
Logic-based Learning in Software Engineering

Dalal Alrajeh∗, Alessandra Russo∗, Sebastian Uchitel∗†, Jeff Kramer∗
∗Imperial College London, UK

{dalal.alrajeh, a.russo, s.uchitel, j.kramer}@ic.ac.uk
† Departamento de Computación, Universidad de Buenos Aires and CONICET, Argentina

ABSTRACT
In recent years, research efforts have been directed towards
the use of Machine Learning (ML) techniques to support
and automate activities such as program repair, specification
mining and risk assessment. The focus has largely been on
techniques for classification, clustering and regression. Al-
though beneficial, these do not produce a declarative, inter-
pretable representation of the learned information. Hence,
they cannot readily be used to inform, revise and elaborate
software models. On the other hand, recent advances in ML
have witnessed the emergence of new logic-based learning ap-
proaches that differ from traditional ML in that their output
is represented in a declarative, rule-based manner, making
them well-suited for many software engineering tasks.

In this technical briefing, we will introduce the audience to
the latest advances in logic-based learning, give an overview
of how logic-based learning systems can successfully pro-
vide automated support to a variety of software engineering
tasks, demonstrate the application to two real case studies
from the domain of requirements engineering and software
design and highlight future challenges and directions.

Categories and Subject Descriptors
Software and its engineering [Software creation and man-
agement]: [Designing software]; Computing methodologies
[Machine learning]: Machine learning approaches—Logi-
cal and relational learning .

1. INTRODUCTION
Machine Learning (ML) has been shown to provide a pro-

mising approach to support and automate various software
engineering (SE) activities such as program repair, speci-
fication mining and risk assessment. It has the potential
to reduce human effort and potential errors. Furthermore,
ML techniques have been applied to enable the design of
software systems that are capable of exhibiting some form
of intelligent behaviour, such as the understanding of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2891050

contextual environment in which they operate and the abil-
ity to adapt at run-time so as to maximize the achievement
overall system goals. Bayesian probabilistic reasoning has,
for instance, been used to model software reliability [3] as
well as users’ needs [6]. Computational search algorithms
have been used to tackle a variety of software engineering
problems, ranging from requirements and design to mainte-
nance and testing [2] by reformulating software engineering
problem as optimisation problems. Numerous traditional
ML techniques have been used for modelling and predict-
ing software costs predicting software defects [1], perform-
ing program repair [7] and mining quantitative knowledge
from data related to past software engineering projects [9].
However, as noted in [5], most of these applications of ML
can be seen as tasks of optimisation of processes or software
products. The synergy between ML techniques and SE has
the potential to go beyond this.

2. RELEVANCE TO THE SE COMMUNITY
Software engineering activities are predominately knowl-

edge-intensive. Some of this knowledge is explicit at design
time whilst some becomes apparent only after the deploy-
ment of the software within real environments. For example,
in requirements engineering, knowledge about the domain
is key to the development of correct specifications with re-
spect to given system goals, and its absence may lead to
significant system failures [10]. Domain knowledge is also
relevant at run-time. Complex software systems are in-
creasingly required to be context-aware and self-adaptive.
In other words, they must be sufficiently intelligent, i.e., to
know when to evolve and how to react to changes in the en-
vironment. To demonstrate intelligent behaviour, software
need to be able to learn new knowledge which may be hid-
den in the effects of its interaction to its environment, in
order to improve its behaviour over time and with experi-
ence. At the same time, adaptation must also be sensitive
to human intervention and interpretable by humans. For
example, pervasive software systems for mobile devices need
to be able to continuously adapt to user’s preferences and
behaviour with little or no intervention by the user, yet also
facilitate user validation [8]. How can relevant knowledge be
automatically extracted, integrated into software specifica-
tions at design time, and into software behaviour at run-time
whilst also expressed in way that is accessible to users if and
when required?

Recent advances in Artificial Intelligence have witnessed
the development of new ML approaches, called logic-based
learning methods [4]. They differs from traditional ML ap-

proaches in that (1) data, problem and generated hypothe-
sis are all represented in a declarative way, thus providing
means for interpretable computation and making it easier to
inspect and modify; (2) they supports integration of human
expertise when determining the scope of the solution space;
(3) do not suffer from the problem of overfitting when han-
dling small examples; and (4) produce alternative solutions
if any exist.

3. CONTENT
The aim of this technical briefing is to introduce researchers,

practitioners and educators in software engineering to the
latest advances in logic-based learning and to show how
these new approaches can be used to support a variety of
knowledge-intensive SE tasks. The technical briefing will be
composed of three parts.

In the first part, we will present the general principles of
logic-based learning, focusing on key features of state-of-the-
art learning approaches that make them particularly suited
to SE. We will answer the main question How logic-based
learning works. We will also include presentation of learning
systems and demonstrate their learning capabilities.

The second part will provide an overview of successful ap-
plications of logic-based learning in different SE tasks, rang-
ing from diagnosis and repair of requirements specifications,
generation of assumptions about the environment, adapta-
tion to users’ behaviour and forensic readiness. We will high-
light, in particular, how to apply a logic-based learning sys-
tem to a SE task, and discussing advantages and limitations.
In the third party, we will present two real case studies from
the domain of requirements elaboration and software design
that, although different in nature, they have been addressed
using the same underlying logic-based learning system.

4. TARGET AUDIENCE
The technical briefing is suitable for researchers, practi-

tioners and educators. No prior knowledge of logic-based
learning or ML is required. While some technical aspects
of logic-based learning will be covered, the overall technical
level of the presentations will be accessible to people not
knowledgeable in the area. The audience will be referred
to further readings, recommended for those who want to
acquire in depth details about these approaches.

5. ABOUT THE ORGANISERS
Dalal Alrajeh: Research Fellow, Department of Comput-
ing, Imperial College London, and a visiting lecturer at the
Department of Security and Crime Science at UCL. Her
main research interests are in requirements engineering, di-
agnosis and correction of behavioural specifications and in-
ductive logic programming, and their application to the de-
velopment of crime intelligence systems. She is the Deputy
Editor-in-Chief of the IET Software Journal, and served as
PC member of ICSE, RE, ILP, KR and SEFM.

Alessandra Russo: Reader in Applied Computational Logic,
Department of Computing, Imperial College London, and
head of the Structured and Probabilistic Knowledge En-
gineering research group. She has pioneered logic-based
learning algorithms and systems and gained a recognised
track record on their application to policy-based manage-
ment systems, security and software engineering. She is
editor-in-Chief of IET Software journal, associate editor of

ACM Computing Survey, and PC member of ESEC/FSE,
FSE, KR, IJCAI, ICLP, AAAI. General Chair of ILP 2016.

Jeff Kramer: Professor at Imperial College London. His
research work is primarily concerned with software architec-
ture, behaviour analysis, models in requirements engineering
and architectural approaches to adaptive software systems.
Jeff was Program Co-chair of ICSE99, ICSE Steering Com-
mittee Chair (2000-2002), and General Co-chair of ICSE
2010. Editor in Chief of IEEE TSE (2006-2009). Jeff was
awarded the 2005 ACM SIGSOFT Outstanding Research
Award and the 2011 ACM SIGSOFT Distinguished Service
Award. He is a Fellow of the RAE and of the ACM.

Sebastian Uchitel: Professor at University of Buenos Aires,
and Reader at Imperial College London. His research inter-
ests are in behaviour modelling, analysis and synthesis ap-
plied to requirements engineering, software architecture and
design and adaptive systems. Dr Uchitel was associate editor
of the TSE Journal, and currently associate editor of the RE
Journal and the Science of Computer Programming Jour-
nal. Program co-chair of ASE06 and ICSE10, and General
Chair of ICSE17. Dr Uchitel has been distinguished with the
Philip Leverhulme Prize, ERC StG, the Konex Foundation
Prize and the Houssay Prize.

6. REFERENCES
[1] V. Challagulla et al. Empirical assessment of machine

learning based software defect prediction techniques.
17:389–400, 2008.

[2] J. Clark and et al. Reformulating software engineering
as a search problem. IEE Proceedings - Software,
150:161–175, 2003.

[3] N. Fenton and et al. On the effectiveness of early life
cycle defect prediction with bayesian nets. Empirical
Software Engineering, 13:499–537, 2008.

[4] S. Gulwani et al. Inductive programming meets the
real world. Commun. ACM, 58(11):90–99, 2015.

[5] M. Harman. The role of artificial intelligence in
software engineering. In Proc. of the 1st International
Workshop on Realizing AI Synergies in Software
Engineering, 2012.

[6] E. Horvitz and et al. The lumiere project: Bayesian
user modeling for inferring the goals and needs of
software users. In Proc. of the 14th Conference on
Uncertainty in Artificial Intelligence, pages 256–265,
1998.

[7] C. Le Goues et al. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In Proc. of the 34th International Conference on
Software Engineering, pages 3–13, 2012.

[8] A. Markitanis et al. Learning user behaviours in real
mobile domains. In Latest Advances in Inductive Logic
Programming, pages 43–51. Imperial College Press,
2015.

[9] T. Menzies. Practical machine learning for software
engineering and knowledge engineering. In Handbook
of Software Engineering and Knowledge Engineering.
2001.

[10] A. van Lamsweerde. Requirements Engineering: From
System Goals to UML Models to Software
Specifications. Wiley, 2009.

