous FLTL:

utðtick! ððOccurs encode ^AvailableÞ
! �ðð:tick _�ð:tick W ðtick ^AllocatedÞÞÞW

ðtick ^AllocatedÞÞÞÞ:

The above states that once an incident is encoded, an
available ambulance must be allocated within the next two
time units, i.e., before the occurrence of a second tick.1

First, we use the LTSA to generate an LTS model from
the initial partial operational specification. The synthesized
LTS contains 3,394 states and 12,994 transitions. Running an
LTL property check on this LTS results in the following
violation trace:

Trace to property violation in

AllocationBasedOnIncidentFormWhenAmb-

Available:

tick Available

tock Available

encode Occurs_encode && Available

tick Occurs_encode && Available

tock Available

tick Available

tock Available

tick Available

Analyzed in: 38 ms

We play the role of the engineer here and try to identify
the violating event. As the violation trace is quite short, its
inspection is feasible. The truth value of the fluents
appearing in the goal is indicated in the right column of the
trace. On observation, we notice that at the second tick, an
incident form is encoded and an ambulance is available but
has not been allocated by the second proceeding tick. As the
Allocated fluent is false and not made true by an occurrence of
an initiating event before the last tick, we conclude that the
last tick is the violating event. Fig. 6 shows the negative
scenario extracted from the above violation trace.

To elicit positive scenarios, we regenerate a new LTS
from the composition of the partial operational specification
and the goal [AllocationBasedOnIncidentFormWhenAmb-
Available]. We then use the LTSA run facility to produce a
positive scenario that is consistent with the partial specifica-
tion and satisfies the goal. In this instance, we elicit two
positive scenarios showing that allocating an ambulance
within the first or second time units after an incident is
encoded are both desirable behaviors. These are shown in
Figs. 7 and 8.

The elicited scenarios, goal, and partial operational
specification are systematically transformed into a corre-
sponding logic program and given to the learning system as
input. The XHAIL system produces a number of plausible
solutions for eliminating the negative scenario. The FLTL
formulation of two learned required trigger-condition
variants is given below:

1.

ReqTrig1ðallocateÞ ¼ utðtick! ðððOccurs encode
^Available ^ :AllocatedÞ
^ ð�ð:tick W ðtick ^ EncodedÞÞÞÞ
! �ðð:tick _�ð:tick W allocateÞÞ

W ðallocateÞÞÞ;
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Fig. 6. Negative scenario from goal violation trace.

Fig. 8. Second positive scenario satisfying the goal.

1. This is a simplified version of the one specified in [27] which also
includes a condition that the time it takes the ambulance to reach the
incident location is be less than 11 time units.

Fig. 7. First positive scenario satisfying the goal.



which says that the event allocate should occur by the
third tick if the incident has just been encoded, an
ambulance is available, and the incident remains
encoded at the next tick.

2.

ReqTrig2ðallocateÞ ¼ utðtick! ðððEncoded
^Available ^ :AllocatedÞ
^ ð�ð:tick W ðtick ^ :AllocatedÞÞÞÞ
! �ðð:tick _�ð:tick W allocateÞÞ

W ðallocateÞÞÞ;

which states that the event allocate must occur by the
third tick if an incident has just been encoded, an
ambulance is available, and an ambulance is not
allocated at the next tick.

By comparing the learning outcome with the trigger-
condition obtained from applying the operationalization
patterns in [29], we select the second learned operational
requirement and add this to the initial operational
specification. This marks the end of the first iteration.

Running the analysis on the extended specification,
which now includes the selected ReqTrig2ðallocateÞ, against
the same goal shows that the refined LTS contains no
further violations. Hence, a complete set of operational
requirements with respect to the goal [AllocationBasedOnIn-
cidentFormWhenAmbAvailable] has been identified.

6.2.2 Progress Check

The above shows an excerpt of the validation procedure for
checking against safety properties. In this section, we show
how the framework is also used to verify the satisfaibility of
progress properties. Our focus is on checking the time
progress property. To illustrate the problem of progress
violations in LTSs, we deploy a common assumption in
reactive systems called the Maximum Progress (MP)
assumption [14]. Effectively, this gives priority to system
events over all other events including ticks.

By performing a TP progress check on the LTS generated
from the given FLTL specification, under the MP assump-
tion, the LTSA produces the following counterexample:

Progress violation: TimeProgress

Trace to terminal set of states:

tick

tock

encode

tick

tock

allocate

assign

tick

tock

tick

tock

tick

tock

tick

Cycle in terminal set:

Actions in terminal set:

{}

Progress Check in: 3 ms

The violation shows a case in which an incident form is
encoded, an ambulance is allocated to resolve the incident
by the third tick, after which time progresses until the fifth
time unit, where a deadlock state is reached.

From the violation trace and our understanding of the
system, we identify a missing occurrence for the event
mobilize since no ambulance was mobilized by the last time
point in the trace. Therefore we consider the violating event
to be the last tick event. The procedure for eliminating the
violation is similar to that for safety violations. The negative
scenario becomes the whole sequence of events presented in
the trace as shown in Fig. 9. The positive scenarios are given
in Figs. 10, 11, 12 showing positive occurrences of the event
mobilize.

The positive scenarios collectively state that if an incident
form is encoded and an ambulance is allocated to resolve
the incident, then the ambulance may mobilize to the
incident location within the next three time units.

The learning produced a number of required trigger-
condition for the event mobilize expressed in FLTL, including

ReqTrig1ðmobilizeÞ ¼ utðtick! ððAllocated ^ :MobilizedÞ
! �ðð:tick _�ð:tick W mobilizeÞÞ

W mobilizeÞÞÞ

Informally, the above ensures that an ambulance is
mobilized within the first two time units after an ambulance
has been allocated to the incident site.
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Fig. 9. A negative scenario leading to a progress violation.
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specification.



6.3 Case Study Conclusion

We have demonstrated how the approach can be used for
the operationalization of different goal patterns. Though we
consider a partial set of operational requirements to be
given as input, the process may be applied to the case
where no operational requirements are known.

In addition to the FCS and LAS case studies, we have
applied our approach to other systems, including the Mine
Pump [26] and the Engineered Safety Feature Actuation
System (ESFAS) described in [28]. Table 5 gives an overview
of these applications.

The case studies indicate that the number of iterations is
mainly affected by the number of goals that are violated in
the generated model. Furthermore, they show that there is
an increase in the computation time with respect to the
number of fluents and events in the language, the length of
elicited scenarios, the number of formulae that form the
background, and the number of possible solutions. This is
particularly noticeable in the learning phase, as opposed to
the analysis phase. This is due to a number of factors. First,
the learning system computes the truth value of each fluent
according to each scenario to produce an explanation for
the uncovered example. Then it tries to find all possible
minimal explanations which may cause the search space to
become very large and hence the complexity of the search
increased.

In the mine pump example, the average time for
computing a solution is less than those for the other case

studies. This is influenced by the fact that the scenarios
elicited from the violation traces are shorter than those
produced for the other case studies. In the ESFAS, on the
other hand, no required conditions are initially captured.
Also the number of fluents is higher than that in the other
case studies and hence the computation of their truth value
is more computationally demanding. In the last case study,
the increase in average time is mainly caused by the number
and length of the scenarios included in the program.

Our case studies indicate that there is a dependency
between the richness of the scenario and the weakness of
pre and trigger-conditions computed by the learning phase.
The more different the course of events leading to a
satisfying occurrence of an event in the positive scenario
with respect to the negative scenario, the weaker the
conditions computed by the learning system are and hence
the less likely that it will cause a premature termination.

In comparison with standard manual approaches, we
believe that the proposed approach is simpler and requires
less work for the engineer in many cases, providing
consistent elaborations of the requirements specification
and not simply potential corrections for rechecking. This is
because understanding the exact cause of the violation
trace, which is a sequence of event labels in the given
specification, which is a set of temporal formulae, is hard.
Any edits to such a specification may introduce incon-
sistency and new errors into the specification. Requiring
feedback from the engineer in the form of example
scenarios, which are more intuitive [49], rather than direct
manipulation of the temporal specification is also intended
to relieve the engineer of this nontrivial task.

7 DISCUSSION

The applicability of the learning algorithm to a require-
ments elaboration problem is dependent on the ability to
provide a sound encoding into a logic program. Hence, any
formal language for which such an encoding can be
constructed may be used. Also, it is possible to use the EC
language or other logic programming formalisms directly
as a specification language.

The scalability of the approach is dependent on the
scalability of the model checking and ILP techniques used
independently. As our current analysis is on the system LTS,
the scalability of the model checking may be improved by
deploying compositional verification methods as well as by
using abstraction techniques in our elaboration. Additional
constraints in the learning process are needed, however, to
ensure the soundness of the encoding and correctness of the
solutions. Also, recent advances have helped to improve the
scalability of ILP systems significantly through the use of
search heuristics, search ordering, and pruning [15].

As the successful completion of the approach relies, to an
extent, on the engineer’s ability to elicit positive and
negative scenarios that contribute to learning correct
requirements, providing further support for this process is
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Fig. 12. A positive scenario satisfying the goals and operational

specification.

Fig. 11. A positive scenario satisfying the goals and operational

specification.



therefore desirable. In addition to the conditions considered
in Section 4.2.2 specific to identifying positive scenarios, our
experience has shown that there are a number of considera-
tions which often reduce the risk of backtracking. These
include the following:

. Verifying the model against the progress properties
first and then the safety properties. Our method for
eliminating traces that violate progress properties is
based on the Maximal Progress assumption, a
common assumption for reactive systems, which
means that the software will do all it can before the
next tick. Hence, to prevent the software from
executing events that would lead to a progress
violation, preconditions are often learned and added
to the specification. Because the learning system is
guaranteed to only produce requirements that are
consistent with given specification, then enriching
the specification with preconditions for an event
guarantees that any learned trigger-condition (in
later iterations) for that same event will be consistent
with any precondition for that event.

. Giving preference to learning preconditions over
trigger-conditions, for the same reason discussed
above.

. Checking the satisfaction of a set of goals in a single
iteration. Often checks against goals individually
may facilitate the identification of the violating event
in violation trace. However, checking the specifica-
tion against the conjunction of given goals may lead
to learning requirements that remove more viola-
tions in a cycle than if performed individually.

Note that the learning system automatically checks that
the sets of positive and negative scenarios are disjoint in the
sense that a single scenario cannot be deemed to be both
positive and negative. If the engineer makes such a mistake,
then the learning system produces a message that no
operational requirement can be computed for this set of
examples. However, the current approach does not address
the case in which an engineer elicits a scenario and then
realizes in a later iteration that this scenario is not valid
within the domain being described. To handle such a
situation, the approach needs to be able to revise the
operational specification to cope with such changes. This is
discussed further in Section 9.

Furthermore, the learning step in our approach is
restricted to the vocabulary introduced by the engineer.
This means that any solution the learning system computes
will refer to the set of events and fluents the engineer has
already provided. Nonetheless, it possible for an engineer at
the beginning of an iteration to introduce additional
relevant events or fluents to the vocabulary. Once these
have been determined, the learning process will produce
solutions based on the extended vocabulary.

8 RELATED WORK

Among the few approaches concerned with goal operatio-
nalization are the NFR framework [39], GBRAM [6], and
CREWS [46], [45]. However, these either focus on nonfunc-
tional requirements or are informal and hence cannot be
fully verified.

Fuxman et al. present the TROPOS methodology [18],
[17] for formally specifying and analyzing goals and
requirements. They also use a symbolic model checking
tool [7] to perform the analyses. However, unlike our
approach, they do not provide support for correcting and
completing the specification with respect to goals.

In [31], a formal framework is presented for incremen-
tally constructing an operational requirements specification
from goals. This is done by applying goal refinement
patterns to high-level goal assertions expressed in Real-
Time Linear Temporal Logic (RT-LTL) [35] to generate a set
of terminal goals realizable by some agent in the software.
The terminal goals are then used to derive the list of
operations to be performed by the system and their domain
pre and postconditions. The domain conditions are then
strengthened with required pre, trigger-, and postcondi-
tions using the operationalization pattern catalogue pro-
vided. One main advantage of this approach is that the
final product, i.e., the operational requirements, is guaran-
teed to be complete, consistent, and minimal with respect
to the goals [31]. Nonetheless, the case studies suggest that
our framework can produce alternative and acceptable
operationalization for the same goal that are complete and
consistent. As in our work, operational requirements
derived using the operationalization approach in [31] can
be checked for consistency and satisfaction of the goals
using the operationalization checker FAUST [44]. However,
if a counterexample is detected, the engineer is assumed to
manually revise the declarative specification to resolve the
violation [29]. As consistency checks are applied to the
goals only and are assumed to precede the operationaliza-
tion process, any changes to the specification will have to
be made to the goals first to guarantee consistency. Using
our methodology, on the other hand, the consistency of the
requirements is automatically guaranteed by the learning
system without the need for further analysis. One limita-
tion in our approach as opposed to that described in [31] is
that the minimality of the generated set of required
condition with respect to the goals is scenario-dependent
and therefore not guaranteed. By minimality of the
requirements, we mean that the requirements should not
restrict the behavior of the system more than is required to
satisfy the goals. Though we have not paid particular
attention to this during the elaboration process, we believe
that by including richer (positive and negative) scenarios,
the requirements will be less restrictive and so minimality
is more likely to be preserved.

The work in [52] presents a method for inferring
declarative assertions from scenarios. It elicits goals, as
temporal formulae, from tailored scenarios provided by
stake-holders using an inductive inference process based
on Explanation-Based Learning (EBL) [36]. The tailored
scenarios are then used to elicit new declarative goals that
explain the given scenario. These new goals are added to
the given initial (partial) goal model for “nonoperational”
analysis (i.e., goal decomposition, conflict management,
and obstacle detection). Our approach differs from that in
[52] in numerous aspects. First, the inductive inference of
declarative goals in [52] is based on EBL, which does not
take into account current knowledge of the system (e.g.,
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existing goals or operational requirements) during the
inference process. It is therefore (potentially) an unsound
inference process in that it can generate declarative goals
that are inconsistent with the given (partial) goal model.
ILP, on the other hand, which is the paradigm we use,
makes substantial use of the knowledge provided and only
produces rules that are consistent with it. Hence, goals,
operational requirements, and any available knowledge are
used as constraints on possible acceptable solutions. As a
result, any inferred rules can therefore be directly added to
the current specification. Moreover, the generalization
process in [52] is from the most specific case (i.e., the
scenarios) to a more general description (i.e., the goals).
Negative scenarios are used to avoid overgeneralization of
the permissible behaviors. Although ILP generalizes from
specific examples to general rules, these rules are used to
constrain an overgeneralized behavior specification which
allows both desirable and undesirable behavior. Scenarios
are used to avoid overconstraining the behavior in the final
set of permitted behaviors. The approach [52] is, in
addition, sequential, considering one scenario at a time
during the inference procedure. The method used in our
work accommodates multiple positive and negative sce-
narios collectively in a single inference process.

Other approaches, such as [11], [50], are synthetic, in
the sense that they incrementally extend the set of permis-
sible behavior. Although the outcomes of these approaches
are LTSs that may capture the same set of behavior as that in
the LTS generated by the final set of operational require-
ments, the approach itself does not support the elaboration
of a declarative specification which can then be used to guide
the system implementation.

The framework presented in this paper builds upon our
preliminary work on learning requirements from goal
models in [3], [2]. This paper mainly differs in that: 1) It
presents a framework that supports the operationalization of
goals expressed as both safety and progress properties, 2) it
discusses the termination of the approach, and 3) it provides
a more comprehensive validation with the application to the
London Ambulance Service System. It also relates to the
work in [5], [4], where we presented an approach for
learning pre and trigger-conditions for operations from
scenarios only. The approaches described in both works do
not consider goals in the process nor do they use model
checking to guide the learning process. Furthermore, the
operational requirements are represented using synchro-
nous LTL and hence the methods are not capable of
reasoning about the two levels of granularity discussed in
this paper. This is also reflected in the EC programs, which
do not refer to what is true at tick points.

9 CONCLUSION AND FUTURE WORK

The overall aim of this work is to develop a systematic
approach for elaborating operational requirements that
satisfy the stake-holders’ goals. In particular, we focus on
providing formal, automated support for analyzing a given
partial operational specification and completing it with
respect to the given goals.

This paper provides automated formal methods for
analyzing a given consistent and correct operational

specification, expressed in propositional FLTL, and sug-
gesting ways to fix detected problems—based on a fixed
vocabulary provided by the engineer. It specifically focuses
on problems that are caused by incompleteness of the
operational specification with respect to goals (expressed in
the achieve/cease mode) rather than its incorrectness. We
have deployed two well-founded techniques, model check-
ing and ILP, to perform the elaboration task. Any require-
ment that is computed is automatically guaranteed to be
correct and consistent with the goals and existing opera-
tional specification. At points where users’ input is believed
necessary, we simplify the representation of the problem by
using scenarios to express positive and negative behavior
and the selection of proposed requirements by guaranteeing
their correctness. We also present a sound method for
encoding specifications expressed in FLTL into EC logic
programs. Such encoding has provided us with insight on
ways of integrating temporal-based analysis methods
which are widely used in software development, such as
goal decomposition, agent assignment, and scenario ela-
boration, and the various techniques offered by logic
programming, such as learning [33] and planning [48].

Our approach can be adapted to learning fluent defini-
tions from scenarios. This would correspond to learning
initiates and terminates EC rules, as shown in [41]. In this
way, we would be able to provide support for the
computation of domain conditions from scenarios, as well
as required conditions, allowing the stake holders to convey
such descriptions purely in terms of narrative-style scenar-
ios of system behaviors, rather than temporal assertions.
Additionally, the learning phase can be performed in
isolation to learn requirements directly from scenarios. See
[5] for further details.

In future work, we envision extensions specific to the
current framework as well as extensions to more general
related themes within software engineering and closely
related disciplines.

One of the main areas we intend to investigate is
handling incorrect and/or inconsistent operational specifi-
cations. For this purpose, we will consider the use of
revision-based ILP techniques such as in [9]. This would
provide support for correcting requirements previously
elaborated with respect to newly elicited goals and scenar-
ios, which in effect would avoid the need for backtracking.

We plan to incorporate information about the software
architecture in the learning phase to restrict the solution
space so that only those that satisfy constraints imposed by
the architecture are computed. For instance, predicates that
capture the monitorability and controllability of events by
different components will be included in the background
knowledge. Furthermore, soft goals will be used as
constraints to select among alternative hypotheses.

A further useful extension would be to consider the
scenarios used for learning requirements to be incomplete,
i.e., contain hidden or unobservable transitions in their
sequences. This would hence simplify the scenario elabora-
tion, which currently requires sequences to be complete.
One way is to explore the use of triggered scenarios [47].
Such consideration requires the requirements to be learned
with respect to the scope of the given scenarios.

Additionally, more research on ways of supporting the
generation of rich scenarios that contribute to learning
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requirements that would preserve a larger number of
desirable traces is a key interest. We believe this to be
possible since the LTS generated from the specifications is
the least constrained LTS which already contains traces that
satisfy the goals. For this, we will consider adopting
automated technique such as planning as described in [40].

We also intend to investigate the applicability of the
framework to the problem of elaborating requirements
expressed in first-order logic. Though the learning phase
uses a first-order logic, other analysis techniques will need
to be deployed, such as theorem proving, that are capable of
handling analysis of first-order logic properties.

APPENDIX A

NOTATION AND TERMINOLOGY IN LOGIC PROGRAMS

A term is either a variable X or a compound term
fðt1; . . . ; tnÞ, where f is a function symbol and the ti are
terms. A constant is a 0-ary function symbol [32]. Variables
are represented by alphanumeric strings beginning with
upper case letters. Constants are represented by alphanu-
meric strings beginning with lower case letters.

An atom is an atomic formula pðt1; . . . ; tnÞ, where p is a
predicate symbol of n-ary and ti are terms. Predicates are
represented by strings beginning with lower case letters. A
literal is an atom, called a positive literal, or an atom preceded
by not, called a negative literal, where not is the negation as
failure operator [8]. We use ðnotÞ p to refer to either the
positive literal p or the negative literal not p of that atom.

A clause is an expression of the form h:� b1; . . . ; bn, where
h is an atom (called the head atom) and the bi are literals
(called body literals). The symbol :- is used to denote
material implication in logic programs so that p:-q means
q! p. A clause is ground if it contains no variables. A clause
is definite if all of its body literals are positive. The empty
clause is denoted ut and represents the truth value false. A
goal clause is a clause (:-b1; . . . ; bn) with an empty head. A
normal logic program is a set of clauses. A definite logic
program is a program in which all clauses are definite.

A Herbrand model I of a logic program � is a set of
ground atoms such that, for each ground instance C of a
clause in �, I satisfies the head of C whenever it satisfies
the body of C. A program is consistent if it has at least
one model. A model I is minimal if it does not strictly
include any other model. Definite programs always have a
unique minimal model. Normal programs may have one,
none, or several minimal models. When there is no unique
minimal model, alternative semantics are often provided to
single out specific models as the intended model. One
widely used semantics is that of stable model semantics
[19]. Given a normal logic program �, the reduct of � with
respect to I, denoted �I , is the program obtained from the
set of all ground clauses in � by 1) removing all clauses with
a negative literal not a in its body where a 2 I and
2) removing all negative literals from the bodies of the
remaining clauses. �I is therefore definite and has a single
unique definite model. If I is the least Herbrand model of
�I , then I is said to be a stable model of �.

Definition 7 (Stable model). A model I of � is a stable model if
I is the least Herbrand model of �I , where �I is the definite
p r o g r a m fA: - B1; . . . ; Bn jA: - B1; . . . ; Bn; not C1; . . . ,

not Cn is the ground instance of a clause in � and I does

not satisfy any of the Cig.

The definition of entailment under stable model seman-

tics is given below.

Definition 8 (Entailment in stable model semantics). A

program � entails an expression E (under the credulous stable

model semantics), denoted � � E, iff E is satisfied in at least

one stable model of �.

APPENDIX B

Here, we give the definitions of the EC domain-indepen-

dent axioms used in our programs.

clipped(P1,F,P2,S):-fluent(F), scenario(S),

position(P1), position(P2),position(P),

P1 < P,

P < P2, event(E), happens(E,P,S),

terminates(E,F,P,S).

holdsAt(F,P2,S) :-fluent(F), scenario(S),

position(P2), position(P1), P1< P2,

event(E),

happens(E,P1,S), initiates(E,F,P1,S),

not clipped(P1,F,P2,S).

holdsAt(F,P,S) :- fluent(F), scenario(S),

position(P), initially(F,S), not

clipped(0,F,P,S).

happens(E,P,S) :-event(E), scenario(S),

position(P), attempt(E,P,S), not

impossible(E,P,S).

Below are the definitions of the auxiliary predicates used

to construct EC pre- and trigger-conditions.

holdsAt_Tick(F,P,S) :-

fluent(F), scenario(S), position(P),

happens(tick,P,S), holdsAt(F,P,S).

not_holdsAt_Tick(F,P,S) :-

fluent(F), scenario(S), position(P),

happens(tick,P,S), not holdsAt(F,P,S).

holdsAt_PrevTick(F,P2,S) :- fluent(F),

scenario(S),

position(P2), position(P1), P1> P2,

happens(tick,P1,S), holdsAt(F,P1,S),

not occursInBetween(tick,P1,P2,S).

not_holdsAt_PrevTick(F,P2,S) :-

fluent(F), scenario(S),

position(P2), position(P1), P1< P2,

happens(tick,P1,S), not holdsAt(F,P1,S)

not occursInBetween(tick,P1,P2,S).

nextTickAt(P2,P1,S) :- scenario(S),

position(P1),
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position(P2), P1<P2, happens(tick,P2,S),

not occursInBetween(tick,P1,P2,S).

occursInBetween(E,P1,P2,S):- event(E),

scenario(S),

position(P1), position(P2),

position(P), P1<P, P<P2,

happens(E,P,S).

occursSince_LastTick(E,P2,S) :-

event(E), scenario(S),

position(P1), position(P2), P1<P2,

happens(tick,P1,S),

not occursInBetween(tick,P1,P2,S),

position(P), P1<P, P<P2, happens(E,P,S).
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