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ABSTRACT
In recent years, research efforts have been directed towards
the use of Machine Learning (ML) techniques to support
and automate activities such as program repair, specification
mining and risk assessment. The focus has largely been on
techniques for classification, clustering and regression. Al-
though beneficial, these do not produce a declarative, inter-
pretable representation of the learned information. Hence,
they cannot readily be used to inform, revise and elaborate
software models. On the other hand, recent advances in ML
have witnessed the emergence of new logic-based learning ap-
proaches that differ from traditional ML in that their output
is represented in a declarative, rule-based manner, making
them well-suited for many software engineering tasks.

In this technical briefing, we will introduce the audience to
the latest advances in logic-based learning, give an overview
of how logic-based learning systems can successfully pro-
vide automated support to a variety of software engineering
tasks, demonstrate the application to two real case studies
from the domain of requirements engineering and software
design and highlight future challenges and directions.

Categories and Subject Descriptors
Software and its engineering [Software creation and man-
agement]: [Designing software]; Computing methodologies
[Machine learning]: Machine learning approaches—Logi-
cal and relational learning .

1. INTRODUCTION
Machine Learning (ML) has been shown to provide a pro-

mising approach to support and automate various software
engineering (SE) activities such as program repair, speci-
fication mining and risk assessment. It has the potential
to reduce human effort and potential errors. Furthermore,
ML techniques have been applied to enable the design of
software systems that are capable of exhibiting some form
of intelligent behaviour, such as the understanding of the
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contextual environment in which they operate and the abil-
ity to adapt at run-time so as to maximize the achievement
overall system goals. Bayesian probabilistic reasoning has,
for instance, been used to model software reliability [3] as
well as users’ needs [6]. Computational search algorithms
have been used to tackle a variety of software engineering
problems, ranging from requirements and design to mainte-
nance and testing [2] by reformulating software engineering
problem as optimisation problems. Numerous traditional
ML techniques have been used for modelling and predict-
ing software costs predicting software defects [1], perform-
ing program repair [7] and mining quantitative knowledge
from data related to past software engineering projects [9].
However, as noted in [5], most of these applications of ML
can be seen as tasks of optimisation of processes or software
products. The synergy between ML techniques and SE has
the potential to go beyond this.

2. RELEVANCE TO THE SE COMMUNITY
Software engineering activities are predominately knowl-

edge-intensive. Some of this knowledge is explicit at design
time whilst some becomes apparent only after the deploy-
ment of the software within real environments. For example,
in requirements engineering, knowledge about the domain
is key to the development of correct specifications with re-
spect to given system goals, and its absence may lead to
significant system failures [10]. Domain knowledge is also
relevant at run-time. Complex software systems are in-
creasingly required to be context-aware and self-adaptive.
In other words, they must be sufficiently intelligent, i.e., to
know when to evolve and how to react to changes in the en-
vironment. To demonstrate intelligent behaviour, software
need to be able to learn new knowledge which may be hid-
den in the effects of its interaction to its environment, in
order to improve its behaviour over time and with experi-
ence. At the same time, adaptation must also be sensitive
to human intervention and interpretable by humans. For
example, pervasive software systems for mobile devices need
to be able to continuously adapt to user’s preferences and
behaviour with little or no intervention by the user, yet also
facilitate user validation [8]. How can relevant knowledge be
automatically extracted, integrated into software specifica-
tions at design time, and into software behaviour at run-time
whilst also expressed in way that is accessible to users if and
when required?

Recent advances in Artificial Intelligence have witnessed
the development of new ML approaches, called logic-based
learning methods [4]. They differs from traditional ML ap-



proaches in that (1) data, problem and generated hypothe-
sis are all represented in a declarative way, thus providing
means for interpretable computation and making it easier to
inspect and modify; (2) they supports integration of human
expertise when determining the scope of the solution space;
(3) do not suffer from the problem of overfitting when han-
dling small examples; and (4) produce alternative solutions
if any exist.

3. CONTENT
The aim of this technical briefing is to introduce researchers,

practitioners and educators in software engineering to the
latest advances in logic-based learning and to show how
these new approaches can be used to support a variety of
knowledge-intensive SE tasks. The technical briefing will be
composed of three parts.

In the first part, we will present the general principles of
logic-based learning, focusing on key features of state-of-the-
art learning approaches that make them particularly suited
to SE. We will answer the main question How logic-based
learning works. We will also include presentation of learning
systems and demonstrate their learning capabilities.

The second part will provide an overview of successful ap-
plications of logic-based learning in different SE tasks, rang-
ing from diagnosis and repair of requirements specifications,
generation of assumptions about the environment, adapta-
tion to users’ behaviour and forensic readiness. We will high-
light, in particular, how to apply a logic-based learning sys-
tem to a SE task, and discussing advantages and limitations.
In the third party, we will present two real case studies from
the domain of requirements elaboration and software design
that, although different in nature, they have been addressed
using the same underlying logic-based learning system.

4. TARGET AUDIENCE
The technical briefing is suitable for researchers, practi-

tioners and educators. No prior knowledge of logic-based
learning or ML is required. While some technical aspects
of logic-based learning will be covered, the overall technical
level of the presentations will be accessible to people not
knowledgeable in the area. The audience will be referred
to further readings, recommended for those who want to
acquire in depth details about these approaches.
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