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Abstract Behaviour model construction remains a diffi-
cult and labour intensive task which hinders the adoption
of model-based methods by practitioners. We believe one
reason for this is the mismatch between traditional ap-
proaches and current software development process best
practices which include iterative development, adoption of
use-case and scenario-based techniques and viewpoint- or
stakeholder-based analysis; practices which require mod-
elling and analysis in the presence of partial information
about system behaviour.

Our objective is to address the limitations of behaviour
modelling and analysis by shifting the focus from tradi-
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tional behaviour models and verification techniques that re-
quire full behaviour information to partial behaviour mod-
els and analysis techniques, that drive model elaboration
rather than asserting adequacy. We aim to develop sound
theory, techniques and tools that facilitate the construction
of partial behaviour models through model synthesis, en-
able partial behaviour model analysis and provide feed-
back that prompts incremental elaboration of partial mod-
els.

In this paper we present how the different research
threads that we have and currently are developing help pur-
sue this vision as part of the “Partial Behaviour Modelling—
Foundations for Iterative Model Based Software Engineer-
ing” Starting Grant funded by the ERC. We cover partial
behaviour modelling theory and construction, controller
synthesis, automated diagnosis and refinement, and be-
haviour validation.
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1 Introduction

Software systems are amenable to analysis through the con-
struction of behaviour models. This corresponds to the tradi-
tional engineering approach to construction of complex sys-
tems. Models can be studied to increase confidence on the
adequacy of the product to be built. The advantage of us-
ing behaviour models to describe systems is that they are
cheaper to develop than the actual system. Consequently,
they can be analysed and mechanically checked for proper-
ties in order to detect design errors early in the development
process and allow cheaper fixes.

To address this problem significant effort has been de-
voted to developing approaches for modelling and verify-
ing system behaviour. These approaches are typically sup-
ported by automated tools that allow specifying behaviour
models, using them as prototypes for exploring the system
behaviour, and checking adequacy of the model to properties
and system requirements.

Although behaviour modelling and analysis has been
shown to be successful in uncovering subtle requirements
and design errors, adoption by practitioners has been slow.
Partly, this is due to the complexity of building behavioural
models in the first place—behaviour modelling remains a
difficult, labour-intensive task that requires considerable ex-
pertise. In addition, and perhaps more importantly, the bene-
fits of the analysis appear only at the end of a costly process
of constructing a comprehensive behaviour model.

The reason for the latter is that most approaches to be-
haviour modelling require a complete description of the sys-
tem behaviour for a fixed scope and span [47]: the specifi-
cation is assumed to completely describe the system with
respect a chosen set of phenomena types (scope) that de-
termine the level of abstraction of the model and a chosen
part of the problem or solution domain (span). The com-
pleteness assumption is limiting in the context of software
development process best practices which include iterative
development, adoption of use-case and scenario-based tech-
niques and viewpoint- or stakeholder-based analysis; prac-
tices which require modelling and analysis in the presence
of partial information about system behaviour.

The limitations described above motivate a series of re-
search questions that we aim to address: How can the con-
struction of behaviour models be significantly simplified?
Can we provide automated or semi-automated procedures
to assist engineers in building initial approximations of sys-
tem behaviour? Can we provide feedback early in the model
construction effort, even in the presence of partial behaviour
descriptions? Can this feedback be used to prompt further
model elaboration?

Our objective is to address the limitations of behaviour
modelling and analysis by shifting the focus from traditional
behaviour models and verification techniques to partial be-
haviour models and analysis techniques that drive model

elaboration rather than asserting adequacy. The vision we
advocate does not require complete descriptions for analysis
to proceed. We aim to provide a framework in which useful
feedback can be obtained even when very little information
regarding system behaviour is available.

In the remainder of this paper we summarise the different
research threads we have been working on, namely partial
behaviour models (Sect. 2), controller synthesis (Sect. 3),
automated diagnosis and refinement (Sect. 4), and behaviour
validation (Sect. 5).

2 Partial behaviour models

Labelled transition systems (LTS) are the basis for widely
used techniques for modelling and analysing the behaviour
of software systems. An LTS is a transition system where
transitions are labelled with actions. The set of actions of an
LTS is called its communicating alphabet and constitutes the
interactions that the modelled system can have with its envi-
ronment. Behaviour models for complex systems are built
compositionally by describing the behaviour of each sys-
tem component with an LTS and constructing a composite
LTS model that exhibits the emergent behaviour of the com-
ponents executing asynchronously while synchronizing on
shared actions.

Existing semantics for LTS, and other popular behaviour
modelling formalisms such as statecharts, tend to assume
that the model provides a complete description with respect
to its alphabet. For instance, in a trace-based semantics, the
traces described explicitly by the transitions of the model
are assumed to describe all the intended executions of the
system. Any trace not reproducible through the transitions
is assumed to be undesired behaviour of the system. This
interpretation is consistent with semantics based on stan-
dard equivalence relations such as strong and weak bisim-
ulation [60].

An alternative interpretation of LTS is that they repre-
sent an upper or lower bound to the acceptable behaviour of
the system. Consider, for instance, behaviour models syn-
thesised automatically from scenario-based specifications
such as message sequence charts [46]. Scenarios provide
examples of how system components, the environment and
users work concurrently and interact in order to provide sys-
tem level functionality. Example-based specifications such
as scenarios are naturally partial as it is impractical and of-
ten infeasible to provide a comprehensive description on an
example by example basis. Consequently, when behaviour
model synthesis is applied to a scenario description, the re-
sulting model represents a lower bound on the intended sys-
tem behaviour: the synthesised model describes some of the
behaviour required in the final implementation, but the fact
that the model does not exhibit a particular behaviour does
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not mean that the intended implementation must not provide
it. Elaboration of an LTS that represents a lower bound on in-
tended system behaviour consists in strictly adding new be-
haviour (possibly described as new scenarios) to the model
while preserving the hitherto known behaviour.

The interpretation of LTS models as an upper bound
to system behaviour corresponds to the classical view of
process-oriented specification [44, 60] where an LTS is in-
terpreted as a specification of all the acceptable behaviour
of the system. In this view, implementations that satisfy the
specification must provide, in some sense, a subset of the
behaviour described in the LTS. The notions of trace and
failures refinement [44], or that of simulation [60] are clas-
sic formalisations of this interpretation.

The three interpretations discussed above (complete, up-
per, and lower bounds) are not restricted to LTS alone. They
apply to the many other traditional operational formalisms
for describing system behaviour such as those with richer
notions of state (e.g. Kripke structures [52]) and transitions
(e.g. interface automata [23]). Yet these interpretations, par-
ticularly the more widespread one which assumes complete-
ness, are limiting.

For instance, traditional behaviour models cannot ade-
quately model the known behaviour of a system that has
been described by a combination of use-cases, scenarios and
safety properties, a plausible situation in current develop-
ment practices. This is because the use-cases and scenarios
provide a lower-bound and the safety properties provide an
upper bound to the intended system behaviour. It is clear that
the interpretations for LTS described above cannot capture
the required behaviour from the scenarios, the proscribed
behaviour from the properties and the rest which has not
been explicitly proscribed nor required. This is because tra-
ditional behaviour models are essentially two-valued: the
transitions model all of the required behaviour and the rest
is proscribed, the transitions model some of the required be-
haviour and the rest is possible, or the transitions model all
of the possible behaviour and the rest is proscribed.

In fact, and more generally, the problem arises because
traditional behaviour models cannot model explicitly what
is unknown about system behaviour, or, in other words, dis-
tinguish between the behaviour that the system is must pro-
vide, from what it must not provide, and from what is yet
unknown. Behaviour models that distinguish between these
kinds of behaviour are referred to as partial behaviour mod-
els. A number of such models exist, and promising results
on their use to support incremental modelling and viewpoint
analysis have been reported (e.g., Partial Labelled Transi-
tion Systems [70]), Modal Transition Systems (MTS) [53],
Mixed Transition Systems [20] and multi-valued Kripke
structures [17]).

Partial behaviour models, such as Modal Transition Sys-
tems (MTS) [53], distinguish between three kinds of be-
haviour: required, proscribed and unknown, and therefore

can describe both an upper and a lower bound to the intended
system behaviour, allowing both bounds to be refined simul-
taneously. For instance, MTS are equipped with two kinds of
transitions required transitions and possible transitions. The
former provide a upper bound to system behaviour, while
the latter provide the lower bound to system behaviour.

The semantics of a partial behaviour model can be
thought of as a set of traditional behaviour models. For in-
stance, MTS semantics can be given in terms of sets of LTS
that provide all of the behaviour required by the MTS, do
not provide any of the behaviour proscribed by the MTS,
and make arbitrary decisions on the MTS’s unknown be-
haviour. Intuitively, as more information becomes available,
unknown or unclassified behaviour gets changed into either
required or proscribed behaviour. The notion of refinement
between MTS captures this intuition formally and provides
an elegant way of describing the process of behaviour model
elaboration as one in which behaviour information is ac-
quired and introduced into the behaviour model incremen-
tally, gradually refining an MTS until it characterizes a sin-
gle LTS.

The original notion of refinement was aimed at compar-
ing MTS models with the same alphabet and no unobserv-
able transitions and is referred to as strong refinement [53].
Although in [53] a notion of weak refinement that allows
for unobservable actions was defined, we have extended this
notion to account for models that have different alphabets
[36, 69]. More recently [33, 35], we presented a an alter-
native, possibly more appropriate observational refinement,
based on branching equivalence [73].

A particularly useful notion in the context of software
and requirements engineering is that of merge. Merging two
consistent models is a process that should result in a minimal
common refinement of both models where consistency is de-
fined as the existence of one common refinement. Intuitively,
merging builds a model that characterises the intersection of
the LTS characterised by the models being merged. In other
words, the merge characterises the LTS that provide all the
required behaviour of the MTS being merged, and that do
not provide any of the proscribed behaviour of the MTS be-
ing merged.

MTS merging can be used as the conjunction of multi-
ple partial operational descriptions. The original formulation
of merge was done by Larsen in [55] where an incomplete
merge algorithm was proposed for MTS under strong refine-
ment. Recently we have presented a correct and complete
algorithm [34]. The problem of merge under observational
refinements is still open, a partial result can be found in [36]
where we present an incomplete algorithm for merging mod-
els with different alphabets under weak refinement. Finally,
we have studied the problem of providing feedback when
MTS are inconsistent and cannot be merged [66].
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MTS, with any of its refinement semantics, has the limi-
tation of not being closed under merge. This has been stud-
ied for strong refinement extensively and various extensions
that resolve this problem have been proposed, notably Dis-
junctive MTS [54]. However, this is not the case when weak
semantics is used: infinite state DMTS are required. We are
currently studying variants of MTS which are closed for
such weak refinements.

We have revisited the problem of behaviour model syn-
thesis in the context of MTS. We have provided a generic
extension of synthesis approaches that start from existential
scenario-based specifications and build LTS models [71].
Furthermore, in [72] we also show how MTS can support
synthesis from heterogenous specifications including safety
properties and existential scenarios.

Given that MTS are more expressive than LTS, a com-
mon target for scenario synthesis, we have explored oppor-
tunities for defining novel synthesis approaches that start
from more expressive scenarios notations. In particular, we
have investigated synthesis from triggered scenarios (both
with existential and universal modalities [67]). Existential
triggered scenarios had hitherto been neglected in existing
scenario description languages (e.g., [42]) as it is impossi-
ble to adequately capture their semantics using traditional
behaviour models: They express branching properties on re-
quired and possible behaviour (when the trigger occurs, a
branch satisfying the main chart must exist but other be-
haviour may be allowed). This in turn has led to experi-
mentation in logics which have sufficient expressive power
to describe existential triggered scenarios without requiring
full branching capability [12].

We have developed a testbed for manipulating MTS mod-
els, including synthesis, analysis, merge, parallel composi-
tion and animation in a tool, the Modal Transition System
Analyser [27], which is currently an open source program
available at http://sourceforge.net/projects/mtsa/.

3 Behaviour model synthesis

Michael Jackson’s Machine-World model [48] establishes
a framework on which to approach the challenges of re-
quirements engineering. In this model, requirements R are
prescriptive statements of the world expressed in terms of
phenomena on the interface between the machine we are
to build and the world in which the real problems to be
solved live. Such problems are to be captured with pre-
scriptive statements expressed in terms of phenomena in the
world (but not necessarily part of the machine-world inter-
face) called goals G and descriptive statements of what we
assume to be true in the world (domain assumptions D).

Within this setting, a key task in requirements engineer-
ing is to understand and document the goals and the charac-
teristics of the domain in which these are to be achieved, in

order to formulate a set of requirements for the machine to
be built such that assuming that the domain description and
goals are valid, the requirements in such domain entail the
goals, i.e., R,D |� G.

Thus, a key problem of requirements engineering can
be formulated as a synthesis problem. Given a set of de-
scriptive assumptions on the environment behaviour and a
set of system goals, construct an operational model of the
machine such that when composed with the environment,
the goals are achieved. Such problem is known as the con-
troller synthesis problem [62, 64] and has been studied ex-
tensively. Controller synthesis algorithms have been used in
various software engineering settings including synthesis of
glue code and component adaptors in order to achieve safe
composition at the architecture level [10], and particularly
in service oriented architectures [15], or to synthesise adap-
tation strategies in autonomous systems [68].

We have investigated the use of controller synthesis tech-
niques to aid the incremental elaboration of behaviour mod-
els. Focus has been on adapting and extending existing con-
troller synthesis in order to gain insight on given models
of system goals G and domain assumptions D while at-
tempting to synthesise an operational model for the require-
ments R such that R,D |� G. In other words, the point is
not so much to build R, but rather to investigate how the
non-existence of an R such that R,D |� G can prompt the
elaboration of both G and D.

3.1 Environment assumptions

Jackson [48] and others (e.g., [58, 74, 76]) have argued that
environment assumptions play a key role in the requirements
validation process. Many system failures are due to invalid
assumptions, many times related to an over-idealisation of
the environment’s behaviour. In other words, statements re-
garding environment behaviour that are not realistic are used
to demonstrate the correctness of the requirements with re-
spect to the goals. However, given that the assumptions are
invalid, when the system is developed and deployed, the
goals are not achieved. Thus, best practices include explicit
modelling of assumptions not only better support validation
but also make explicit when system goals are guaranteed to
be achieved, helping to set more realistic expectations.

Although assumptions and their relation with the synthe-
sis problem has been studied recently [16, 18], most synthe-
sis approaches (e.g., [14, 43, 68]) do not support an explicit
distinction between assumptions and goals. On the other
hand, techniques that do support explicit specification of as-
sumptions such as [61] give assumptions a syntactic treat-
ment; no semantic restriction or methodological guidelines
are provided as to what assertions constitute valid assump-
tions. This is crucial, as we show in [29], when assertions
proposed as domain assumptions are not realisable [74] by

http://sourceforge.net/projects/mtsa/
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the environment, then controller synthesis techniques can
produce valid, yet useless, results: A controller which rather
than attempting to achieve the specified goals, succeeds in
violating the system assumptions and thus discharging its
obligation to fulfill the goals.

In [29] we present a controller synthesis technique and
methodological guidelines for synthesising event-based be-
haviour models. The approach works for an expressive sub-
set of liveness properties, GR(1) [61], that distinguishes
between controlled and monitored actions, and differenti-
ates between system goals and environment assumptions.
The technique adapts and extends recent advances [61]
in controller synthesis for shared memory communication
style.

In [28] we further this work by studying failure assump-
tions of environment controlled actions and identify a real-
istic fairness condition on failures, strong independent fair-
ness, which allows for a polynomial treatment of the control
synthesis problem. Intuitively, the strong independent fair-
ness condition states that not only every failure and every
assumption must occur fairly (infinitely often if enabled in-
finitely often) but also independently of system state and of
every other failure and assumptions. In other words, fail-
ures and assumptions cannot be coordinated. They must be
“controlled” by different agents which must be oblivious of
each other. This notion of fairness has a corresponding in-
terpretation in stochastic behaviour: if the environment can
be thought of as a grounding of a probabilistic environment
with non-zero probability of non-failure, then the executions
that are not strong independent fair have probabilistic mea-
sure zero.

Applying controller synthesis techniques which require
explicit description of assumptions prompts behaviour
model elaboration. For instance, as part of the validation
of the work in [28] we studied the controller synthesised
by [13] for a web-service required to coordinate purchases
on a furniture-sales service and deliveries on a shipping ser-
vice. The case study includes failures such as furniture-sales
and shipping services responding negatively to requests.
The technique in [13] gives no guarantees on the result-
ing controller satisfying the expected goals. Hence the re-
sulting controller is not guaranteed to satisfy purchase re-
quests it receives. Applying our technique [28] shows that
the assumptions for this system are insufficient to construct
a guaranteed controller and that in fact progress and fair-
ness conditions are required. If these conditions are explic-
itly added to the behaviour specification, then a controller
that guarantees system goals is possible and is constructed
using [28].

Thus the lack of initial realisability of the specification of
the case study in [13] led to a more elaborate description of
the domain assumptions required to guarantee system level
goals.

3.2 Partial environment models

Existing controller synthesis approaches require complete
descriptions of the problem domain. Typically, the domain
is described in a formal language with its semantics de-
fined as some variation of a two-valued state machine such
as Labelled Transition Systems (LTS) [49] or Kripke struc-
tures [52]. Thus, the model of the problem domain is as-
sumed to be complete up to some level of abstraction (i.e.,
with respect to an alphabet of actions or propositions).

As discussed previously, traditional behaviour modelling
frameworks based on LTS and Kripke structures are not
well suited for describing partial knowledge about the
problem domain. However, controller synthesis techniques
for partial behaviour modelling formalisms such as multi-
valued Kripke structures [37] and Modal Transition Systems
(MTS) [53] has yet to be studied.

In [30], we define controller synthesis in the context of
partially specified problem domains. More specifically, we
study the problem of checking the existence of an LTS con-
troller (i.e., controller realisability) capable of guaranteeing
a given goal when deployed in a completely defined LTS
domain model that conforms to a partially defined problem
domain given as an MTS.

More specifically, given that an MTS defines a set of LTS
implementations, we define the MTS control problem as re-
sponding if all, none or some of the LTS implementations
an MTS describes admit an LTS controller that guarantees
a given goal expressed as a Fluent Linear Temporal Logic
(FLTL) [39] formula.

A technique that yields an answer to the MTS control
problem is presented in [30] showing that, despite dealing
with a potentially infinite number of LTS implementations,
the MTS control problem is in the same complexity class
as the underlying LTS synthesis problem. Furthermore, the
results for MTS realisability can be used with controller syn-
thesis techniques that deal efficiently with restricted yet ex-
pressive goals such as [8, 9, 61].

We believe that the feedback resulting from addressing
the MTS control problem can prompt partial model elabo-
ration. This is particularly so when the answer to the real-
isability question is “some”. In these cases, a refinement of
the partial behaviour model that prunes out the implementa-
tions which cannot be controlled is necessary, representing
an opportunity for elicitation.

4 Automated diagnosis and repair

At the heart of model elaboration is the model-analyse-
elaborate cycle. Engineers produce models, be the partial or
complete with respect to a particular level of abstraction,
and then use automated sound tools to analyse the emergent
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behaviour of these models. The result of the analysis can
be positive, in which the engineer considers that sufficient
confidence on the adequacy of the model has been achieved,
or negative, in which concrete examples of undesired be-
haviour are identified. The elaboration phase attempts to re-
vise or refine the existing model to eliminate undesired be-
haviour while preserving the desired behaviour exhibited by
the model.

A key family of tools in the model-analyse-elaborate cy-
cle is that of model-checkers. Model Checking is an auto-
mated technique for verifying formal artefacts. It has been
successfully used to verify system design and requirements
in different domains including communication and security
protocols as well as biological systems. A model checker
requires a model provided in some formal language and a
semantic property that such model is expected to have. Such
property is described in a formal language (possibly differ-
ent from the one used for the model, but with compatible
semantics). The model checker then automatically checks
the validity of the specified property in the model’s seman-
tics [19]. If the property is found to not hold, a counterex-
ample is generated which shows how the property can be
falsified.

The automatic generation of counterexamples is one of
model checking’s powerful features for system fault detec-
tion. Counter-examples are meant to help engineers in the
tasks of identifying the cause of a property violation and
correcting the model. However, these tasks are complex and
little automated support exists for them. Even in relatively
small models such tasks are far from trivial since (i) coun-
terexamples are expressed in terms of the model’s semantics
rather than the language used to describe the model or the
property, (ii) counterexamples show the symptom and do not
indicate the cause of the violation and (iii) any manual mod-
ification to the model may fail to resolve the problem and
may even introduce violations to other desirable properties.

Inductive logic programming (ILP) is a subfield of ma-
chine learning which uses logic programming as a uniform
representation of knowledge to perform explanation reason-
ing. Given an encoding of the known background knowledge
and a set of positive and negative examples, an ILP system
will compute a hypothesis which, in conjunction with the
background knowledge, allows all the positive but none of
the negative examples.

In the context of behaviour model elaboration, ILP can
be applied by representing the model under analysis as the
background knowledge, property violations produced by a
model checker as negative examples and any witness to the
property (these can easily be generated by a model checker)
deemed to be valid by the engineer as positive examples. The
computed hypothesis is a statement which refines or revises
the model specification and that is guaranteed to avoid the
property violations while preserving the property witnesses.

We believe that model checking and ILP can be seen as
two complementary approaches which if integrated appro-
priately can support model elaboration in general and be-
haviour model elaboration in particular. We have success-
fully applied the combination of model checking and ILP
in software engineering settings to tackle a variety of prob-
lems related to behaviour model elaboration. We succinctly
discuss each one in the remainder of the section. Note, how-
ever, that although each of these problem domains differ in
their modelling language, semantics and class of elabora-
tions, they share a number of characteristics. Their theo-
ries describe event-based systems, with a model semantics
expressed in terms of finite-state transition systems, whose
ontology features and semantic properties can naturally be
captured by Event Calculus logic programs [50] with stable
model semantics [38].

4.1 Learning operational requirements from goals

A key activity in requirements engineering is the elaboration
and analysis of operational requirements. Operational re-
quirements are requirements for each operation that is to be
provided by the software. Such requirements can, and typi-
cally are, described using pre-, post- and trigger-conditions.

Little support exists for the elaboration of operational re-
quirements from high-level goals. Letier and van Lamws-
veerde [56] have developed an approach based on oper-
ationalisation patterns which allows the derivation of op-
erational requirements in the form of pre- and trigger-
conditions from goals expressed in Linear Temporal Logic
(LTL). Requirements generated by this approach are guar-
anteed to be correct. However, patterns are restricted to a
collection of goal and requirement templates, and their ap-
plication requires a fully refined goal model. Consequently,
the elaboration of operational requirements from goals re-
mains constrained to the set of templates and can be labour
intensive and error-prone. The availability of a more sys-
tematic and automated approach would therefore benefit the
process of operationalising goals.

In [3, 4], we present a formal, tool-supported frame-
work that combines model checking and ILP to elaborate
operational requirements, in the form of pre- and trigger-
conditions, that are correct and complete with respect to a
given set of system goals. The framework is defined as an it-
erative process that consists of four conceptual phases. First,
in the analysis phase, an existing partial specification of op-
erational requirements is verified against a given goal model
using a model checker. If verification is unsuccessful (i.e.,
the operational requirements do not entail the goals), the
example of goal violation automatically generated is used
in the scenario elaboration phase where an engineer elabo-
rates it into a set of positive and negative scenarios. In the
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learning phase, the partial specification of operational re-
quirements and scenarios are used by a non-monotonic in-
ductive learning system to compute a set of operational re-
quirements that covers all positive scenarios and eliminates
all negative ones. Finally, in the selection phase, the engi-
neer selects the operational requirements to be added from
the list proposed by the learning phase. The four phases are
then repeated until no goal violation is detected.

The approach was validated by using case studies [32,
51]. For each of the systems studied, we had an informal
description of the system-to-be, a linear temporal logic rep-
resentation of its high level goals and a formal operationali-
sation of the goals, that is, a set of operational requirements
that is complete with respect to the goals. It is important to
note that all these elements, informal description, goals, and
operational requirements, were produced by a third-party.
The validation consisted in starting from the high-level goals
and applying the iterative method described in [3]. Human
interventions required by the approach (for example and
counter-example generation) were performed based on our
understanding of the informal description of the system and
the high-level goals. Having completed all iterations, the op-
erational requirements learned were compared to the ones
provided. In all cases, we were able to learn the provided op-
erational requirements, however, in some cases we were also
able to identify alternative operationalisations of the high-
level goals.

4.2 Zeno-behaviour elimination

In requirements engineering [48] focus is on prescriptive
declarative statements of intent whose satisfaction requires
the cooperation of agents (or active components) in the soft-
ware and its environment. Such statements are commonly
referred to as system-level goals, or simply goals [75].

The declarative nature of goals often hinders the applica-
tion of a number of successful validation techniques based
on executable models such as graphical animations, simu-
lations, and rapid-prototyping. They do not naturally sup-
port narrative style elicitation techniques, such as those in
scenario-based requirements engineering and are not suit-
able for down-stream analyses that focus on design and im-
plementation issues which are of an operational nature.

To address these limitations, techniques have been devel-
oped for constructing behaviour models automatically from
declarative descriptions in general [72] and from goal mod-
els specifically [57]. The core of these techniques is based
on temporal logic to automata transformations developed
in the model checking community. For instance, in [57]
Labelled Transition Systems (LTS) are built automatically
from KAOS goals expressed in fluent linear temporal logic
[39].

A key technical difficulty in constructing behaviour mod-
els from goal models is that the latter are typically ex-
pressed in a synchronous, non-interleaving semantic frame-
work while the former have an asynchronous interleaving
semantics. This mismatch relates to the fact that it is appro-
priate to make different assumptions for modelling require-
ments and system goals than for modelling communicating
sequential processes. One of the practical consequences of
this mismatch is that the construction of behaviour models
from a goal model may introduce deadlocks and progress
violations. More specifically, the resulting behaviour model
may be zeno, i.e. exhibit traces in which time never pro-
gresses. Clearly, these models do not adequately describe
the intended system behaviour and thus are not a suitable
basis for analysis.

A solution proposed in [57] to the problem of zeno traces
is to construct behavior models from a fully operationalised
goal model rather than from a set of high-level goals. This
involves identifying system operations and extracting op-
erational requirements in the form of pre- and trigger-
conditions from the high-level goals [56]. This has some im-
portant disadvantages. Firstly, operationalisation is a manual
process for which only partial support for the derivation of a
complete operationalised model is provided. Support comes
in the form of derivation patterns restricted to some common
goal patterns [22]. Secondly, it impedes early construction of
behaviour models from high-level goals which can provide
insights before going through a tedious operationalisation
process.

In [2, 5] we apply a combination of model checking and
ILP to the problem of non-zeno behaviour model construc-
tion. The approach starts with a goal model and produces
a non-zeno behaviour model that satisfies all goals. Briefly,
the proposed method first involves translating automatically
the goal model, formalised in Linear Temporal Logic (LTL),
into a (potentially zeno) labelled transition system. Then, in
an iterative process, zeno traces in the behaviour model are
identified mechanically, elaborated into positive and nega-
tive scenarios, and used to automatically learn preconditions
that prevent the traces from occurring. Identification of zeno
traces is achieved by model checking the behaviour model
against a time progress property expressed in LTL, while
preconditions are learned using Inductive Logic Program-
ming (ILP).

As a result of the proposed approach, not only a non-
zeno behaviour model is constructed, but also a set of pre-
condition is produced. These preconditions, in conjunction
with the known goals, ensure the non-zeno behaviour of the
system. Consequently, the approach also supports the oper-
ationalisation process of goal models described in [56].
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4.3 Obstacle generation

Completeness is among the most critical and difficult chal-
lenges facing requirements engineers. Missing requirements
and assumptions are reported as one of the major causes of
software failure [75]. Incompleteness often arises from the
lack of anticipation of exceptional conditions. The natural
inclination is rather to conceive idealised systems; this pre-
vents adverse events or conditions from being properly iden-
tified, and as a result, specifications of suitable countermea-
sures in such circumstances are missing.

Risk analysis is therefore at the heart of the requirements
engineering process [31, 75]. A risk is commonly defined
as an uncertain factor whose occurrence may result in some
loss of satisfaction of some corresponding objective. In goal-
oriented system modelling frameworks, obstacles are intro-
duced as a natural abstraction for risk analysis when using
goal models [76]. An obstacle to a goal is a precondition
for the non-satisfaction of this goal. Depending on the cat-
egory of goal being obstructed, obstacles may correspond
to safety hazards, security threats, inaccuracy conditions on
software input/output variables with respect to their environ-
ment counterpart, etc.

Obstacle analysis roughly consists of three steps [75]:
(a) identify as many obstacles as possible to every leaf goal
in the system’s goal refinement graph, (b) assess the like-
lihood and severity of each obstacle; and (c) resolve likely
and severe obstacles by systematic transformations to the
goal model using appropriate countermeasures.

The obstacle identification step is obviously crucial. In
[76], a formal technique is described for generating obsta-
cles by regressing goal negations through available domain
properties. Although quite systematic, this technique ap-
pears costly to implement for goals formalised in a first-
order real-time linear temporal logic. No tool support is
available.

In [7], we present an alternative, tool-supported tech-
nique for obstacle generation. A complete set of obstacles,
relative to what is known about the domain, is computed by
iterating the following cycle: (a) a behaviour model is syn-
thesised from the available background properties; (b) this
model is verified against the goal and against a negated form
of it, in order to generate a negative trace (counterexample)
and a positive trace (witness), respectively; (c) the negative
trace is taken as a positive example whereas the positive
trace is taken as a negative example input for a learning en-
gine; (d) the learning tool generates a set of candidate obsta-
cles that cover the positive example and exclude the negative
one; (e) the user can then select from the generated obstacles
those considered likely and severe, and suggest further do-
main properties; (f) a new cycle is applied to the background
properties augmented with such properties and the negated

obstacles generated at the previous cycle. The process termi-
nates when a domain-complete set of obstacles is generated
for the available domain properties.

4.4 Vacuity resolution for triggered scenarios

Scenarios, use cases and story boards are popular means for
supporting requirements engineering activities. They illus-
trate examples of how the software-to-be and its environ-
ment should and should not interact. They are commonly
used as an intuitive, semi-formal language for describing be-
haviour at a functional level.

A common form for providing examples of behaviour is
through conditional statements. Use cases [1] support exis-
tential conditional statements such as “once an appropriate
user ID and passwords has been obtained, a homeowner can
access the surveillance cameras placed throughout the house
from any remote location via the internet” [63]. Live Se-
quence Charts [42] support universal conditional statements
such as “the controller should probe the thermometer for
a temperature value every 100 milliseconds, and if the re-
sult is more that 60 degrees, it should deactivate the heater
and send a warning to the console”. Some languages support
both existential and universal conditional scenarios [67].

Conditional scenarios with different modalities are use-
ful. They provide support for “what-if” elaboration of re-
quirements specifications [1], and the progressive shift from
existential statements, in the form of examples and use-
cases, to universal statements in the form of declarative
properties. Each conditional scenario constitutes only a par-
tial description of the system’s intended behaviour. Hence,
typically many of them are used in conjunction along with
other behaviour descriptions such as system goals [21]. The
emergent behaviour of such rich descriptions can be com-
plex to reason about, hindering validation, and resulting fre-
quently in specifications that are incomplete or contradic-
tory.

One particular issue that conditional scenarios have is
that they are liable to being satisfied vacuously; a system
can be constructed so that it satisfies the conditional scenar-
ios by never satisfying the condition. For instance, a system
in which the homeowner is never given a user password vac-
uously satisfies the use case described above. This problem,
commonly referred to as antecedent failure [11] in tempo-
ral specifications, is often an indication that the specifica-
tion is partial and hence provides an opportunity for elici-
tation; it is clear that the stakeholder’s intention is that “the
system should provide the user with an id and password”,
and if it does, then the user can access the installed surveil-
lance cameras. In addition, vacuously satisfiable specifica-
tions can have pernicious effects, concealing conflicting be-
haviour which is important to explore. For example, con-
sider two scenarios extracted from the mine pump example
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in [51]: “once the methane sensors detect that the methane
level is critical, then the pump controller must send a signal
to the pump to be switched off” and “once the water sen-
sors detect that the water level is above the high-threshold,
then the pump controller must send a signal to the pump to
be switched on”. These scenarios are consistent as a system
in which water sensors never detect high water and methane
levels vacuously satisfies both scenarios. However, if these
two levels were to occur, then the scenarios provide contra-
dictory information of what the controller must do.

In [6] we present an approach that not only detects vacu-
ously satisfiable conditional scenarios but also provides au-
tomated support for learning new scenarios that ensure the
conditions, i.e. triggers, are satisfied. More specifically, the
approach takes as input a set of scenarios formalised as trig-
gered existential and universal scenarios [67] and consists
of two main phases. The first involves (i) synthesising a
Modal Transition System from the scenarios, representing
all possible implementations that satisfy them and (ii) per-
forming a vacuity check, using a model checker, against a
scenario’s trigger. If the vacuity check is positive, the model
checker produces examples of how the system-to-be could
satisfy the trigger, i.e. non-vacuity witnesses [41]. In the
second phase, (iii) an engineer classifies the examples as ei-
ther positive or negative, i.e. ones that should be accepted
or not in the final implementation, and then (iv), together
with the given scenarios, inputs them into an inductive logic
programming learning tool to compute new triggered sce-
narios which, if added to the existing scenarios, guarantee
that they are no longer vacuously satisfiable. This process
is repeated for each given triggered scenario, producing in
the end a scenario-based specification that is not vacuously
satisfiable.

5 Behaviour model validation

Behaviour model validation aims to determine the degree to
which a behaviour model is a sufficiently accurate represen-
tation of the real world (as it is or as it is intended to be once
the system under construction is deployed). The gap from
the formal language used for modelling to the untractable
informal world makes validation a difficult task.

Although related, verification of behaviour models (de-
termining whether the behaviour model satisfies specific for-
mally described properties [45]) is of a very different nature,
where at least the artefacts to be compared are in the realm
of mathematics.

Behaviour model verification and validation are comple-
mentary activities; both are necessary to increase confidence
regarding the quality of the software under construction.
Much work has gone into supporting behaviour model veri-
fication; however, we believe, there is significant progress to
be made on supporting behaviour model validation.

There are two broad strategies that can be taken to vali-
date behaviour models. One is to turn the validation problem
into a verification one. More concretely, to produce a specifi-
cation against which the behaviour can be verified. The idea
is that if the specification is simpler than the artefact, valida-
tion of the former is likely to be simpler and less error prone.
Although an effective strategy, since an alternative specifi-
cation is required, it must be validated appropriately, falling
back into the validation problem. In other words, turning a
validation problem into a verification problem creates a new
(possibly simpler but of reduced scope) validation task, so
eventually human intervention is required.

The other strategies require a human in the loop that con-
trasts informally the model against his or her understanding
of the domain. Walkthroughs, inspections and reviews are
classic structured activities for organising this task. How-
ever, key to effective validation is the ability to present be-
haviour models in alternative, semantic preserving, views.
Hence, much work has gone into developing semantic pre-
serving automated manipulations of models that can be used
to produce alternative views. Some classic examples of this
strategy are minimisation, slicing, execution, simulation and
abstraction. We have been pursuing the latter for a number of
years. More specifically, we have focussed on automated ab-
straction for validation of pre/post condition specifications
and API implementations with requires clauses.

5.1 Behaviour validation of pre/post condition
specifications

Pre- and post-condition specifications constitute good prac-
tice in a variety of behaviour modelling activities. In require-
ments engineering, they provide the link between declara-
tive high-level system goals and operational requirements
for the software-to-be [77]. Use case specifications, which
are popular in development processes such as RUP (Ra-
tional Unified Process), are also equipped with pre- and
post-conditions. In design, the notion of design by con-
tract [59], as a mechanism to abstract the way functional-
ity is provided by a procedure or method, is underpinned by
pre-/post-conditions. Object oriented design commonly in-
cludes design of method pre- and post-conditions in addition
to the specification of class or object invariants. At the code
level, the use of assertions to verify at run-time pre-/post-
conditions is considered good practice [65].

A pre/post condition pair constitutes a specification that
is local to a specific operation (method, procedure, use case,
event, etc.). The precondition is an assertion that is expected
to hold before the occurrence of the operation. The postcon-
dition is an assertion that is guaranteed to hold after the oc-
currence of the operation if the precondition held before the
occurrence. Typically, a contract specification will include
various operations (needed to provide some significant ser-
vice) each with a pre/post condition pair and possibly an
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invariant that is expected to hold after the occurrence of any
sequence of the specified operations.

Validating pre/post condition specifications, i.e., under-
standing if there is a correspondence between the meaning
of the specification and the meaning that the specification
was expected to have, is a difficult and error prone task. Al-
though understanding the pre/post condition for a single op-
eration may be relatively simple, understanding if chaining
them for an arbitrary sequence of operations is describing
the intended outcome is complicated. For example, ensur-
ing that the pre/post conditions of a set of operations of an
API are correct requires understanding if they preserve the
system invariant and fit together adequately to provide the
intended API functionality. Validating a use case model re-
quires understanding how the various use-cases can be com-
bined to provide the expected software-wide requirements.

In [25], we propose a strategy for validation of pre/post
condition specifications based on the conjecture that pre/post
condition specifications would benefit from easily auditable
abstractions that exhibit global implications of locally spec-
ified behaviour. The approach is based on the static con-
struction of a conservative abstraction of the specification
semantics (typically, an infinite state machine) in the form
of a finite behaviour model that is sufficiently small to make
validation tractable.

The technique builds abstractions at a level which can be
seen as a generalisation of the pre/post condition philoso-
phy: A precondition describes the state in which a specific
operation is permissible. We are interested in capturing the
precondition for each arbitrary set of operations. In other
words, each state in the resulting behaviour model should
characterise the condition for which a subset of the speci-
fied operations is enabled; this means that the invariant of
the state is the conjunction of the preconditions enabled
at that state. The contract abstraction is then completed by
adding transitions according to the preconditions and post-
conditions of the operations they model: A transition can
be added if the precondition for the operation holds on the
source state and the postcondition holds on the target state.

The models constructed by the approach described herein
can be used to validate contract pre/post-condition-based
specifications through inspection, animation and simulation.
We believe, and our experience so far confirms, that the cri-
terion chosen for abstraction facilitates validation and de-
bugging. Firstly, because a formal and intuitive correspon-
dence exists between the state space of the behaviour model
and that of the artifact being specified. Furthermore, that cor-
respondence is structured in a way that can be easily traced
back to the original specification. Not only does each state
in the behaviour model represent an invariant expressed in
terms of the variables, predicates and propositions that ap-
pear in the specification (and hence constructing concrete
scenarios from abstract ones is straightforward), but also the

invariants are expressed as a conjunction of preconditions,
each of which is a building block of the specification being
validated (and hence facilitating the identification of prob-
lematic operations). Secondly, in the case studies conducted
so far, the state-based models we have produced automati-
cally from contract specifications have had a similar level of
abstraction to models manually produced by the authors of
the contract specification. For instance, we have produced
abstractions that correspond to manually produced typestate
specifications for object oriented classes [26], and abstrac-
tions that are comparable to the state-machines included in
Microsoft technical documents to aid the comprehension of
their protocol specifications.

5.2 Program behaviour validation

Code artefacts that have non-trivial requirements with re-
spect to the order in which their methods or procedures
ought to be called are commonplace. Such is the case for
many API implementations and objects. In practice, descrip-
tions of intended behaviour are incomplete and informal, if
documented at all, hindering verification and validation of
the code artefacts themselves and the client code that uses
the artefacts.

The work in [24] addresses the problem of validating if
API implementations provide their intended behaviour when
descriptions of this behaviour are informal, partial or non-
existent. Validation of API implementation behaviour can
result in the identification of bugs in the code which induce
undesired requirements, adjustment of the requirements ex-
pected by the engineer to the requirements implicit in the
code, and the improvement of available documentation for
that code.

Although seemingly a technique that is applicable fur-
ther downstream than validation of behaviour models, this
is not necessarily the case. It is not uncommon to find in in-
dustry behaviour models specified with a standard program-
ming languages (albeit in a restricted form). For instance,
in the model-based testing approach used by the Protocol
Engineering Team at Microsoft [40] behaviour models are
provided as C# classes. Each class has methods that are in-
terpreted as guarded rules defining a rich action machine.
In [24] we report on the application of this technique to Mi-
crosoft protocols, among others.

The technique described in [24] and then extended [78]
automatically constructs abstractions based on enabledness
equivalence from code artefacts equipped with requires
clauses for methods. These models, similarly to typestates,
encode all admissible sequences of method calls. The level
of abstraction at which such models are constructed aims at
preserving enabledness of sets of operations, resulting in a
finite model with intuitive semantics and formal traceability
links to the code.
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Evaluation of this work shows that enabledness-based ab-
stractions can be useful for validation of code artefacts and
identifying findings that relate to bugs in code and prob-
lems in expected or documented requirements. Evaluation
was performed on case studies such as the PipedOutput-
Stream, Signature and ListItr from the Java De-
velopment Kit (JDK) 1.4 implementation; the SMTPPro-
tocol class from the RISTRETTO protocol-level Java mail
client; and the PCCRR class was taken from a C# SpecEx-
plorer protocol model. Resulting abstractions were reviewed
by an expert and compared to informal third-party devel-
oped documentation that was already available for these
classes. These reviews led to the identification of issues re-
lated to mismatches between code and documentation.

6 Conclusions

We have presented the main threads of research that we
have and currently are developing in the context of the “Par-
tial Behaviour Modelling—Foundations for Iterative Model
Based Software Engineering” Starting Grant funded by the
ERC. The project is concerned with supporting incremen-
tal elaboration of behaviour models by providing feedback
early in the modelling effort and by prompting issues that
can drive further model elaboration.

Thus, the vision we are pursuing is one in which com-
plete descriptions are not needed before analysis and feed-
back are possible. Rather, we aim to provide a framework in
which useful feedback can be obtained even when very little
information regarding system behaviour is available.

We have described the four main threads of research that
pursue this vision. The first, partial behaviour models, aims
at studying behaviour models capable of explicitly describ-
ing behaviour that is yet to be elicited, yet to be defined or
simply uneconomical to describe at a certain stage. We have
made contributions in this thread related to Modal Tran-
sition System refinement, merge, synthesis, and analysis.
The second thread, Controller Synthesis, aims at developing
controller synthesis techniques to automatically build mod-
els of system requirements such that they guarantee system
goals under specific environment assumptions, but also to
investigate how the non-existence of such a controller can
prompt elaboration of system goals and assumptions. We
have made contributions adapting controller synthesis tech-
niques to a software engineering setting based on event-
based behaviour models while focusing on methodologi-
cally sound use of assumptions in such techniques. The third
thread, automated diagnosis and refinement, aims at com-
bining model checking and inductive logic programming to
support elaboration by providing suggestions, sound by con-
struction, of refinements or revisions of partial or inconsis-
tent models. We have contributed a framework for combin-

ing model checking and inductive logic programming in ad-
dition to various applications of this framework to model
elaboration. Finally, the last thread has focused on the prob-
lem of validation of behaviour to support human inspection.
We have contributed a novel abstraction technique that has
shown to aid the identification of issues in behaviour speci-
fications and code.

Although for presentation purposes our work has been
structured in four main threads, in practice these threads
overlap and play on each other. For instance, the non-
existence of a suitable controller for all concrete environ-
ments described by a partial behaviour model leads natu-
rally to refine the model pruning out uncontrollable environ-
ments. Achieving such pruning can be done using automated
learning. Furthermore, once a controller has been synthe-
sised, validating its behaviour can be done by producing
enabledness-based abstractions. The synergetic use of the
breadth of contributions described in this paper conforms
much of the future work needed to further our vision of in-
cremental, iterative elaboration of partial behaviour models.
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