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Abstract
Automated planning remains one of the most gen-
eral paradigms in Artificial Intelligence, providing
means of solving problems coming from a wide
variety of domains. One of the key factors re-
stricting the applicability of planning is its com-
putational complexity resulting from exponentially
large search spaces. Heuristic approaches are nec-
essary to solve all but the simplest problems. In
this work, we explore the possibility of obtaining
domain-independent heuristic functions using ma-
chine learning. This is a part of a wider research
program whose objective is to improve practical
applicability of planning in systems for which the
planning domains evolve at run time. The chal-
lenge is therefore the learning of (corrections of)
domain-independent heuristics that can be reused
across different planning domains.

1 Introduction
Planning is composing sequences of actions that, when ex-
ecuted starting from an initial state of the environment, will
lead to the satisfaction of a given goal. Classical planning is
a particular type of planning, which relies on the assumption
that execution of the actions is the only source of change in
the environment, the preconditions and effects of all actions
are known and the state of the environment is fully observ-
able. Even under these restrictions, planning is still PSPACE-
complete [Bylander, 1994]. Due to their complexity, planning
problems involving nontrivial number of actions and objects
require heuristic solutions.

The most successful approaches to classical planning, such
as [Hoffmann and Nebel, 2001; Helmert, 2006] are based on
heuristic forward search through the space of possible en-
vironment states. The core part of a heuristic search algo-
rithm is the heuristic function. This is a function that esti-
mates the cost of reaching a goal state from any given state
of the environment. By selecting states with relatively low
cost estimations, the planner is able to restrict the search to
the most promising regions of the search space. Heuristics
can be domain-independent and thereby applicable to prob-
lems representing various domains, or domain-dependent, in
which case they are allowed to rely on knowledge specific

to a particular planning domain, possibly encoded by a hu-
man expert. Existing domain-independent heuristic func-
tions are hand-crafted and often based on solving simplified
(relaxed) planning problems [Hoffmann and Nebel, 2001;
Helmert, 2006]. On the other hand, heuristics for plan-
ning could be learned. But recent attempts in learning
planning heuristics are limited to learning knowledge spe-
cific to a particular planning domain [Yoon et al., 2008;
Garrett et al., 2016].

This paper addresses this gap by providing a first in-
vestigation into the extent to which machine learning can
be used to automatically learn (corrections of) domain-
independent heuristic functions using data generated from
different planning domains. Learning domain-independent
planning heuristics will help generalize the applicability of
planning to a variety of problems including for instance that
of dynamic (collective) adaptive systems [Bucchiarone et al.,
2012], where the planning domain evolves, together with
the system, and thereby is not known a priori. Domain-
specific solutions, trained on data representing exactly the
same planning domain, would not be applicable in this con-
text. Domain-independence, on the other hand, would allow
for learning from large and diverse data sets and having the
learner identify patterns occurring across a variety of plan-
ning problems and domains.

It is worth noting that in practice various levels of domain
independence are possible. For example, in the aforemen-
tioned example of dynamic systems, the different domains
may be strongly related: the domain observed at time t may
typically result from an incremental change to the domain at
time t–1. The opposite extreme is the case of completely un-
related planning domains, like for example those appearing
in the International Planning Competition (IPC) [McDermott,
2000]. In all these cases, the learning algorithm will need to
use a domain-independent representations of the data in or-
der to learn heuristic functions that can be applied to guide
the forward search across different planning domains. In this
paper we focus on learning from data generated from com-
pletely independent planning domains. This is done using
Artificial Neural Networks (ANNs). We then propose an ap-
proach for heuristic planning that integrates a (trained) neural
network in the planner to guide the forward search. We evalu-
ate the results by comparing the outcomes of solving planning
problems using our approach versus existing heuristic for-



ward planners with hard-coded domain-independent heuris-
tics.

The rest of this paper is structured as follows. Section 2
presents related work. Section 3 introduces necessary back-
ground. Section 4 outlines the architecture of our machine
learning-based heuristic planning approach and discusses the
underlying learning problem. Section 5 presents the prelim-
inary results obtained on IPC planning domains. Section 6
concludes the paper and suggests directions of our further
work.

2 Related work
The idea of improving the planner performance by learning
from past plans is almost as old as automated planning it-
self. The classic STRIPS planner [Fikes and Nilsson, 1971]
was quickly followed by an extension which automatically
learned composite actions [Fikes et al., 1972].

However, learning control knowledge for forward search
has received limited attention. Notable examples include
work by Yoon et al. [2007; 2008] who use dedicated learning
algorithms to infer domain-specific knowledge in the form
of decision lists, measures of progress and linear heuristic
functions. The learning process leverages features computed
based on graphs constructed by the Fast Forward (FF) heuris-
tic [Hoffmann and Nebel, 2001].

Such features are also employed by [Garrett et al., 2016],
who use them to learn domain-specific heuristic functions by
means of ridge regression or Ranking Support Vector Ma-
chines. The application of the latter method is inspired by the
fact that, since in forward search heuristic functions are only
used to choose between successor states, it may be beneficial
to optimize directly for ranking performance of the heuristic
rather than accuracy of the estimation of the distance to the
goal.

The key difference between our approach and the above
works is the aim of domain-independence. To the best of
our knowledge, there has been no attempt to learn domain-
independent heuristic functions which could be applied in for-
ward planning across a variety of domains.

The aim of learning to plan is inherently related to re-
inforcement learning. One of the key differences between
learning-enhanced automated planning and reinforcement
learning is the presence of a known and constant model of the
environment in the automated planning case. While the ne-
cessity to provide such a model is a disadvantage compared to
reinforcement settings, the planner’s ability to exploit a model
enables it to explicitly consider long sequences of steps. This
is especially important in satisficing planning, where the chal-
lenge is to reach any goal state and therefore no reward signal
would be available until the problem is solved.

3 Background
3.1 Planning
The aim of classical planning is to compose a sequence of ac-
tions which leads to satisfaction of the goal from a given ini-
tial state. Formally, a planning task is a tuple 〈P,O, I,G,A〉,
where P is a set of predicates, O is a set of domain ob-
jects, I is the initial state, G is the goal and A is a set of

(:action drive
:parameters (?v - vehicle
?a ?b - location)

:precondition (and
at(?v ?a)
road(?a ?b)

)
:effect (and
at(?v ?b)
(not at(?v ?a))

)
)

Figure 1: PDDL description of action drive.

action schemata. The initial state is a set of propositions
(instantiations of predicates from P with objects from O),
which are true before any action is taken. All propositions
not included in the set are assumed to be false. An ac-
tion schema A is a tuple 〈Pre(A),Add(A),Del(A)〉, where
Pre(A) is the set of preconditions – propositions that must
be true before the action is executed, Add(A) is the set of
add effects – propositions true after the action is executed,
and Del(A) is the set of delete effects – propositions made
false by the execution of the action. The state S(A) resulting
from execution of action A in state S is defined as follows:
S(A) = S ∪ Add(A) \ Del(A).

For example, the preconditions of driving a vehicle from
location A to location B are that the vehicle is indeed in loca-
tion A and there exists a road between the locations. The add
effect states that the vehicle is now at location B. The delete
effect refers to the fact that the car is at location A, which
does not hold any more after the action is executed. A simple
encoding of the action in PDDL (Planning Domain Definition
Language, [McDermott, 2000]) is presented in Figure 1. The
add and delete effects are combined in a single and state-
ment.

In planning by forward search, sequences of actions are
composed by application of concrete planning actions, start-
ing from the initial state. Each action choice yields a new
planning state. Since usually many actions are available in
a particular state, the search space grows exponentially. For
this reason, heuristic functions are used to guide the search
towards the goal and allow it to focus on a small subset of the
search space. A heuristic function maps any given state-goal
pair and returns an estimate of the cost of reaching the goal
from the state. The search is then driven towards the goal by
preferring the states with low cost estimations. For example,
in the Transport domain, where packages need to be deliv-
ered from their respective origins to destinations, the number
of undelivered packages could serve as a very simple heuris-
tic – the world states in which many packages are already at
their destinations have a good chance of being closer to the
goal than states for which no packages have been delivered
yet.

One of the most successful ideas in heuristic planning is to
use a solution of a simplified version of the problem to com-
pute the value of the heuristic. Delete relaxation removes the



delete effects of the actions, resulting in a much simpler plan-
ning problem, whose solution can then be used to designate
heuristic values for the original problem [Bonet et al., 1997;
Hoffmann and Nebel, 2001].

Propositional representation of the environment is conve-
nient for STRIPS-like specification of actions by means of
add and delete effects. However, it hides information about
relations between the propositions. For example, consider the
propositional variables truck1-at-a and truck1-at-b. Assum-
ing that they refer to the same truck and two distinct locations,
they clearly cannot be true both at the same time. This knowl-
edge could be made explicit by using a multi-valued variable
truck1-location taking values a, b etc. Such representation
is used in so-called multi-valued planning tasks and forms
the basis of the Fast Downward planning system [Helmert,
2006], as well as its Causal Graph heuristic, later generalised
to Context-Enhanced Additive heuristic (CEA) [Helmert and
Geffner, 2008]. The Fast Downward system is extensively
applied throughout this work, both to collect data and to test
the learned heuristics.

3.2 Learning
In this work, we obtain heuristic functions by using super-
vised machine learning to estimate the cost of reaching the
goal from any given planning state:

h : S ×G→ R
where S is the set of possible planning states and G is the set
of possible planning goals.

Supervised machine learning is concerned with predicting
the value of the label (dependent variable) based on the values
of the features (independent variables). In the particular case
when the predicted value is numerical rather than categorical,
the learning task becomes a regression.

In the simplest setting, the value of the label y can be ap-
proximated using a weighted sum of the features X .

ŷ = W>X + b

This is called linear regression. Under some circumstances,
a linear model trained with the sole objective of minimizing
the error on the training set is likely to overfit – memorize the
properties of the training set at the expense of losing general-
ity of the learned function and its ability to correctly label un-
seen examples. To prevent this effect, ridge regression learns
a regularized linear model, by minimizing an expression de-
pending not only on the approximation error but also on |W |,
which favours simpler models. Ridge regression is used in
this work as the baseline learning algorithm.

To allow for learning more complex, nonlinear functions
we use Artificial Neural Networks (ANNs) [McCulloch and
Pitts, 1943]. ANNs are composed of units called neurons
which compute a weighted sum of their inputs I and apply
a nonlinear activation function f to compute the value of the
output o.

o = f(W>I + b)

The neurons are arranged in layers with the outputs of one
layer serving as the inputs for the next one. Such structures
can be trained efficiently by backpropagation [Werbos, 1974]
of the prediction error.
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Figure 2: Architecture of the proposed solution.

In the presented work, we are only concerned with fully
connected feed-forward networks, in which each of the neu-
rons is connected to all the neurons in the previous layer and
no output signal is reused as input. Such networks are often
referred to as multi-layer perceptrons. As the nonlinear func-
tion f , we use simple rectification [Hahnloser et al., 2000]: an
identity function truncated at 0 for negative arguments. This
is a popular choice for a wide array of ANN applications. Ad-
ditionally, in our application, a simple activation function is
particularly advantageous since it enables very fast state eval-
uation, with no need for exponentiation operations.

4 Approach
We propose an approach to heuristic planning based on learn-
ing a domain-independent heuristic function. The training
data is extracted from known plans for problems represent-
ing various domains and used to train a heuristic function in
a supervised learning setting. The function is then embedded
into the planner and used to evaluate states encountered in
the process of solving unseen problems, possibly representing
unseen planning domains. In our initial efforts, we restrict ex-
perimentation to three domains, all of which are represented
in the training data. An overview of the architecture of the
approach is presented in Figure 2. The grey arrows depict
the learning data flow. The black arrows show how the sys-
tem is used to solve new planning problems. The architecture
has been implemented as an extension of the Fast Downward
planning system. The source code is available online1.

4.1 Data collection
In this work, the training data comes from solutions to prob-
lems from IPC [McDermott, 2000] domains: Transport,
Woodworking and Parking. Transport problems are about
delivering packages using a fleet of vehicles moving around
cities of known topology. The Parking domain represents
puzzles where a set of cars must be double parked along curbs

1https://github.com/pgomoluch/fd-learn



in their respective slots. In Woodworking, wooden parts sat-
isfying various properties need to be engineered from raw
wooden boards using a number of tools with different capa-
bilities.

The choice of domains ensures that they are relatively var-
ied. In Transport, the goals are relatively independent and
once satisfied never need to be undone. This is not the case in
Parking, where a car may need to be removed from its slot to
allow moving another car. Woodworking, unlike the two other
domains features dead ends - states from which the problem
cannot be solved, despite being solvable from the initial state.

For each of the domains, we have generated a set of prob-
lems sufficiently small enough to be solved in reasonable time
by means of exhaustive search. The actions contained in the
solutions have been applied in order, yielding a sequence of
states which were labelled with the cost of achieving the goal,
computed by subtracting the cost of already executed actions
from the overall plan cost. Applied search configuration,
first expanding the states nearest to the initial one, guarantees
the optimality of obtained solutions and consequently correct
cost estimations for all the states on the path to the goal. From
the learning point of view, this ensures that there is no noise
in the training labels.

For the Transport and Parking domains, the training prob-
lems were generated using the generator scripts provided by
the organizers of IPC. In the case of the Woodworking do-
main, the training problems were obtained from one of the
demonstration problems, by executing fixed length random
walks from the goal state and using the terminal states of the
walks as initial states of the new training problems. In total,
the data has been extracted from solutions of 280 planning
problems. The solutions contained a total of 3956 planning
states.

4.2 Feature extraction
Representing planning states from various problems and do-
mains in a single feature space is the core challenge of the
presented work. Indeed, search for quantities strongly cor-
related with the distance to the goal is the essence of the re-
search in heuristic planning. At the same time, it is of critical
importance to ensure that the features can be computed in rea-
sonable time – in a degenerate case, feature extraction could
leverage the fact that any state-goal pair contains information
sufficient to designate the actual distance to the goal – by op-
timally solving the planning problem.

In our initial experiments, except for hand-crafting several
lightweight features, we follow in the footsteps of [Yoon et
al., 2008; Garrett et al., 2016] and compute features based
on existing domain-independent heuristics, including the val-
ues of the heuristics themselves. A non-exhaustive list of the
features we worked with includes:
• the number of multi-valued variables in the problem
• the size of variable domains (number of values a variable

can take) – quartiles of the distribution
• the number of conjuncts in the goal
• the number of unsatisfied goal conjuncts (Hamming dis-

tance to the goal) – corresponding to the goal count
heuristic

• the value of the CEA heuristic

• the value of the FF heuristic

• the number of delete effects ignored by FF computation
of the relaxed plan

• the number of operators used in the FF relaxed plan.

4.3 Learning
After initial experimentation with various sets of features, we
settled to work with two of them. The first one did not con-
tain any features based on existing heuristics and so required
the learner to infer a standalone heuristic by learning from
scratch based on very simple features only. The features in-
cluded information about the number of variables, the size
of their domains, the number of the goals and the number of
unsatisfied goals.

The second feature set contained information extracted
from the computation of the FF heuristic. Except for the value
of the heuristic itself, the features included the number of un-
satisfied goals, as well as the number of operators used in
FF’s relaxed plan, the total number of effects ignored by the
relaxed plan and the average number of effects ignored. It can
be argued that the presence of such advanced features, includ-
ing the value of another heuristic itself, effectively changes
the learning task from learning a standalone heuristic to learn-
ing a correction of the base heuristic, in this case FF. There-
fore, we further refer to heuristics learned based on this fea-
ture set as FF corrections and devote particular attention to
comparing their performance against the original.

For both feature sets, two learning approaches have been
applied. As a simple baseline approach, regularized linear
models were obtained using the ridge regression implemen-
tation contained in the scikit-learn library [Pedregosa et al.,
2011]. The parameters were then extracted from the model
and used to construct a heuristic embedded in the planner. In
this setting, the state evaluator component form Figure 2 took
the form of an additional Fast Downward heuristic computing
the scalar product of the feature and parameter vectors.

To enable learning nonlinear hypotheses, simple neural
networks have been trained on the same data. The networks
contained 2 hidden layers composed of rectified linear units
and were trained by stochastic gradient descent. The number
of neurons in the first hidden layer was equal to the number
of features. The second hidden layer contained 3 neurons.
The output neuron did not apply nonlinearity to the sum of
its inputs. The neural networks have been implemented from
scratch. This was to ensure very fast evaluation of single plan-
ning states, adding as little overhead as possible to the eval-
uation time of the heuristic. In this case, the state evaluator
component contained the trained network.

5 Experimental Results
The learned heuristics have been evaluated on three problem
sets representing the Transport, Woodworking and Parking
domains. In case of Transport and Woodworking, IPC 14
demonstration sets of 30 problems each were used. For the
Parking domain, 30 problems have been generated using the
problem generator supplied by IPC organizers.



The problems were approached using best-first search
guided by various heuristic functions, including FF and CEA
(for reference), learned FF corrections and standalone learned
heuristics. For every problem, each configuration of the plan-
ner was allocated 60 seconds timeout. The experiments were
run a desktop computer (Intel i7-4790 CPU, 16 GB RAM).
The number of problems solved within the timeout, out of 30
test problems, for every configuration of the planner, is re-
ported in Table 1. In the table, RR denotes a heuristic learned
using ridge regression and NN refers to a heuristic learned us-
ing a neural network. RR-FF and NN-FF are the FF correc-
tions learned using the respective methods. The total number
of problems solved within a fixed time constraint is a conve-
nient measure of the relative performance of different heuris-
tics.

In general, heuristics learned with FF-based features (RR-
FF and NN-FF, rows 6 and 7 in Table 1) have performed much
better than the ones learned from scratch (RR and NN, rows 4
and 5). Good performance of RR and NN heuristics in Trans-
port can be attributed to the relative independence of planning
goals in this domain. In fact, best-first search guided by the
number of unsatisfied goals alone has behaved very similarly
to RR and NN, visiting the same numbers of states and overall
solving a couple of problems more, thanks to shorter evalu-
ation time of the heuristic. In other words, it turned out that
the heuristics learned from scratch essentially replicated the
goal count heuristic, equivalent to one of the features used for
learning. On the remaining two domains, NN heuristic was
the worst, remarkably losing also against the simpler linear
model.

Among FF corrections, the heuristic learned using a neu-
ral network (NN-FF, row 7) has performed significantly bet-
ter than the linear model (RR-FF, row 6) in the Parking do-
main while achieving a similar performance in the two re-
maining domains. However, it has only slightly outperformed
the original heuristic (FF, row 1), solving two more problems
in Transport and Parking but three less in Woodworking.

Despite very small improvement over FF in general, the
NN-FF configuration turned out to be remarkably better in-
formed than the original heuristic on the first 10 test prob-
lems of the parking domain. The number of states generated
by the planner guided by the two heuristics is reported in Ta-
ble 2. On average, the NN-FF heuristic required generation
of 3.5 times less states than FF (the ratios were aggregated us-
ing geometric mean). However, when averaged all the park-
ing problems solved by both of the heuristics, the ratio fell
to 1.32, indicating that the advantage gained by NN-FF on
easier problems is lost on the harder ones.

6 Conclusions and Further Work
In this paper, we have presented our first attempt at learning
domain-independent planning heuristics from optimal solu-
tions to small planning problems. On average, the heuris-
tic have not performed better than state of the art domain-
independent heuristics, even in cases when the values of the
heuristics were included in the feature set, effectively chang-
ing the learning task from learning a standalone heuristic
function to learning a correction of an existing heuristic.

Transport Woodworking Parking
FF 10 26 19

CEA 20 23 20
Goal count 22 14 14

RR 22 13 11
NN 18 6 3

RR-FF 12 23 5
NN-FF 12 23 21

Table 1: Number of problems solved (out of 30 for each do-
main)

However, the FF correction obtained using a neural net-
work has shown a promising property of being significantly
better informed than the original heuristic on a specific subset
of the test problems.

We are currently working on improving the learning ap-
proach in order to extend the range of planning domains and
problems on which it offers an improvement over the origi-
nal heuristic. Our efforts are primarily focused on construct-
ing a better feature representation of the planning states. As
one of the possible directions, we are considering augment-
ing the feature set with more features related to the graphs
constructed by FF and CEA.

Moreover, we plan to extend the method of data collection
in order to acquire data representative of larger planning prob-
lems. Currently, the size of the training problems is severely
restricted because their solutions are computed using exhaus-
tive search. In the future, the training data will also contain
high-quality heuristic solutions of larger problems. The so-
lutions will be obtained by selecting the lowest-cost plans
among those computed by various heuristic planners, operat-
ing at large timeouts and with relatively conservative search
routines. Since the solutions will no longer be optimal, this
way of collecting plans will inevitably introduce noise to the
dataset. However, the drop in relative performance of the NN-
FF heuristic on harder problems suggests that ensuring some
representation of larger cases may be the key to further im-
provement.
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