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Abstract

Consider a policymaker who wants to decide which interven-
tion to perform in order to change a currently undesirable sit-
uation. The policymaker has at her disposal a team of experts,
each with their own understanding of the causal dependen-
cies between different factors contributing to the outcome.
The policymaker has varying degrees of confidence in the ex-
perts’ opinions. She wants to combine their opinions in order
to decide on the most effective intervention. We formally de-
fine the notion of an effective intervention, and then consider
how experts’ causal judgments can be combined in order to
determine the most effective intervention. We define a notion
of two causal models being compatible, and show how com-
patible causal models can be combined. We then use it as the
basis for combining experts causal judgments. We illustrate
our approach on a number of real-life examples.

1 Introduction
Consider a policymaker who is trying to decide which in-
tervention, that is, which actions, should be implemented
in order to bring about a desired outcome, such as prevent-
ing violent behavior in prisons or reducing famine mortality
in some country. The policymaker has access to various ex-
perts who can advise her on which interventions to consider.
Some experts may be (in the policymaker’s view) more reli-
able than others; they may also have different areas of ex-
pertise; or may have perceived alternative factors in their
analysis. The goal of the policymaker is to choose the best
intervention, taking into account the experts’ advice.

There has been a great deal of work on combining experts’
probabilistic judgments. (Genest and Zidek (1986) provide a
somewhat dated but still useful overview; Dawid (1987) and
Fenton et al. (2016), among others, give a Bayesian analy-
sis.) We are interested in combining experts’ judgments in
order to decide on the best intervention. Hence, we need
more than probabilities. We need to have a causal under-
standing of the situation. Thus, we assume that the experts
provide the policymaker with causal models. In general,
these models may involve different variables (since the ex-
perts may be focusing on different aspects of the problem).
Even if two models both include variables C1 and C2, they
may disagree on the relationships between them. For exam-
ple, one expert may believe that C2 is independent of C1

while another may believe that C1 causally depends on C2.

Yet somehow the policymaker wants to use the information
in these causal models to reach her decision.

Despite the clear need for causal reasoning, and the ex-
amples in the literature and in practice where experts work
with causal models (e.g., (Chockler et al. 2015; Samp-
son, Winship, and Knight 2013)), there is surprisingly lit-
tle work on combining causal judgments. Indeed, the only
work that we are aware of is that of Bradley, Dietrich, and
List (2014) (BDL from now on), who prove an impossibility
result. Specifically, they describe certain arguably reason-
able desiderata, and show that there is no way of combining
causal models so as to satisfy all their desiderata. They then
discuss various weakenings of their assumptions to see the
extent to which the impossibility can be avoided, none of
which seem that satisfactory.

There is also much work on the closely related problem of
causal discovery: constructing a single causal model from a
data set. A variety of techniques have been used to find the
model that best describes how the data is generated (see, e.g.,
(Claassen and Heskes 2010; 2012; Hyttinen, Eberhardt, and
Jarvisalo 2014; Tillman and Spirtes 2011; Triantafillou and
Tsamardinos 2015); Triantafillou and Tsamardinos (2015)
provide a good overview of work in the area). Of course,
if we have the data that the experts used to generate their
models, then we should apply the more refined techniques
of the work on causal discovery. However, while the causals
model constructed by experts are presumably based on data,
the data itself is typically no longer available. Rather, the
models represent the distillation of years of experience, ob-
tained by querying the experts.

In this paper, we present an approach to combining ex-
perts’ causal models when sufficient data for discovering
the overall causal model is not available. The key step in
combining experts’ causal models lies in defining when two
causal models are compatible. Causal models can be com-
bined only if they are compatible. We start with a notion of
strong compatibility, where the conditions say, among other
things, that if both M1 and M2 involve variables C1 and C2,
then they must agree on the causal relationship between C1

and C2. But that is not enough. Suppose that in both mod-
els C1 depends on C2, C3, and C4. Then in a precise sense,
the two models must agree on how the dependence works,
despite describing the world using possibly different sets of
variables. Roughly speaking, this is the case when, for every



variableC that the two models have in common, we can des-
ignate one of the models as being “dominant” with respect
to C, and use that model to determine the relationships for
C. When M1 and M2 are compatible, we are able to con-
struct a combined model M1 ⊕ M2 that can be viewed as
satisfying all but one of BDL’s desiderata (and we argue that
the one it does not satisfy is unreasonable).

This set of constraints is very restrictive, and, as we show
on real-life examples, models are often not compatible in
this strong sense. We thus define two successively more gen-
eral notions of compatibility. But even with this more gen-
eral notions, we may find that not all the experts’ models
are incompatible. In that case, we simply place a probabil-
ity on possible ways of combining the compatible models,
using relatively standard techniques, based on the perceived
reliability of the experts who proposed them. The policy-
maker will then have a probability on causal models that she
can use to decide which interventions to implement. Specif-
ically, we can use the probability on causal models to com-
pute the probability that an intervention is efficacious. Com-
bining that with the cost of implementing the intervention,
she can compute the most effective intervention. As we shall
see, although we work with the same causal structures used
to define causality, interventions are different from (and ac-
tually simpler to analyze than) causes.

We believe that our approach provides a useful formal
framework that can be applied to the determination of appro-
priate interventions in real-world scenarios involving com-
plex sociological phenomena, such as crime prevention sce-
narios (Sampson, Winship, and Knight 2013) and radical-
ization (Wikström and Bouhana 2017). Proofs and detailed
descriptions of some of the examples in the paper are de-
ferred to the full paper, due to lack of space.

2 Causal Models
In this section, we review the definition of causal models
introduced by Halpern and Pearl (2005). The material in this
section is largely taken from (Halpern 2016).

We assume that the world is described in terms of vari-
ables and their values. Some variables may have a causal
influence on others. This influence is modeled by a set of
structural equations. It is conceptually useful to split the
variables into two sets: the exogenous variables, whose val-
ues are determined by factors outside the model, and the en-
dogenous variables, whose values are ultimately determined
by the exogenous variables. The structural equations de-
scribe how these values are determined.

Formally, a causal model M is a pair (§,F), where § is
a signature, which explicitly lists the endogenous and ex-
ogenous variables and characterizes their possible values,
and F defines a set of (modifiable) structural equations, re-
lating the values of the variables. A signature § is a tuple
(U ,V,R), where U is a set of exogenous variables, V is
a set of endogenous variables, and R associates with ev-
ery variable Y ∈ U ∪ V a nonempty set R(Y ) of possi-
ble values for Y (that is, the set of values over which Y
ranges). For simplicity, we assume here that V is finite, as is
R(Y ) for every endogenous variable Y ∈ V . F associates
with each endogenous variable X ∈ V a function denoted

FX (i.e., FX = F(X)) such that FX : (×U∈UR(U)) ×
(×Y ∈V−{X}R(Y )) → R(X). This mathematical notation
just makes precise the fact that FX determines the value of
X , given the values of all the other variables in U ∪ V .

The structural equations define what happens in the pres-
ence of external interventions. Setting the value of some
variable X to x in a causal model M = (§,F) results in a
new causal model, denotedMX←x, which is identical toM ,
except that the equation for X in F is replaced by X = x.

The dependencies between variables in a causal modelM
can be described using a causal network (or causal graph),
whose nodes are labeled by the endogenous and exogenous
variables in M = ((U ,V,R),F), with one node for each
variable in U ∪V . The roots of the graph are (labeled by) the
exogenous variables. There is a directed edge from variable
X to Y if Y depends on X; this is the case if there is some
setting of all the variables in U ∪ V other than X and Y
such that varying the value of X in that setting results in a
variation in the value of Y ; that is, there is a setting ~z of
the variables other than X and Y and values x and x′ of X
such that FY (x, ~z) 6= FY (x

′, ~z).1 A causal model M is
recursive (or acyclic) if its causal graph is acyclic. It should
be clear that if M is an acyclic causal model, then given a
context, that is, a setting ~u for the exogenous variables in
U , the values of all the other variables are determined (i.e.,
there is a unique solution to all the equations). In this paper,
following the literature, we restrict to recursive models.

To define interventions carefully, it is useful to have a
language in which we can make statements about inter-
ventions. Given a signature S = (U ,V,R), a primitive
event is a formula of the form X = x, for X ∈ V and
x ∈ R(X). A causal formula (over §) is one of the form
[Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a Boolean combi-
nation of primitive events, Y1, . . . , Yk are distinct variables
in V , and yi ∈ R(Yi). Such a formula is abbreviated as
[~Y ← ~y]ϕ. The special case where k = 0 is abbreviated as
ϕ. Intuitively, [Y1 ← y1, . . . , Yk ← yk]ϕ says that ϕ would
hold if Yi were set to yi, for i = 1, . . . , k.

We call a pair (M,~u) consisting of a causal model M and
a context ~u a (causal) setting. A causal formula ψ is true or
false in a setting. We write (M,~u) |= ψ if the causal formula
ψ is true in the setting (M,~u). The |= relation is defined in-
ductively. (M,~u) |= X = x if the variable X has value x in
the unique (since we are dealing with acyclic models) solu-
tion to the equations in M in context ~u (that is, the unique
vector of values for the exogenous variables that simultane-
ously satisfies all equations in M with the variables in U set
to ~u). Finally, (M,~u) |= [~Y ← ~y]ϕ if (M~Y=~y, ~u) |= ϕ.

1In many papers (e.g., (Bradley, Dietrich, and List 2014; Samp-
son, Winship, and Knight 2013)), a causal model is defined by a
causal graph indicating the dependencies, perhaps with an indica-
tion of whether a change has a positive or negative effect. Our mod-
els are more expressive, since the equations typically provide much
more detailed information regarding the dependency between vari-
ables.



3 Interventions
In this section we define (causal) interventions, and compare
the notion of intervention to that of cause.

Definition 1 ~X = ~x is an intervention on ϕ in (M,~u) if the
following three conditions hold:
I1. (M,~u) |= ϕ.

I2. (M,~u) |= [ ~X ← ~x]¬ϕ.
I3. ~X is minimal; there is no strict subset ~X ′ of ~X and val-

ues ~x′ such that ~X ′ = ~x′ satisfies I2.

I1 says ϕ must be true in the current setting (M,~u),
while I2 says that performing the intervention results in ϕ
no longer being true. I3 is a minimality condition. From a
policymaker’s perspective, I2 is the key condition. It says
that by making the appropriate changes, we can bring about
a change in ϕ.

Our definition of intervention slightly generalizes others
in the literature. Pearl (2009) assumes that the causal model
is first analyzed, and then a new intervention variable IV is
added for each variable V on which we want to intervene. If
IV = 1, then the appropriate intervention on V takes place,
independent of the values of the other parents of V ; if IV =
0, then IV has no effect, and the behavior of V is determined
by its parents, just as it was in the original model. Lu and
Druzdzel (2002), Korb et al. (2004), and Woodward (2003)
take similar approaches.

We do not require special intervention variables; we just
allow interventions directly on the variables in the model.
But we can assume as a special case that for each variable
V in the model there is a special intervention variable IV
that works just like Pearl’s intervention variables, and thus
recover the other approaches considered in the literature. It
should be clear that all these definitions are trying to capture
the same intuitions, and differ only in minor ways.

Although there seems to be relatively little disagreement
about how to capture intervention, the same cannot be said
for causality. Even among definitions that involve counter-
factuals and structural equations (Glymour and Wimberly
2007; Halpern 2015; Halpern and Pearl 2005; Hitchcock
2001; 2007; Woodward 2003), there are a number of subtle
variations. Fortunately, the definition of intervention does
not depend on how causality is defined. While we do not get
into the details of causality here, it is instructive to compare
the definitions of causality and intervention.

For definiteness, we focus on the definition of causality
given by Halpern (2015). It has conditions AC1–3 that are
analogous of I1–3. Specifically, AC1 says ~X = ~x is a cause
of ϕ in (M,~u) if (M,~u) |= ( ~X = ~x) ∧ ϕ and AC3 is
a minimality condition. AC2 is a more complicated condi-
tion; it says that there exist values ~x′ for the variables in
~X , a (possibly empty) subset ~W of variables, and values ~w
for the variables in ~W such that (M,~u) |= ~W = ~w and
(M,~u) |= [ ~X ← ~x, ~W ← ~w]¬ϕ. We do not attempt to
explain or motivate AC2 here, since our focus is not causal-
ity. The following example, due to Lewis (2000), illustrates
some of the subtleties, and highlights the differences be-
tween causality and intervention.

Suppose that Suzy and Billy both pick up rocks and throw
them at a bottle. Suzy’s rock gets there first, shattering
the bottle. Since both throws are perfectly accurate, Billy’s
would have shattered the bottle had Suzy not thrown. Most
people would say that Suzy is a cause, and not Billy. Part
of the difficulty in getting a good definition of causality is
to ensure that the definition gives us this result (given an
appropriate causal model). However, Suzy’s throw by itself
is not an intervention for the bottle shattering. Even if we
prevent Suzy from throwing, the bottle will still shatter be-
cause of Billy’s throw. That is, if we have variables ST and
BT for Suzy’s throw and Billy’s throw, with possible values
0 and 1 (ST = 1 if Suzy throws, ST = 0 if she doesn’t, and
similarly for Billy), then although ST = 1 is a cause of the
bottle shattering, ST = 0 is not an intervention for the bottle
shattering; intervening on ST alone does not change the out-
come. On the other hand, ST = 0∧BT = 0 is an intervention
for the bottle shattering, but ST = 1 ∧ BT = 1 is not a cause
of the bottle shattering; it violates AC3.

It is almost immediate from the definitions that we have
the following relationship between interventions and causes:

Proposition 3.1 If ~X = ~x is an intervention for ϕ in (M,~u)

then there is some subset of ~X ′ of ~X such that ~X ′ = ~x′ is a
cause of ϕ in (M,~u), where ~x′ is such that (M,~u) |= ~X ′ =

~x′. Conversely, if ~X = ~x is a cause of ϕ in (M,~u) then there
is a superset ~X ′ of ~X and values ~x′ such that ~X ′ = ~x′ is an
intervention for ϕ.

Halpern (2015) proved that (for his latest definition) the
complexity of determining whether ~X = ~x is a cause of
ϕ in (M,~u) is DP-complete, where DP consists of those
languages L for which there exist a language L1 in NP and a
language L2 in co-NP such that L = L1∩L2 (Papadimitriou
and Yannakakis 1982). It is well known that DP is at least as
hard as NP and co-NP (and most likely strictly harder). The
problem of determining whether ~X = ~x is an intervention is
in a lower complexity class.

Theorem 3.2 Given a causal model M , a context ~u, and
a Boolean formula ϕ, the problem of determining whether
~X = ~x is an intervention for ϕ in (M,~u) is co-NP-complete.

In practice, however, we rarely expect to face the co-NP
complexity. For reasons of cost or practicality, we would ex-
pect a policymaker to consider interventions on at most k
variables, for some small k. The straightforward algorithm
that, for a given k, checks all sets of variables of the model
M of size at most k runs in time O(|M |k).

4 Combining Compatible Causal Models
This section presents our definition for compatibility of ex-
pert opinions. We consider each expert’s opinion to be repre-
sented by a causal model and, for simplicity, that each expert
expresses her opinion with certainty. (We can easily extend
our approach to allow the experts to have some uncertainty
about the correct model; see the end of Section 5.) We start
with a strong notion of compatibility, and then consider gen-
eralizations of this notion that are more widely applicable.



4.1 Domination and Compatibility
To specify what it means for a set of models to be compat-
ible, we first define what it means for the causal model M1

to contain at least as much information about variable C as
the causal model M2, denoted M1 �C M2. Intuitively, M1

contains at least as much information about C as M2 if M1

and M2 say the same things about the causal structure of C
as far as the variables that M1 and M2 share, but M1 con-
tains (possibly) more detailed information aboutC, because,
for example, there are additional variables in M1 that affect
C. We capture this property formally below. Say that B is
an immediate M2-ancestor of Y in M1 if B ∈ U2 ∪ V2, B
is an ancestor of Y in M1, and there is a path from B to Y
in M1 that has no nodes in U2 ∪ V2 other than B and Y (if
Y ∈ U2 ∪ V2). That is, Y is the first node in M2 after B on
a path from B to Y in M1.

Definition 2 Let M1 = ((U1,V1,R1),F1) and M2 =
((U2,V2,R2),F2). Let ParM (C) denote the variables that
are parents of C in (the causal graph corresponding to)
M . M1 strongly dominates M2 with respect to C, denoted
M1 �C M2, if the following conditions hold:

MI1M1,M2,C . The parents of C in M2 are the immediate
M2-ancestors of C in M1.

MI2M1,M2,C . Every path from an exogenous variable to C
in M1 goes through a variable in ParM2

(C).
MI3M1,M2,C . Let X = ((U1 ∪ V1) ∩ (U2 ∪ V2)) − {C}.

Then for all settings ~x of the variables in ~X , all values c
of C, all contexts ~u1 for M1, and all contexts ~u2 for M2,

(M1, ~u1) |= [ ~X ← ~x](C = c) iff
(M2, ~u2) |= [ ~X ← ~x](C = c).

If MI1M1,M2,C holds and, for example, B is a parent of
C in M2, then there may be a variable B′ on the path from
B to C in M1. Thus, M1 has in a sense more detailed in-
formation than M2 about the causal paths leading to C.
MI1M1,M2,C is not by itself enough to say that M1 and M2

agree on the causal relations for C. This is guaranteed by
MI2M1,M2,C and MI3M1,M2,C . MI2M1,M2,C says that the
variables in ParM2

(C) screen off C from the exogenous
variables in M1. (Clearly the variables in ParM2(C) also
screen off C from the exogenous variables in M2.) It fol-
lows that if (M1, ~u1) |= [ParM2(C)← ~x](C = c) for some
context ~u1, then (M1, ~u) |= [ParM2(C) ← ~x](C = c) for
all contexts ~u in M1, and similarly for M2. In light of this
observation, it follows that MI3M1,M2,C assures us that C
satisfies the same causal relations in both models. We write
M1 6�C M2 if any of the conditions above does not hold.

Two technical observations: First, note that there is an
abuse of notation in the statement of MI3M1,M2,C . We al-
low the set ~X in the statement of MI3M1,M2,C to include
exogenous variables. However, in giving the semantics of
the causal language, we consider only formulas of the form
[ ~X ← ~x]ϕ where ~X mentions only endogenous variables.
(Note that it is possible that some variables that are exoge-
nous in M1 may be endogenous in M2, and vice versa.)
Suppose that ~X ∩ U1 = U ′1 and ~X ′ = ~X − U ′1; then by

(M1, ~u1) |= [ ~X ← ~x](C = c) we mean (M1, ~u
′
1) |= [ ~X ′ ←

~x′](C = c), where ~x′ is ~x restricted to the variables in ~X ′,
and ~u′1 agrees with ~u1 on the variables in U1−U ′1, and agrees
with ~x on the variables in U ′1. Second, despite the suggestive
notation,�C is not a partial order. In particular, it is not hard
to construct examples showing that it is not transitive. How-
ever, �C is a partial order on compatible models (see the
proof of Proposition 4.1), which is the only context in which
we are interested in transitivity.

Note that we have a relation �C for each variable C that
appears in both M1 and M2. Model M1 may be more in-
formative than M2 with respect to C whereas M2 may be
more informative than M1 with respect to another variable
C ′. Roughly speaking, M1 and M2 are strongly compati-
ble if for each variable C ∈ V1 ∩ V2, either M1 �C M2

or M2 �C M1. We then combine M1 and M2 by taking the
equations forC to be determined by the model that has more
information about C.

Example 1 (Bradley, Dietrich, and List 2014) An aid
agency consults two experts about causes of famine in a
region. Both experts agree that the amount of rainfall (R)
affects crop yield (Y ). Specifically, a shortage of rainfall
leads to poor crop yield. Expert 2 says that political conflict
(P ) can also directly affect famine. Expert 1, on the other
hand, says that P affects F only via Y . The experts’ causal
graphs are depicted in Figure 1, where the graph on the
left, M1, describes expert 1’s model, while the graph on the
right, M2, describes expert 2’s model. In these graphs (as
in many other causal graphs in the literature), exogenous
variables are omitted; all variables are taken to be endoge-
nous. Neither MI1M1,M2,F nor MI1M2,M1,F , since P is not
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Figure 1: Two expert models of famine.

an M2-immediate ancestor of F in M1. Similarly, neither
MI1M1,M2,Y nor MI1M2,M1,Y holds, since P is not an M1-
immediate ancestor of Y inM2 (indeed, it is not an ancestor
at all). MI2M1,M2,F holds since every path in M1 from an
exogenous variable to F goes through a variable that is a
parent of F in M2 (namely, Y ); MI2M2,M1,F does not hold
(there is a path in M2 to F via P that does not go through
a parent of F in M1). Although we are not given the equa-
tions, we also know that MI3M1,M2,F does not hold. Since
P is a parent of F in M2 according to expert 2, there must
be a setting y of Y such that the value of F changes depend-
ing on the value of P if Y = y. This cannot be the case in
M1, since Y screens off P from F . It easily follows that tak-
ing ~X = (P, Y ) we get a counterexample to MI3M1,M2,F .
Therefore, we have neither M1 �F M2 nor M2 �F M1.

While the definition of dominance given above is use-
ful, it does not cover all cases where we may want to com-
bine models. Consider the following example, taken from



the work of Sampson, Winship, and Knight (2013).

Example 2 Two experts have provided causal models re-
garding the causes of domestic violence. According to the
first expert, an appropriate arrest policy (AP) may affect
both an offender’s belief that his partner would report any
abuse to police (PLS) and the amount of domestic violence
(DV). The amount of domestic violence also affects the like-
lihood of a victim calling to report abuse (C), which in turn
affects the likelihood of there being a random arrest (A).
(Decisions on whether to arrest the offender in cases of do-
mestic violence were randomized.)

According to the second expert, DV affects A directly,
while A affects the amount of repeated violence (RV) through
both formal sanction (FS) and informal sanction on socially
embedded individuals (IS). Sampson et al. (2013) use the
following causal graphs shown in Figure 2, which are anno-
tated with the direction of the influence (the only information
provided by the experts) to describe the expert’s opinions.p
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Figure 2: Expert’s models of domestic violence.

For the two common variables DV and A, MI1M1,M2,DV

and MI1M1,M2,A both hold. If the only variables that have
exogenous parents are AP in M1 and DV in M2, and the set
of parents of AP in M1 is a subset of the set of parents of DV
in M2, then MI2M1,M2,DV holds. Sampson et al. seem to be
implicitly assuming this, and that MI3 holds, so they com-
bine M1 and M2 to get the causal graph shown in Figure 3.

p p p p p p
p p�

��
-
@
@R - -

@
@R

�
��@
@R

�
��

−
−

PLS

−

DV

+

�

−

+
C A

FS

IS

+

+

−

−
RV

Figure 3: Combined experts’ model of domestic violence.

Note that modelM2 in Figure 2 does not state how DV in-
fluences A. Presumably, this respresents the expert’s under-
tainty. We can capture this uncertainty by viewing the expert
as having a probability on two models that disagree on the
direction of DV’s influence on A (and thus are incompati-
ble because they disagree on the equations). We discuss in
Section 5 how such uncertainty can be handled.

Suppose that some parent of AP (or AP itself) in M1 is not
a parent of DV in M2. Then, in M1, it may be possible to
change the value of DV by intervening on AP, while keeping
the values of all the exogenous variables that are parents of
DV in M2 fixed. This will seem like an inexplicable change

in the value of DV from the perspective of the second ex-
pert. If the second expert had been aware of such possible
changes, she surely would have added additional variables
to M2 to capture this situation. One explanation of the fact
that no changes were observed is that the second expert was
working in a setting where the values of all variables that
she cannot affect by an intervention are determined by some
default setting of exogenous variables of which she is not
aware (or not modeling). We now define a notion of domi-
nation that captures this intuition.

Definition 3 Let ~v∗ be a default setting for the variables in
M1 and M2. M1 weakly dominates M2 with respect to C
relative to ~v∗, denoted M1 �~v∗

C M2, if MI1M1,M2,C holds,
and, in addition, the following condition (which can be
viewed as a replacement for MI2M1,M2,C and MI3M1,M2,C)
holds:

MI4M1,M2,C,~v∗ Let ~X = (U1 ∪ V1) ∩ (U2 ∪ V2) − {C}.
Then for all settings ~x of the variables in ~X , all values c
of C, and all contexts ~u1 for M1 and ~u2 for M2 such that
~u1 and ~u2 agree on the variables in U1 ∩ U2, ~u1 agrees
with ~v∗ on the variables in U1 − U2, and ~u2 agrees with
~v∗ on the variables in U2 − U1, we have

(M1, ~u1) |= [ ~X ← ~x](C = c) iff
(M2, ~u2) |= [ ~X ← ~x](C = c).

It is easy to see that �C is a special case of �~v∗

C :

Lemma 1 If M1 �C M2, then, for all default settings ~v∗ of
the variables in M1 and M2, we have M1 �~v∗

C M2.

In light of Lemma 1, we give all the definitions in the
remainder of the paper using �~v∗

C . All the technical results
hold if we replace �~v∗

C by �C throughout.

Definition 4 If M1 = ((U1,V1,R1),F1) and M2 =
((U2,V2,R2),F2), then M1 and M2 are compatible if (1)
for all variables C ∈ (U1 ∪ V1) ∩ (U2 ∪ V2), we have
R1(C) = R2(C) and (2) for all variables C ∈ V1 ∩ V2,
either M1 �~v∗

C M2 or M2 �~v∗

C M1. If M1 and M2 are com-
patible, then M1 ⊕M2 is the causal model ((U ,V,R),F),
where

• U = U1 ∪ U2 − (V1 ∪ V2);
• V = V1 ∪ V2;
• ifC ∈ U1∪V1, thenR(C) = R1(C), and ifC ∈ U2∪V2,

thenR(C) = R2(C);
• if C ∈ V1 − V2 or if both C ∈ V1 ∩ V2 and M1 �~v∗

C M2,
then F(C) = F1(C); if C ∈ V2 − V1 or if both C ∈
V1 ∩ V2 and M2 �~v∗

C M1, then F(C) = F2(C).2

Returning to Example 2, assume that either
MI2M1,M2,DV , MI2M1,M2,A, MI3M1,M2,DV , and
MI3M1,M2,A all hold, or there is a default setting ~v∗

such that MI4M1,M2,DV,~v∗ and MI4M1,M2,A,~v∗ hold. Then

2We are abusing notation here and viewing Fi(C) as a function
from the values of the parents of C in Mi to the value of C, as
opposed to a function from all the values of all variables other than
C to the value of C.



M1 ⊕M2 has the causal graph described in Figure 3; that
is, even though Sampson et al. (2013) do not have a formal
theory for combining models, they actually combine models
in just the way that we are suggesting.

Let M1 ∼~v∗

C M2 be an abbreviation for M1 �~v∗

C M2 and
M2 �~v∗

C M1. We also write M1 �~v∗

C M2 if M1 �~v∗

C M2

and M2 6�~v∗

C M1.
The next proposition provides evidence that Definition 4

is reasonable and captures our intuitions. Part (b) says that it
is well defined, so that in the clauses in the definition where
there might be potential conflict, such as in the definition of
F(C) when C ∈ V1 ∩ V2 and M1 ∼~v∗

C M2, there is in fact
no conflict; part (a) is a technical result needed to prove part
(b). Part (c) states that the combined model in the compatible
case is guaranteed to be acyclic. Part (d) says that causal
paths in M1 are preserved in M1 ⊕M2, while part (e) says
that at least as far as formulas involving the variables in M1

go,M1⊕M2 andM1 agree, provided that the default values
are used for the exogenous variables not in U1 ∩ U2. Parts
(d) and (e) can be viewed as saying that the essential causal
structure of M1 is preserved in M1 ⊕M2. Finally, parts (f)
and (g) say that ⊕ is commutative and associative over its
domain.

Proposition 4.1 Suppose thatM1M2, andM3 are pairwise
compatible. Then the following conditions hold.

(a) If M1 ∼~v∗

C M2 then (i) ParM1(C) = ParM2(C) and (ii)
F1(C) = F2(C);

(b) M1 ⊕M2 is well defined.
(c) M1 ⊕M2 is acyclic.
(d) If A and B are variables in M1, then A is an ancestor of

B in M1 iff A is an ancestor of B in M1 ⊕M2.
(e) If ϕ is a formula that mentions only the endogenous vari-

ables inM1, ~u is a context forM1⊕M2, ~u1 is a context for
M1, ~u and ~u1 agree on the variables in U1 ∩U2, ~u agrees
with ~v∗ on the variables in U − (U1 ∩ U2), and ~u1 agrees
with ~v∗ on the variables in U1 − U2, then (M1, ~u1) |= ϕ
iff (M1 ⊕M2, ~u) |= ϕ.

(f) M1 ⊕M2 =M2 ⊕M1.
(g) If M3 is compatible with M1⊕M2 and M1 is compatible

withM2⊕M3, thenM1⊕(M2⊕M3) = (M1⊕M2)⊕M3.

We define what it means for a collection M =
{M1, . . . ,Mn} of causal models to be mutually compati-
ble by induction on the cardinality ofM. If |M| = 1, then
mutual compatibility trivially holds. If |M| = 2, then the
models inM are mutually compatible if they are compati-
ble according to Definition 4. If |M| = n, then the models
inM are mutually compatible if the models in every subset
ofM of cardinality n− 1 are mutually compatible, and for
each model M ∈ M, M is compatible with ⊕M ′ 6=MM

′.
By Proposition 4.1, if M1, . . . ,Mn are mutually compati-
ble, then the causal model M1 ⊕ · · · ⊕Mn is well defined;
we do not have to worry about parenthesization, nor the or-
der in which the settings are combined. Thus, the model
⊕M ′ 6=MM

′ considered in the definition is also well defined.
Proposition 4.1(e) also tells us that M1 ⊕ · · · ⊕ Mn con-
tains, in a precise sense, at least as much information as each

model Mi individually. Thus, by combining mutually com-
patible models, we are maximizing our use of information.

We now discuss the extent to which our approach to com-
bining modelsM1 andM2 satisfies BDL’s desiderata. Recall
that BDL considered only causal networks, not causal mod-
els in our sense; they also assume that all models mention
the same set of variables. They consider four desiderata. We
briefly describe them and their status in our setting.
• Universal Domain: the rule for combining models accepts

all possible inputs and can output any logically possible
model. This clearly holds for us.

• Acyclicity: the result of combining M1 and M2 is acyclic.
This follows from Proposition 4.1(c), provided that M1⊕
M2 is defined.

• Unbiasedness: if M1 ⊕M2 is defined, and M1 and M2

mention the same variables, then whether B is a parent of
C in M1 ⊕M2 depends only on whether B is a parent of
C in M1 and in M2, and This is trivial for us, since if B
and C are in both M1 and M2 and M1 ⊕M2 is defined,
then B is a parent of C in M1 ⊕M2 iff B is a parent of
C in both M1 and M2. (The version of this requirement
given by BDL does not say “ifM1⊕M2 is defined”, since
they assume that arbitrary models can be combined.) BDL
also have a neutrality requirement as part of unbiasedness.
Unfortunately, an aggregation rule that says that B is a
parent of C in M1 ⊕M2 iff B is a parent of C in both
M1 and M2 (which seems quite reasonable to us) is not
neutral in their sense, so we do not satisfy neutrality.

• Non-Dictatorship: no single expert determines the aggre-
gation. This clearly holds for us.

4.2 Partial Compatibility
While the notion of dominance used in Definition 4 is useful,
it still does not cover many cases of interest. We briefly de-
scribe an example here on causal models for the emergence
of radicalization in US prisons. The material is taken from
Useem and Clayton (2009). Although Useem and Clayton
do not provide causal models, we construct these based on
the description provided. We do not provide a detailed ex-
planation of all the variables and their dependencies here
(details are provided in the full paper); for our purposes, it
suffices to focus on the structure of these models.

Example 3 Consider the two causal models in Figure 4.
The SCICH model represents expert 1’s opinion about
emerging radicalization (R) in the State Correctional Insti-
tution Camp Hill in Pennsylvania. The TDCR model rep-
resents expert 2’s opinion about the causes of emergence
in the Texas Department of Corrections and Rehabilitation
(TDCR). Both experts agree on the structural equations for
R. However they differ on the structural equations for PD,
CB and AM. For the common variables CB and AM, assum-
ing default values for CG, LM and FM in SCICH and for T,
D and RG in TDCR, we can show that SCICH �~v∗

CB TDCR
and SCICH �~v∗

AM TDCR. However, neither model dominates
the other with respect to PD; neither MI1SCICH,TDCR,PD nor
MI1TDCR,SCICH,PD holds. Therefore the models are incompat-
ible according to Definition 4.
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Figure 4: Schematic representation of the two prison models.

Although the models are incompatible according to our
definition, the incompatibility is “localized” to the variable
PD. Moreover, it is not even clear that there is disagreement
with regard to PD; the experts could just be focusing on dif-
ferent variables. In a richer model, PD might have six par-
ents. The trouble is, we have no idea from the two models
what the equations for PD would be in the richer model.

In the full paper, we define an approach to combining
models even when they are not completely compatible. We
consider a notion of partial compatibility of causal models
and construct a partial causal model. Roughly speaking, the
causal model does not completely define the equations for
variables X that are common to two models, where neither
dominates the other with respect toX . In the example above,
PD has six parents in the partial model, but we do not com-
pletely specify the equation for the value of PD as a function
of its parents’ values.

This approach to aggregating models is our main contri-
bution. Using it, we show in the next section how experts’
models can be combined to reason about interventions.

5 Combining Experts’ Opinions
Suppose that we have a collection of pairs (M1, p1), . . . ,
(Mn, pn), with pi ∈ (0, 1]; we can think of Mi as the
model that expert i thinks is the right one and pi as the
policymaker’s degree of confidence that expert i is correct.
Let Compat = {I ⊆ {1, . . . , n} : the models in {Mi :
i ∈ I} are mutually compatible}. For I ∈ Compat , define
MI = ⊕i∈IMi. By Proposition 4.1,MI is well defined. The
policymaker considers the models in MCompat = {MI :
I ∈ Compat}, placing the probability of pI =

∏
i∈I(pi) ∗∏

j 6∈I(1 − pj)/N on MI , where N =
∑

I∈Compat pI is a
normalization factor.

Intuitively, we view the events “expert i is right” as being
mutually independent, for i = 1, . . . , n. Thus, pI is the prob-
ability of the event that exactly the experts in I are right (and
the ones not in I are wrong). If exactly the experts in I are
indeed right, it seems reasonable to view MI as the “right”
causal model. Note that it is not possible for all the experts
in I to be right if there are experts i, j ∈ I such that Mi and
Mj are incompatible. Thus, we consider only models MI

for I ∈ Compat . But even if I ∈ Compat , it is possible that
some of the experts in I are wrong in their causal judgments.
Our calculation implicitly conditions on the fact that at least
one expert is right, but allows for the possibility that only
some subset of the experts in I is right even if I ∈ Compat ;
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Figure 5: Third expert’s (and combined) model of famine.

we place positive probability on MI′ even if I ′ is a strict
subset of some I ∈ Compat . This method of combining ex-
perts’ judgments is similar in spirit to the method proposed
by Dawid (1987) and Fenton et al. (2016).

This completes our description of how to combine ex-
perts’ causal judgments. At a high level, for each subset of
experts whose judgments are compatible (in that the mod-
els they are proposing are pairwise compatible), we com-
bine the models, and assign the combined model a probabil-
ity corresponding the probability of the experts in the sub-
set. Of course, once we have a probability on the settings in
MCompat , we can compute, for each setting, which inter-
ventions affect the outcome ϕ of interest, and then compute
the probability that a particular intervention is effective.

The straightforward strategy for a policymaker to com-
pute the most effective intervention based on the experts’
opinions and the degree of confidence of the policymaker
in each expert’s judgment is to compute the set MCompat

of models and then to apply the computation of interven-
tions as described in Section 3 to eachMI ∈MCompat . The
probability that an intervention is effective is computed by
summing the probability of the models where it is effective.

To get a sense of how this works, consider a variant of
Example 1, in which a third expert provides her view on
causes on famine and thinks that government corruption is
an indirect cause via its effect on political conflict (see Fig-
ure 5); call this model M3. According to the compatibility
definition in Section 4, the models M2 and M3 are com-
patible (assuming that MI3 holds), but M1 and M3 are not.
We haveMCompat = {{M1}, {M2}, {M3}, {M2,3}} with
M2,3 =M2⊕M3 =M3. Suppose that experts are assigned
the confidence values as follows: (M1, 0.4), (M2, 0.6) and
(M3, 0.5) respectively. Then the probability on M2,3 is the
probability ofM2 andM3 being right andM1 being wrong.
So we have p2,3 = (0.6 ∗ 0.5 ∗ 0.6)/0.56 = 0.32 (where
0.56 is the normalization factor). In a similar way we com-
pute p1 = (0.4∗0.4∗0.5)/0.56 = 0.14. Note that the num-
ber of models inMCompat may be exponential in the num-
ber of experts. For example, if all experts are compatible,
Compat consists of all subsets of {1, . . . , n}. The straight-
forward computation of interventions per model is exponen-
tial in the number of variables in the model. Since the num-
ber of variables in a combined model is at most the sum
of the variables in each one, the problem is exponential in
the number of experts and the total number of variables in
the experts’ models. In practice, however, we do not expect
this to pose a problem. For the problems we are interested
in, there are typically few experts involved; moreover, as we
argued in Section 3, policymakers, in practice, restrict their
attention to interventions on a small set of variables. Thus,
we expect that the computation involved to be manageable.



Up to now, we have assumed that each expert proposes
only one deterministic causal model. An expert uncertain
about the model can propose several (typically incompati-
ble) models, with a probability distribution on them. We can
easily extend our framework to handle this. Suppose that ex-
pert i, with probability pi of being correct, proposesmmod-
els Mi1, . . . ,Mim, where model Mij has probability qj of
being the right one, according to i. To handle this, we sim-
ply replace expert i by m experts, i1, . . . , im, where expert
ij proposes model Mij with probability piqj of being cor-
rect. As long as each of a few experts has a probability on
only a few models, this will continue to be tractable.

6 Conclusions
We have provided a method for combining causal models
and used that as a basis for combining experts’ causal judg-
ments in a way that gets around the impossibility result of
Bradley, Dietrich, and List (2014). Our approach can be
viewed as a formalization of an earlier work (Chockler et
al. 2015; Sampson, Winship, and Knight 2013). We believe
that using causal models as a way of formalizing experts’
judgments, and then providing a technique for combining
these judgments, will prove to be a powerful tool for finding
the intervention(s) best ameliorate a situation.
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