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Abstract

Consider a policymaker who wants to decide which interven-
tion to perform in order to change a currently undesirable sit-
uation. The policymaker has at her disposal a team of experts,
each with their own understanding of the causal dependen-
cies between different factors contributing to the outcome.
The policymaker has varying degrees of confidence in the ex-
perts’ opinions. She wants to combine their opinions in order
to decide on the most effective intervention. We formally de-
fine the notion of an effective intervention, and then consider
how experts’ causal judgments can be combined in order to
determine the most effective intervention. We define a notion
of two causal models being compatible, and show how com-
patible causal models can be combined. We then use it as the
basis for combining experts causal judgments. We illustrate
our approach on a number of real-life examples.

1 Introduction
Consider a policymaker who is trying to decide which in-
tervention, that is, which actions, should be implemented
in order to bring about a desired outcome, such as prevent-
ing violent behavior in prisons or reducing famine mortality
in some country. The policymaker has access to various ex-
perts who can advise her on which interventions to consider.
Some experts may be (in the policymaker’s view) more reli-
able than others; they may also have different areas of ex-
pertise; or may have perceived alternative factors in their
analysis. The goal of the policymaker is to choose the best
intervention, taking into account the experts’ advice.

There has been a great deal of work on combining experts’
probabilistic judgments. (Genest and Zidek (1986) provide a
somewhat dated but still useful overview; Dawid (1987) and
Fenton et al. (2016), among others, give a Bayesian analy-
sis.) We are interested in combining experts’ judgments in
order to decide on the best intervention. Hence, we need
more than probabilities. We need to have a causal under-
standing of the situation. Thus, we assume that the experts
provide the policymaker with causal models. In general,
these models may involve different variables (since the ex-
perts may be focusing on different aspects of the problem).
Even if two models both include variables C1 and C2, they
may disagree on the relationships between them. For exam-
ple, one expert may believe that C2 is independent of C1

while another may believe that C1 causally depends on C2.

Yet somehow the policymaker wants to use the information
in these causal models to reach her decision.

Despite the clear need for causal reasoning, and the ex-
amples in the literature and in practice where experts work
with causal models (e.g., (Chockler et al. 2015; Samp-
son, Winship, and Knight 2013)), there is surprisingly lit-
tle work on combining causal judgments. Indeed, the only
work that we are aware of is that of Bradley, Dietrich, and
List (2014) (BDL from now on), who prove an impossibility
result. Specifically, they describe certain arguably reason-
able desiderata, and show that there is no way of combining
causal models so as to satisfy all their desiderata. They then
discuss various weakenings of their assumptions to see the
extent to which the impossibility can be avoided, none of
which seem that satisfactory.

There is also much work on the closely related problem of
causal discovery: constructing a single causal model from a
data set. A variety of techniques have been used to find the
model that best describes how the data is generated (see, e.g.,
(Claassen and Heskes 2010; 2012; Hyttinen, Eberhardt, and
Jarvisalo 2014; Tillman and Spirtes 2011; Triantafillou and
Tsamardinos 2015); Triantafillou and Tsamardinos (2015)
provide a good overview of work in the area). Of course,
if we have the data that the experts used to generate their
models, then we should apply the more refined techniques
of the work on causal discovery. However, while the causals
model constructed by experts are presumably based on data,
the data itself is typically no longer available. Rather, the
models represent the distillation of years of experience, ob-
tained by querying the experts.

In this paper, we present an approach to combining ex-
perts’ causal models when sufficient data for discovering
the overall causal model is not available. The key step in
combining experts’ causal models lies in defining when two
causal models are compatible. Causal models can be com-
bined only if they are compatible. We start with a notion of
strong compatibility, where the conditions say, among other
things, that if both M1 and M2 involve variables C1 and C2,
then they must agree on the causal relationship between C1

and C2. But that is not enough. Suppose that in both mod-
els C1 depends on C2, C3, and C4. Then in a precise sense,
the two models must agree on how the dependence works,
despite describing the world using possibly different sets of
variables. Roughly speaking, this is the case when, for every



variableC that the two models have in common, we can des-
ignate one of the models as being “dominant” with respect
to C, and use that model to determine the relationships for
C. When M1 and M2 are compatible, we are able to con-
struct a combined model M1 ⊕ M2 that can be viewed as
satisfying all but one of BDL’s desiderata (and we argue that
the one it does not satisfy is unreasonable).

This set of constraints is very restrictive, and, as we show
on real-life examples, models are often not compatible in
this strong sense. We thus define two successively more gen-
eral notions of compatibility. But even with this more gen-
eral notions, we may find that not all the experts’ models
are incompatible. In that case, we simply place a probabil-
ity on possible ways of combining the compatible models,
using relatively standard techniques, based on the perceived
reliability of the experts who proposed them. The policy-
maker will then have a probability on causal models that she
can use to decide which interventions to implement. Specif-
ically, we can use the probability on causal models to com-
pute the probability that an intervention is efficacious. Com-
bining that with the cost of implementing the intervention,
she can compute the most effective intervention. As we shall
see, although we work with the same causal structures used
to define causality, interventions are different from (and ac-
tually simpler to analyze than) causes.

We believe that our approach provides a useful formal
framework that can be applied to the determination of appro-
priate interventions in real-world scenarios involving com-
plex sociological phenomena, such as crime prevention sce-
narios (Sampson, Winship, and Knight 2013) and radicaliza-
tion (Wikström and Bouhana 2017).

The rest of the paper is organized as follows. Section 2
provides some background material on causal models. We
formally define our notion of intervention and compare it to
causality in Section 3. We discuss our concept of compatibil-
ity and how causal models can be combined in Section 4. We
discuss how the notions of interventions and of compatible
models can be used by the policymakers to choose optimal
interventions in Section 5. Finally, in Section 6, we illus-
trate these concepts on two case studies before concluding
in Section 7.

2 Causal Models
In this section, we review the definition of causal models
introduced by Halpern and Pearl (2005). The material in this
section is largely taken from (Halpern 2016).

We assume that the world is described in terms of vari-
ables and their values. Some variables may have a causal
influence on others. This influence is modeled by a set of
structural equations. It is conceptually useful to split the
variables into two sets: the exogenous variables, whose val-
ues are determined by factors outside the model, and the
endogenous variables, whose values are ultimately deter-
mined by the exogenous variables. For example, in a voting
scenario, we could have endogenous variables that describe
what the voters actually do (i.e., which candidate they vote
for), exogenous variables that describe the factors that de-
termine how the voters vote, and a variable describing the
outcome (who wins). The structural equations describe how

these values are determined (e.g., majority rules; a candi-
date wins if A and at least two of B, C, D, and E vote for
him; etc.).

Formally, a causal model M is a pair (§,F), where § is a
signature, which explicitly lists the endogenous and exoge-
nous variables and characterizes their possible values, and
F defines a set of (modifiable) structural equations, relating
the values of the variables. A signature § is a tuple (U ,V,R),
where U is a set of exogenous variables, V is a set of endoge-
nous variables, and R associates with every variable Y ∈
U ∪ V a nonempty set R(Y ) of possible values for Y (that
is, the set of values over which Y ranges). For simplicity, we
assume here that V is finite, as is R(Y ) for every endoge-
nous variable Y ∈ V . F associates with each endogenous
variable X ∈ V a function denoted FX (i.e., FX = F(X))
such that FX : (×U∈UR(U)) × (×Y ∈V−{X}R(Y )) →
R(X). This mathematical notation just makes precise the
fact that FX determines the value of X , given the values of
all the other variables in U ∪ V . If there is one exogenous
variable U and three endogenous variables, X , Y , and Z,
then FX defines the values of X in terms of the values of Y ,
Z, and U . For example, we might have FX(u, y, z) = u+y,
which is usually written as X = U +Y . Thus, if Y = 3 and
U = 2, then X = 5, regardless of how Z is set.1

The structural equations define what happens in the pres-
ence of external interventions. Setting the value of some
variable X to x in a causal model M = (§,F) results in a
new causal model, denotedMX←x, which is identical toM ,
except that the equation for X in F is replaced by X = x.

The dependencies between variables in a causal modelM
can be described using a causal network (or causal graph),
whose nodes are labeled by the endogenous and exogenous
variables in M = ((U ,V,R),F), with one node for each
variable in U ∪V . The roots of the graph are (labeled by) the
exogenous variables. There is a directed edge from variable
X to Y if Y depends on X; this is the case if there is some
setting of all the variables in U ∪ V other than X and Y
such that varying the value of X in that setting results in a
variation in the value of Y ; that is, there is a setting ~z of
the variables other than X and Y and values x and x′ of
X such that FY (x, ~z) 6= FY (x

′, ~z). A causal model M is
recursive (or acyclic) if its causal graph is acyclic. It should
be clear that if M is an acyclic causal model, then given a
context, that is, a setting ~u for the exogenous variables in U ,
the values of all the other variables are determined (i.e., there
is a unique solution to all the equations). We can determine
these values by starting at the top of the graph and working
our way down. In this paper, following the literature, we
restrict to recursive models.

In many papers in the literature (e.g., (Bradley, Dietrich,
and List 2014; Sampson, Winship, and Knight 2013)) a
causal model is defined simply by a causal graph indicat-
ing the dependencies, perhaps with an indication of whether
whether a change has a positive or negative effect; that is,
edges are annotated with + or −, so that an edge from A to

1The fact that X is assigned U + Y (i.e., the value of X is the
sum of the values of U and Y ) does not imply that Y is assigned
X −U ; that is, FY (U,X,Z) = X −U does not necessarily hold.



B annotated with + means that an increase in A results in
an increase in B, while if it is annotated with a −, then an
increase in A results in a decrease in B (where what consti-
tutes an increase or decrease is determined by the model).
Our models are more expressive, since the equations typi-
cally provide much more detailed information regarding the
dependency between variables; the causal graphs capture
only part of this information. Of course, this extra informa-
tion makes combining models more difficult (although, as
the results of BDL show, the difficulties in combining mod-
els already arise with purely qualitative graphs).

To define interventions carefully, it is useful to have a
language in which we can make statements about inter-
ventions. Given a signature S = (U ,V,R), a primitive
event is a formula of the form X = x, for X ∈ V and
x ∈ R(X). A causal formula (over §) is one of the form
[Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a Boolean combi-
nation of primitive events, Y1, . . . , Yk are distinct variables
in V , and yi ∈ R(Yi). Such a formula is abbreviated as
[~Y ← ~y]ϕ. The special case where k = 0 is abbreviated as
ϕ. Intuitively, [Y1 ← y1, . . . , Yk ← yk]ϕ says that ϕ would
hold if Yi were set to yi, for i = 1, . . . , k.

We call a pair (M,~u) consisting of a causal model M and
a context ~u a (causal) setting. A causal formula ψ is true or
false in a setting. We write (M,~u) |= ψ if the causal formula
ψ is true in the setting (M,~u). The |= relation is defined in-
ductively. (M,~u) |= X = x if the variable X has value x in
the unique (since we are dealing with acyclic models) solu-
tion to the equations in M in context ~u (that is, the unique
vector of values for the exogenous variables that simultane-
ously satisfies all equations in M with the variables in U set
to ~u). Finally, (M,~u) |= [~Y ← ~y]ϕ if (M~Y=~y, ~u) |= ϕ.

3 Interventions
In this section we define (causal) interventions, and compare
the notion of intervention to that of cause.

Definition 1 [Intervention] ~X = ~x is an intervention on ϕ
in (M,~u) if the following three conditions hold:

I1. (M,~u) |= ϕ.

I2. (M,~u) |= [ ~X ← ~x]¬ϕ.
I3. ~X is minimal; there is no strict subset ~X ′ of ~X and val-

ues ~x′ such that ~X ′ = ~x′ satisfies I2.

I1 says ϕ must be true in the current setting (M,~u),
while I2 says that performing the intervention results in ϕ
no longer being true. I3 is a minimality condition. From a
policymaker’s perspective, I2 is the key condition. It says
that by making the appropriate changes, we can bring about
a change in ϕ.

Our definition of intervention slightly generalizes others
in the literature. Pearl (2009) assumes that the causal model
is first analyzed, and then a new intervention variable IV is
added for each variable V on which we want to intervene. If
IV = 1, then the appropriate intervention on V takes place,
independent of the values of the other parents of V ; if IV =
0, then IV has no effect, and the behavior of V is determined
by its parents, just as it was in the original model. Lu and

Druzdzel (2002), Korb et al. (2004), and Woodward (2003)
take similar approaches.

We do not require special intervention variables; we just
allow interventions directly on the variables in the model.
But we can certainly assume as a special case that for each
variable V in the model there is a special intervention vari-
able IV that works just like Pearl’s intervention variables,
and thus recover the other approaches considered in the lit-
erature. In any case, it should be clear that all these defini-
tions are trying to capture exactly the same intuitions, and
differ only in minor ways.

Although there seems to be relatively little disagreement
about how to capture intervention, the same cannot be said
for causality. Even among definitions that involve counter-
factuals and structural equations (Glymour and Wimberly
2007; Halpern 2015; Halpern and Pearl 2005; Hitchcock
2001; 2007; Woodward 2003), there are a number of subtle
variations. Fortunately for us, the definition of intervention
does not depend on how causality is defined. While we do
not get into the details of causality here, it is instructive to
compare the definitions of causality and intervention.

For definiteness, we focus on the definition of causality
given by Halpern (2015). It has conditions AC1–3 that are
analogous of I1–3. Specifically, AC1 says ~X = ~x is a cause
of ϕ in (M,~u) if (M,~u) |= ( ~X = ~x) ∧ ϕ and AC3 is
a minimality condition. AC2 is a more complicated condi-
tion; it says that there exist values ~x′ for the variables in
~X , a (possibly empty) subset ~W of variables, and values ~w
for the variables in ~W such that (M,~u) |= ~W = ~w and
(M,~u) |= [ ~X ← ~x, ~W ← ~w]¬ϕ. We do not attempt to
explain or motivate AC2 here, since our focus is not causal-
ity. The following example, due to Lewis (2000), illustrates
some of the subtleties, and highlights the differences be-
tween causality and intervention.

Suppose that Suzy and Billy both pick up rocks and throw
them at a bottle. Suzy’s rock gets there first, shattering
the bottle. Since both throws are perfectly accurate, Billy’s
would have shattered the bottle had Suzy not thrown. Most
people would say that Suzy is a cause, and not Billy. Part
of the difficulty in getting a good definition of causality is
to ensure that the definition gives us this result (given an
appropriate causal model). However, Suzy’s throw by itself
is not an intervention for the bottle shattering. Even if we
prevent Suzy from throwing, the bottle will still shatter be-
cause of Billy’s throw. That is, if we have variables ST and
BT for Suzy’s throw and Billy’s throw, with possible values
0 and 1 (ST = 1 if Suzy throws, ST = 0 if she doesn’t, and
similarly for Billy), then although ST = 1 is a cause of the
bottle shattering, ST = 0 is not an intervention for the bottle
shattering; intervening on ST alone does not change the out-
come. On the other hand, ST = 0∧BT = 0 is an intervention
for the bottle shattering, but ST = 1 ∧ BT = 1 is not a cause
of the bottle shattering; it violates the minimality condition
AC3.

It is almost immediate from the definitions that we have
the following relationship between interventions and causes:

Proposition 3.1 If ~X = ~x is an intervention for ϕ in (M,~u)



then there is some subset of ~X ′ of ~X such that ~X ′ = ~x′ is a
cause of ϕ in (M,~u), where ~x′ is such that (M,~u) |= ~X ′ =

~x′. Conversely, if ~X = ~x is a cause of ϕ in (M,~u) then there
is a superset ~X ′ of ~X and values ~x′ such that ~X ′ = ~x′ is an
intervention for ϕ.

Halpern (2015) proved that (for his latest definition) the
complexity of determining whether ~X = ~x is a cause of
ϕ in (M,~u) is DP-complete, where DP consists of those
languages L for which there exist a language L1 in NP and a
language L2 in co-NP such that L = L1∩L2 (Papadimitriou
and Yannakakis 1982). It is well known that DP is at least as
hard as NP and co-NP (and most likely strictly harder). The
following theorem shows that the problem of determining
whether ~X = ~x is an intervention is in a lower complexity
class.

Theorem 3.2 Given a causal model M , a context ~u, and
a Boolean formula ϕ, the problem of determining whether
~X = ~x is an intervention for ϕ in (M,~u) is co-NP-complete.

Proof: First, we prove membership in co-NP. It is easy to
see that checking conditions I1 and I2 of Definition 1 can
be done in polynomial time by simply evaluating ϕ first in
(M,~u) and then in the modified context where the values
of ~X are set to ~x. Checking whether I3 holds is in co-NP,
because the complementary condition is in NP; indeed, we
simply have to guess a subset ~X ′ of ~X and values ~x′ and
verify that I1 and I2 hold for ~X ′ = ~x′ and ϕ, which, as we
observed, can be done in polynomial time.

For co-NP-hardness, we provide a reduction from UN-
SAT, which is the language of all unsatisfiable Boolean for-
mulas, to the intervention problem. Given a formula ψ that
mentions the set ~V of variables, we construct a causal model
Mψ , context ~u, and formula ϕ such that ~V = 1 is an inter-
vention for ϕ in (M,~u) iff ψ is unsatisfiable.

The set of endogenous variables in M is ~V ∪ {V ′, Y },
where V ′ and Y are fresh variables not in ~V . Let ~W =
~V ∪{V ′}. There is a single exogenous variable U that deter-
mines the value of the variables in ~W : we have the equation
V = U for each variable V ∈ ~W . The equation for Y is
Y = ∨V ∈ ~W (V = 0) (so Y = 1 if at least one variable in
~W is 0). Let ϕ be ¬ψ ∧ (Y = 1). We claim that ~W = ~1 is
an intervention for ϕ in (Mψ, 0) iff ψ ∈ UNSAT.

Suppose that ψ ∈ UNSAT. Then, it is easy to see that
(M, 0) |= ϕ (since ¬ψ is valid) and (M, 0) |= [ ~W ← ~1]¬ϕ
(since (M, 0) |= [ ~W ← ~1](Y = 0)). To see that I3 holds,
suppose by way of contradiction that ~W ′ ← ~w′ satisfies I1
and I2 for some strict subset ~W ′ of ~W . In particular, we must
have (M, 0) |= [ ~W ′ ← ~w′]¬ϕ. We clearly have (M, 0) |=
[ ~W ′ ← ~w′](Y = 1), so we must have (M, 0) |= [ ~W ′ ←
~w′]ψ, contradicting the assumption that ψ ∈ UNSAT. Thus,
~W ← ~1 is an intervention for ϕ, as desired.

For the converse, suppose that ~W ← ~1 is an intervention
for ϕ. Then we must have (M, 0) |= [ ~W ′ ← ~w′]¬ψ for all
strict subsets ~W ′ of ~W and all settings ~w′ of the variables in

~W ′. Since, in particular, this is true for all subsets ~W ′ of ~W
that do not involve V ′, it follows that ¬ψ is true for all truth
assignments, so ψ ∈ UNSAT.

In practice, however, we rarely expect to face the co-NP
complexity. For reasons of cost or practicality, we would ex-
pect a policymaker to consider interventions on at most k
variables, for some small k. The straightforward algorithm
that, for a given k, checks all sets of variables of the model
M of size at most k runs in time O(|M |k).

4 Combining Compatible Causal Models
This section presents our definition for compatibility of ex-
pert opinions. We consider each expert’s opinion to be repre-
sented by a causal model and, for simplicity, that each expert
expresses her opinion with certainty. (We can easily extend
our approach to allow the experts to have some uncertainty
about the correct model; see the end of Section 5.) We start
with a strong notion of compatibility, and then consider gen-
eralizations of this notion that are more widely applicable.

4.1 Domination and Compatibility
To specify what it means for a set of models to be compat-
ible, we first define what it means for the causal model M1

to contain at least as much information about variable C as
the causal model M2, denoted M1 �C M2. Intuitively, M1

contains at least as much information about C as M2 if M1

and M2 say the same things about the causal structure of C
as far as the variables that M1 and M2 share, but M1 con-
tains (possibly) more detailed information aboutC, because,
for example, there are additional variables in M1 that affect
C. We capture this property formally below. Say that B is
an immediate M2-ancestor of Y in M1 if B ∈ U2 ∪ V2, B
is an ancestor of Y in M1, and there is a path from B to Y
in M1 that has no nodes in U2 ∪ V2 other than B and Y (if
Y ∈ U2 ∪ V2). That is, Y is the first node in M2 after B on
a path from B to Y in M1.

Definition 2 [Strong Domination of Variables] Let M1 =
((U1,V1,R1),F1) and M2 = ((U2,V2,R2),F2). Let
ParM (C) denote the variables that are parents of C in (the
causal graph corresponding to) M . M1 strongly dominates
M2 with respect to C, denoted M1 �C M2, if the following
conditions hold:

MI1M1,M2,C . The parents of C in M2 are the immediate
M2-ancestors of C in M1.

MI2M1,M2,C . Every path from an exogenous variable to C
in M1 goes through a variable in ParM2

(C).
MI3M1,M2,C . Let X = ((U1 ∪ V1) ∩ (U2 ∪ V2)) − {C}.

Then for all settings ~x of the variables in ~X , all values c
of C, all contexts ~u1 for M1, and all contexts ~u2 for M2,
we have

(M1, ~u1) |= [ ~X ← ~x](C = c) iff
(M2, ~u2) |= [ ~X ← ~x](C = c).

If MI1M1,M2,C holds and, for example, B is a parent of
C in M2, then there may be a variable B′ on the path from



B to C in M1. Thus, M1 has in a sense more detailed in-
formation than M2 about the causal paths leading to C.
MI1M1,M2,C is not by itself enough to say that M1 and M2

agree on the causal relations for C. This is guaranteed by
MI2M1,M2,C and MI3M1,M2,C . MI2M1,M2,C says that the
variables in ParM2

(C) screen off C from the exogenous
variables in M1. (Clearly the variables in ParM2

(C) also
screen off C from the exogenous variables in M2.) It fol-
lows that if (M1, ~u1) |= [ParM2

(C)← ~x](C = c) for some
context ~u1, then (M1, ~u) |= [ParM2

(C) ← ~x](C = c) for
all contexts ~u in M1, and similarly for M2. In light of this
observation, it follows that MI3M1,M2,C assures us that C
satisfies the same causal relations in both models. We write
M1 6�C M2 if any of the conditions above does not hold.

Two technical observations: First, note that there is an
abuse of notation in the statement of MI3M1,M2,C . We al-
low the set ~X in the statement of MI3M1,M2,C to include
exogenous variables. However, in giving the semantics of
the causal language, we consider only formulas of the form
[ ~X ← ~x]ϕ where ~X mentions only endogenous variables.
(Note that it is possible that some variables that are exoge-
nous in M1 may be endogenous in M2, and vice versa.)
Suppose that ~X ∩ U1 = U ′1 and ~X ′ = ~X − U ′1; then by
(M1, ~u1) |= [ ~X ← ~x](C = c) we mean (M1, ~u

′
1) |= [ ~X ′ ←

~x′](C = c), where ~x′ is ~x restricted to the variables in ~X ′,
and ~u′1 agrees with ~u1 on the variables in U1−U ′1, and agrees
with ~x on the variables in U ′1. Second, despite the suggestive
notation,�C is not a partial order. In particular, it is not hard
to construct examples showing that it is not transitive. How-
ever, �C is a partial order on compatible models (see the
proof of Proposition 4.1), which is the only context in which
we are interested in transitivity, so the abuse of notation is
somewhat justified.

Note that we have a relation �C for each variable C that
appears in both M1 and M2. Model M1 may be more in-
formative than M2 with respect to C whereas M2 may be
more informative than M1 with respect to another variable
C ′. Roughly speaking, M1 and M2 are strongly compati-
ble if for each variable C ∈ V1 ∩ V2, either M1 �C M2

or M2 �C M1. We then combine M1 and M2 by taking the
equations forC to be determined by the model that has more
information about C.
Example 1 (Bradley, Dietrich, and List 2014) An aid
agency consults two experts about causes of famine in a
region. Both experts agree that the amount of rainfall (R)
affects crop yield (Y ). Specifically, a shortage of rainfall
leads to poor crop yield. Expert 2 says that political conflict
(P ) can also directly affect famine. Expert 1, on the other
hand, says that P affects F only via Y . The experts’ causal
graphs are depicted in Figure 1, where the graph on the
left, M1, describes expert 1’s model, while the graph on the
right, M2, describes expert 2’s model. These graphs already
appear in the work of BDL. In these graphs (as in many
other causal graphs in the literature), the exogenous vari-
ables are omitted; all the variables are taken to be endoge-
nous. Neither MI1M1,M2,F nor MI1M2,M1,F , since P is not
an M2-immediate ancestor of F in M1. Similarly, neither
MI1M1,M2,Y nor MI1M2,M1,Y holds, since P is not an M1-
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Figure 1: Two expert models of famine.

immediate ancestor of Y inM2 (indeed, it is not an ancestor
at all). MI2M1,M2,F holds since every path in M1 from an
exogenous variable to F goes through a variable that is a
parent of F in M2 (namely, Y ); MI2M2,M1,F does not hold
(there is a path in M2 to F via P that does not go through
a parent of F in M1). Although we are not given the equa-
tions, we also know that MI3M1,M2,F does not hold. Since
P is a parent of F in M2 according to expert 2, there must
be a setting y of Y such that the value of F changes depend-
ing on the value of P if Y = y. This cannot be the case in
M1, since Y screens off P from F . It easily follows that tak-
ing ~X = (P, Y ) we get a counterexample to MI3M1,M2,F .
Therefore, we have neither M1 �F M2 nor M2 �F M1.

While the definition of dominance given above is use-
ful, it does not cover all cases where we may want to com-
bine models. Consider the following example, taken from
the work of Sampson, Winship, and Knight (2013).

Example 2 Two experts have provided causal models re-
garding the causes of domestic violence. According to the
first expert, an appropriate arrest policy (AP) may affect
both an offender’s belief that his partner would report any
abuse to police (PLS) and the amount of domestic violence
(DV). The amount of domestic violence also affects the like-
lihood of a victim calling to report abuse (C), which in turn
affects the likelihood of there being a random arrest (A).
(Decisions on whether to arrest the offender in cases of do-
mestic violence were randomized.)

According to the second expert, DV affects A directly,
while A affects the amount of repeated violence (RV) through
both formal sanction (FS) and informal sanction on socially
embedded individuals (IS). Sampson et al. (2013) use the
following causal graphs shown in Figure 2, which are anno-
tated with the direction of the influence (the only information
provided by the experts) to describe the expert’s opinions.p
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Figure 2: Expert’s models of domestic violence.

For the two common variables DV and A, MI1M1,M2,DV



and MI1M1,M2,A both hold. If the only variables that have
exogenous parents are AP in M1 and DV in M2, and the set
of parents of AP in M1 is a subset of the set of parents of DV
in M2, then MI2M1,M2,DV holds. Sampson et al. seem to be
implicitly assuming this, and that MI3 holds, so they com-
bine M1 and M2 to get the causal graph shown in Figure 3.
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Figure 3: Combined experts’ model of domestic violence.

Note that modelM2 in Figure 2 does not state how DV in-
fluences A. Presumably, this respresents the expert’s under-
tainty. We can capture this uncertainty by viewing the expert
as having a probability on two models that disagree on the
direction of DV’s influence on A (and thus are incompati-
ble because they disagree on the equations). We discuss in
Section 5 how such uncertainty can be handled.

Suppose that some parent of AP (or AP itself) in M1 is not
a parent of DV in M2. Then, in M1, it may be possible to
change the value of DV by intervening on AP, while keeping
the values of all the exogenous variables that are parents of
DV in M2 fixed. This will seem like an inexplicable change
in the value of DV from the perspective of the second ex-
pert. If the second expert had been aware of such possible
changes, she surely would have added additional variables
to M2 to capture this situation. One explanation of the fact
that no changes were observed is that the second expert was
working in a setting where the values of all variables that
she cannot affect by an intervention are determined by some
default setting of exogenous variables of which she is not
aware (or not modeling). We now define a notion of domi-
nation that captures this intuition.

Definition 3 [Weak Domination of Variable] Let ~v∗ be a de-
fault setting for the variables in M1 and M2. M1 weakly
dominates M2 with respect to C relative to ~v∗, denoted
M1 �~v

∗

C M2, if MI1M1,M2,C holds, and, in addition, the
following condition (which can be viewed as a replacement
for MI2M1,M2,C and MI3M1,M2,C) holds:

MI4M1,M2,C,~v∗ Let ~X = (U1 ∪ V1) ∩ (U2 ∪ V2) − {C}.
Then for all settings ~x of the variables in ~X , all values c
of C, and all contexts ~u1 for M1 and ~u2 for M2 such that
~u1 and ~u2 agree on the variables in U1 ∩ U2, ~u1 agrees
with ~v∗ on the variables in U1 − U2, and ~u2 agrees with
~v∗ on the variables in U2 − U1, we have

(M1, ~u1) |= [ ~X ← ~x](C = c) iff
(M2, ~u2) |= [ ~X ← ~x](C = c).

It is easy to see that �C is a special case of �~v∗C :

Lemma 1 If M1 �C M2, then, for all default settings ~v∗ of
the variables in M1 and M2, we have M1 �~v

∗

C M2.

Proof: Suppose that M1 �C M2. Fix default values ~v∗.
Clearly MI4M1,M2,C,~v∗ is a special case of MI2. Thus,
M1 �~v

∗

C M2.

In light of Lemma 1, we give all the definitions in the
remainder of the paper using �~v∗C . All the technical results
hold if we replace �~v∗C by �C throughout.

Definition 4 [Compatibility of Causal Models] If M1 =
((U1,V1,R1),F1) and M2 = ((U2,V2,R2),F2), then M1

and M2 are compatible if (1) for all variables C ∈ (U1 ∪
V1) ∩ (U2 ∪ V2), we have R1(C) = R2(C) and (2) for all
variables C ∈ V1 ∩V2, either M1 �~v

∗

C M2 or M2 �~v
∗

C M1.
If M1 and M2 are compatible, then M1 ⊕M2 is the causal
model ((U ,V,R),F), where

• U = U1 ∪ U2 − (V1 ∪ V2);
• V = V1 ∪ V2;
• ifC ∈ U1∪V1, thenR(C) = R1(C), and ifC ∈ U2∪V2,

thenR(C) = R2(C);

• if C ∈ V1 − V2 or if both C ∈ V1 ∩ V2 and M1 �~v
∗

C M2,
then F(C) = F1(C); if C ∈ V2 − V1 or if both C ∈
V1 ∩ V2 and M2 �~v

∗

C M1, then F(C) = F2(C).2

Returning to Example 2, assume that either
MI2M1,M2,DV , MI2M1,M2,A, MI3M1,M2,DV , and
MI3M1,M2,A all hold, or there is a default setting ~v∗

such that MI4M1,M2,DV,~v∗ and MI4M1,M2,A,~v∗ hold. Then
M1 ⊕M2 has the causal graph described in Figure 3; that
is, even though Sampson et al. (2013) do not have a formal
theory for combining models, they actually combine models
in just the way that we are suggesting.

Let M1 ∼~v
∗

C M2 be an abbreviation for M1 �~v
∗

C M2 and
M2 �~v

∗

C M1. We also write M1 �~v
∗

C M2 if M1 �~v
∗

C M2

and M2 6�~v
∗

C M1.
The next proposition provides evidence that Definition 4

is reasonable and captures our intuitions. Part (b) says that it
is well defined, so that in the clauses in the definition where
there might be potential conflict, such as in the definition
of F(C) when C ∈ V1 ∩ V2 and M1 ∼~v

∗

C M2, there is
in fact no conflict; part (a) is a technical result needed to
prove part (b). Part (c) states that the combined model in the
compatible case is guaranteed to be acyclic. Part (d) says that
causal paths inM1 are preserved inM1⊕M2, while part (e)
says that at least as far as formulas involving the variables in
M1 go, M1 ⊕M2 and M1 agree, provided that the default
values are used for the exogenous variables not in U1 ∩ U2.
Parts (d) and (e) can be viewed as saying that the essential
causal structure of M1 is preserved in M1 ⊕ M2. (In the
language of (?), part (e) says that M1 ⊕M2 is essentially a
conservative extension of M1.) Finally, parts (f) and (g) say
that ⊕ is commutative and associative over its domain.

Proposition 4.1 Suppose thatM1M2, andM3 are pairwise
compatible. Then the following conditions hold.

2We are abusing notation here and viewing Fi(C) as a function
from the values of the parents of C in Mi to the value of C, as
opposed to a function from all the values of all variables other than
C to the value of C.



(a) If M1 ∼~v
∗

C M2 then (i) ParM1(C) = ParM2(C) and (ii)
F1(C) = F2(C);

(b) M1 ⊕M2 is well defined.
(c) M1 ⊕M2 is acyclic.
(d) If A and B are variables in M1, then A is an ancestor of

B in M1 iff A is an ancestor of B in M1 ⊕M2.
(e) If ϕ is a formula that mentions only the endogenous vari-

ables inM1, ~u is a context forM1⊕M2, ~u1 is a context for
M1, ~u and ~u1 agree on the variables in U1 ∩U2, ~u agrees
with ~v∗ on the variables in U − (U1 ∩ U2), and ~u1 agrees
with ~v∗ on the variables in U1 − U2, then (M1, ~u1) |= ϕ
iff (M1 ⊕M2, ~u) |= ϕ.

(f) M1 ⊕M2 =M2 ⊕M1.
(g) If M3 is compatible with M1⊕M2 and M1 is compatible

withM2⊕M3, thenM1⊕(M2⊕M3) = (M1⊕M2)⊕M3.

The proof is rather involved, and appears in full in Ap-
pendix 8.

We define what it means for a collection M =
{M1, . . . ,Mn} of causal models to be mutually compati-
ble by induction on the cardinality ofM. If |M| = 1, then
mutual compatibility trivially holds. If |M| = 2, then the
models inM are mutually compatible if they are compati-
ble according to Definition 4. If |M| = n, then the models
inM are mutually compatible if the models in every subset
ofM of cardinality n− 1 are mutually compatible, and for
each model M ∈ M, M is compatible with ⊕M ′ 6=MM ′.
By Proposition 4.1, if M1, . . . ,Mn are mutually compati-
ble, then the causal model M1 ⊕ · · · ⊕Mn is well defined;
we do not have to worry about parenthesization, nor the or-
der in which the settings are combined. Thus, the model
⊕M ′ 6=MM ′ considered in the definition is also well defined.
Proposition 4.1(e) also tells us that M1 ⊕ · · · ⊕ Mn con-
tains, in a precise sense, at least as much information as each
model Mi individually. Thus, by combining mutually com-
patible models, we are maximizing our use of information.

We now discuss the extent to which our approach to com-
bining modelsM1 andM2 satisfies BDL’s desiderata. Recall
that BDL considered only causal networks, not causal mod-
els in our sense; they also assume that all models mention
the same set of variables. They consider four desiderata. We
briefly describe them and their status in our setting.

• Universal Domain: the rule for combining models accepts
all possible inputs and can output any logically possible
model. This clearly holds for us.

• Acyclicity: the result of combining M1 and M2 is acyclic.
This follows from Proposition 4.1(c), provided that M1⊕
M2 is defined.

• Unbiasedness: if M1 ⊕M2 is defined, and M1 and M2

mention the same variables, then whether B is a parent of
C in M1 ⊕M2 depends only on whether B is a parent of
C in M1 and in M2, and This is trivial for us, since if B
and C are in both M1 and M2 and M1 ⊕M2 is defined,
then B is a parent of C in M1 ⊕M2 iff B is a parent of
C in both M1 and M2. (The version of this requirement
given by BDL does not say “ifM1⊕M2 is defined”, since
they assume that arbitrary models can be combined.) BDL

also have a neutrality requirement as part of unbiasedness.
Unfortunately, an aggregation rule that says that B is a
parent of C in M1 ⊕M2 iff B is a parent of C in both
M1 and M2 (which seems quite reasonable to us) is not
neutral in their sense, so we do not satisfy neutrality.

• Non-Dictatorship: no single expert determines the aggre-
gation. This clearly holds for us.

4.2 Partial Compatibility
While the notion of dominance used in Definition 4 is use-
ful, it still does not cover many cases of interest. Although
Useem and Clayton do not provide causal models, we con-
struct these based on the description provided. We do not
provide a detailed explanation of all the variables and their
dependencies here (details are provided in the full paper);
for our purposes, it suffices to focus on the structure of these
models.

Example 3 Consider the two causal models in Figure 4.
The SCICH model represents expert 1’s opinion about
emerging radicalization (R) in the State Correctional Insti-
tution Camp Hill in Pennsylvania. The TDCR model rep-
resents expert 2’s opinion about the causes of emergence
in the Texas Department of Corrections and Rehabilita-
tion (TDCR). Both experts agree on the structural equa-
tions for R. However they differ on the structural equations
for PD, CB and AM. The authors point to three main fac-
tors upon which the emergence of radicalization settings in
both prison settings is dependent: “order in prisons” (PD),
“a boundary between the prison and potentially radicaliz-
ing communities” (CB), and “having missionary leadership
within the prison organizations” (AM). The also both share
the same outcome —emerging radicalization (R). As can
be observed from the descriptions provided, some variables
and their dependency relations are specific to a particular
prison. In the SCICH case, PD was attributed to corruption
(CG) and lax management (LM) in the prison’s staff together
with prisons being allowed to roam freely (FM). CB was
seen to be a result of religious leaders within the facilities
being permitted to provide religious services freely (IL) and
by prisoners showing membership within a prison commu-
nity (CM) which in turn was signalled by prisoners allowed
to wear distinguished street clothing (SC). Prison authori-
ties’ exercising of internal punishments, such as administra-
tive segregation (AS), away from external oversight, and IL
were considered to directly contribute to AM. TDCR instead
considered PD to be linked to the rapid growth in inmates
numbers (RG), inmates being allowed to assist prison au-
thorities in maintaining order (T) and inmates feeling signif-
icantly deprived (D) within the prisons—the latter as a result
of being forced to engage in unpaid work (W) and having
limited contact with visitors (C). For the common variables
CB and AM, assuming default values for CG, LM and FM
in SCICH and for T, D and RG in TDCR, we can show that
SCICH �~v∗CB TDCR and SCICH �~v∗AM TDCR. However, nei-
ther model dominates the other with respect to PD; neither
MI1SCICH,TDCR,PD nor MI1TDCR,SCICH,PD holds. Therefore the
models are incompatible according to Definition 4.
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Figure 4: Schematic representation of the two prison models.

Although the models are incompatible according to our
definition, the incompatibility is “localized” to the variable
PD. Moreover, it is not even clear that there is disagreement
with regard to PD; the experts could just be focusing on dif-
ferent variables. In a richer model, PD might have six par-
ents. The trouble is, we have no idea from the two models
what the equations for PD would be in the richer model.

Say that M1 weakly dominates M2 with respect to a node
C and default setting v∗, written M1 �v

∗

C if MI4M1,M2,C,~v∗

and the following weakening of MI1M1,M2,C hold:
MI1′M1,M2,C

If A is a node in both M1 and M2 then A is
an immediate M1-ancestor of C in M2 iff A is a parent of
C in M1.
Note that in Example 1, neither M1 nor M2 weakly dom-

inates the other with respect to F : P is a parent of F in M2

and is not an immediate M1 ancestor of F in M1, so M1

does not weakly dominate M2 with respect to F , while P is
an immediate M1 ancestor of F in M2 and is not a parent
of F in M1, so M2 does not weakly dominate M1 either.
Also note that MI1 implies MI1′; MI1′ is a strictly weaker
condition than MI1, since it allows M1 to weakly dominate
M2 with respect to C if C has parents in M1 that are not in
M2 at all.
M1 and M2 are weakly compatible iff for all nodes in C

in both M�1
and M2, either M1 �v

∗

C M2 or M2 �v
∗

C M1.
Note that the two models in Figure 4 are weakly compatible.

If M1 and M2 are weakly compatible, then we can define
M1 ⊕M2 = ((U ,V,R),F) as follows:
• U , V ,R are defined just as in Definition 4.
• For F , if C ∈ V1 − V2 then F(C) = F1(C). and if
C ∈ V2 − V1 then F(C) = F2(C). If C ∈ V1 ∩ V2
and M1 �v

∗

C M2, then let ~P1 consist of the parents of C
in M1 and let ~P2 consist of the parents of C in M2 that
are not in M1. Then the parents of C in M1 ⊕ M2 are
the nodes ~P1 ∪ ~P2. Let ~v2 consist be the values of the
variables in ~P2 when the exogenous variables in M2 have
their default value in ~v∗. Given an arbitrary setting ~x of
the variables in ~P1, we define F(C)(~x,~v2) = F2(C)(~x).
Symmetrically, if C ∈ V2 − V1 or both C ∈ V1 ∩ V2 and
M1 �v

∗

C M2, then let ~P1 consist of the parents ofC inM1

and let ~P2 consist of the parents of C in M2 that are not
in M1. Then the parents of C in M1 ⊕M2 are the nodes

~P1 ∪ ~P2. Let ~v2 consist be the values of the variables in
~P2 when the exogenous variables inM2 have their default
value in ~v∗. Given an arbitrary setting ~x of the variables in
~P1, we define F(C)(~x,~v2) = F2(C)(~x). If C ∈ V1 ∩ V2
and M1 �v

∗

C M2, then let ~P1 consist of the parents of C
in M1 and let ~P2 consist of the parents of C in M2 that
are not in M1. Then the parents of C in M1 ⊕ M2 are
the nodes ~P1 ∪ ~P2. Let ~v2 consist be the values of the
variables in ~P2 when the exogenous variables in M2 have
their default value in ~v∗. Given an arbitrary setting ~x of
the variables in ~P1, we define F(C)(~x,~v2) = F2(C)(~x).
We have a symmetric definition of F(C) if C ∈ V1 ∩ V2
and M2 �v

∗

C M1.

This definition does not define F(C) for all possible val-
ues of the parents of C. For example, if C ∈ V1 ∩ V2
and M1 �v

∗

C M2, we have not defined F(C)(~x, ~y) if ~y is
a setting of the variables in ~P2 other than ~v2. Intuitively,
this is because the experts have not given us the informa-
tion to determine F(C) in these cases. We can think if
M1 ⊕ M2 as a partial causal model. Intuitively, we can-
not define |= in M1 ⊕M2 since we will not be able to de-
fine value of (M1 ⊕M2, ~u) |= C = c for some setting ~u.
Say that causal model M∗ = ((U∗,V∗,R∗),F∗) extends
M1⊕M2 if (U∗,V∗,R∗) = (U ,V,R) and F∗(C) = F(C)
whenever F(C) is defined. We now define a 3-valued ver-
sion of |= in M1 ⊕M2 by taking (M1 ⊕M2, ~u) |= ϕ iff
(M∗, ~u) |= ϕ for all (complete) causal models M∗ extend-
ing M1 ⊕M2 and taking (M1 ⊕M2 |= ϕ to be undefined if
neither (M1 ⊕M2 |= ϕ nor (M1 ⊕M2 |= ¬ϕ holds.

We can now prove a generalization of Proposition 4.1.

Proposition 4.2 Suppose that M1, M2, and M3 are pair-
wise weakly compatible. Then the following conditions hold.

(a) If M1 ∼~v
∗

C M2 then (i) ParM1(C) = ParM2(C) and (ii)
F1(C) = F2(C);

(b) M1 ⊕M2 is well defined.
(c) M1 ⊕M2 is acyclic.
(d) If ϕ is a formula that mentions only the endogenous vari-

ables inM1, ~u is a context forM1⊕M2, ~u1 is a context for
M1, ~u and ~u1 agree on the variables in U1 ∩U2, ~u agrees
with ~v∗ on the variables in U − (U1 ∩ U2), and ~u1 agrees
with ~v∗ on the variables in U1 − U2, then (M1, ~u1) |= ϕ
iff (M1 ⊕M2, ~u) |= ϕ.

(e) M1 ⊕M2 =M2 ⊕M1.
(f) If M3 is weakly compatible with M1 ⊕ M2 and M1 is

weakly compatible with M2 ⊕ M3, then M1 ⊕ (M2 ⊕
M3) = (M1 ⊕M2)⊕M3.

This approach to aggregating models is our main contri-
bution. Using it, we show in the next section how experts’
models can be combined to reason about interventions.

5 Combining Experts’ Opinions
Suppose that we have a collection of pairs (M1, p1), . . . ,
(Mn, pn), with pi ∈ (0, 1]; we can think of Mi as the
model that expert i thinks is the right one and pi as the



policymaker’s degree of confidence that expert i is correct.
Let Compat = {I ⊆ {1, . . . , n} : the models in {Mi :
i ∈ I} are mutually compatible}. For I ∈ Compat , define
MI = ⊕i∈IMi. By Proposition 4.1,MI is well defined. The
policymaker considers the models in MCompat = {MI :
I ∈ Compat}, placing the probability of pI =

∏
i∈I(pi) ∗∏

j 6∈I(1 − pj)/N on MI , where N =
∑
I∈Compat pI is a

normalization factor.
Intuitively, we view the events “expert i is right” as being

mutually independent, for i = 1, . . . , n. Thus, pI is the prob-
ability of the event that exactly the experts in I are right (and
the ones not in I are wrong). If exactly the experts in I are
indeed right, it seems reasonable to view MI as the “right”
causal model. Note that it is not possible for all the experts
in I to be right if there are experts i, j ∈ I such that Mi and
Mj are incompatible. Thus, we consider only models MI

for I ∈ Compat . But even if I ∈ Compat , it is possible that
some of the experts in I are wrong in their causal judgments.
Our calculation implicitly conditions on the fact that at least
one expert is right, but allows for the possibility that only
some subset of the experts in I is right even if I ∈ Compat ;
we place positive probability on MI′ even if I ′ is a strict
subset of some I ∈ Compat . This method of combining ex-
perts’ judgments is similar in spirit to the method proposed
by Dawid (1987) and Fenton et al. (2016).

This completes our description of how to combine ex-
perts’ causal judgments. At a high level, for each subset of
experts whose judgments are compatible (in that the mod-
els they are proposing are pairwise compatible), we com-
bine the models, and assign the combined model a probabil-
ity corresponding the probability of the experts in the sub-
set. Of course, once we have a probability on the settings in
MCompat , we can compute, for each setting, which inter-
ventions affect the outcome ϕ of interest, and then compute
the probability that a particular intervention is effective.

The straightforward strategy for a policymaker to com-
pute the most effective intervention based on the experts’
opinions and the degree of confidence of the policymaker
in each expert’s judgment is to compute the set MCompat

of models and then to apply the computation of interven-
tions as described in Section 3 to eachMI ∈MCompat . The
probability that an intervention is effective is computed by
summing the probability of the models where it is effective.

To get a sense of how this works, consider a variant of
Example 1, in which a third expert provides her view on
causes on famine and thinks that government corruption is
an indirect cause via its effect on political conflict (see Fig-
ure 5); call this model M3. According to the compatibility
definition in Section 4, the models M2 and M3 are com-
patible (assuming that MI3 holds), but M1 and M3 are not.
We haveMCompat = {{M1}, {M2}, {M3}, {M2,3}} with
M2,3 =M2⊕M3 =M3. Suppose that experts are assigned
the confidence values as follows: (M1, 0.4), (M2, 0.6) and
(M3, 0.5) respectively. Then the probability on M2,3 is the
probability of M2 and M3 being right (i.e., 0.6 ∗ 0.5) and
M1 being wrong (i.e., 1 − 0.4 = 0.6). So we have p2,3 =
(0.6 ∗ 0.5 ∗ 0.6)/0.56 = 0.32 (where 0.56 is the normal-
ization factor). The probabilities on the other models is as
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Figure 5: Third expert’s (and combined) model of famine.

follows.
p1 = 0.4 ∗ 0.4 ∗ 0.5/0.56 = 0.14
p2 = 0.6 ∗ 0.6 ∗ 0.5/0.56 = 0.32
p3 = 0.6 ∗ 0.4 ∗ 0.5/0.56 = 0.21

The normalization factor N is simply 0.08 + 0.18 + 0.12 +
0.18 = 0.56. Note that the number of models inMCompat

may be exponential in the number of experts. For example,
if all experts are compatible, Compat consists of all subsets
of {1, . . . , n}. The straightforward computation of interven-
tions per model is exponential in the number of variables
in the model. Since the number of variables in a combined
model is at most the sum of the variables in each one, the
problem is exponential in the number of experts and the to-
tal number of variables in the experts’ models. In practice,
however, we do not expect this to pose a problem. For the
problems we are interested in, there are typically few experts
involved; moreover, as we argued in Section 3, policymak-
ers, in practice, restrict their attention to interventions on a
small set of variables. Thus, we expect that the computation
involved to be manageable.

Up to now, we have assumed that each expert proposes
only one deterministic causal model. An expert uncertain
about the model can propose several (typically incompati-
ble) models, with a probability distribution on them. We can
easily extend our framework to handle this. Suppose that ex-
pert i, with probability pi of being correct, proposesmmod-
els Mi1, . . . ,Mim, where model Mij has probability qj of
being the right one, according to i. To handle this, we sim-
ply replace expert i by m experts, i1, . . . , im, where expert
ij proposes model Mij with probability piqj of being cor-
rect. As long as each of a few experts has a probability on
only a few models, this will continue to be tractable.

6 Case Studies
In this section, we discuss the application of the framework
to several case studies, demonstrating the concepts of com-
patibility and combinability and their effect on determining
the best interventions.

6.1 Countering Domestic Child Abuse
We briefly discuss the relevant aspects of the case known as
the “Baby P” case, which is a good illustration to the con-
cepts of compatibility of experts’ opinions regarding effec-
tive interventions. We then compare the Baby P case with
another case of child abuse that resulted in child’s death:
Victoria Climbiè. As this case resembles the case of Baby P
in many aspects, while being different in others, it is a good
illustration of partial compatibility of models.
Baby P. “Baby P” (Peter Connelly) died in 2007 after suf-
fering physical abuse over an extended period of time (?).



The court ultimately found the three adults living in a home
with baby Peter guilty of “causing or allowing [Peter’s]
death” (?). After baby Peter’s death, there was an extensive
inquiry into practices, training, and governance in each of
the involved professionals and organizations separately. In
particular, an autopsy performed after Peter’s death revealed
that Peter’s back had been broken, and he had sustained sev-
eral other severe non-accidental injuries that were not de-
tected by the doctor, because the doctor failed to perform
a full examination. In the inquiry, England’s health and so-
cial care regulator, the Care Quality Commission, criticized
the hospital where the doctor worked for “poor recruitment
practices”, “lack of specific training in child protection”,
“shortages of staff”, and “failings in governance” (?), all of
which adversely affected the ability of the consultant paedi-
atrician on duty to make sound decisions in this case. Since
there there was no formal model of the case, some suggested
interventions were later rejected. In particular, the head of
children services at Haringey Council was removed from her
post; she later won an appeal for unfair dismissal when the
Court of Appeal deemed that the decision to dismiss her was
not justified.

As shown by Chockler et al. 2015, the complete causal
model for the Baby P case is complex, involving many vari-
ables and interactions between them. It is, however, decom-
posable into compatible submodels in the sense of Section 4.
Specifically, we identify the submodels of “family life”, “so-
cial services and police”, “medical care”, and “court”. The
schematic breakdown is presented in Figure 6.

D =Baby P’s death

and police
social services

family life medical care court

Figure 6: Schematic representation of causal sub-models in
the baby P case.

There is exactly one expert for each submodel, each hav-
ing degree of confidence 1. (Essentially, the investigation as-
sumed that all experts were right.) The submodels overlap
on some variables. First of all, they all have the variable D
for death (whether or not baby P dies) and all the variables
that are parents of D. Moreover, they agree on the equation
that characterizes D in terms of its parents. We can partition
the parents of D according to the submodel to which they
are related. For example, all the parents of D not related to
Baby P’s family life are exogenous in the model correspond-
ing to family life; all the parents ofD not related to the court
are exogenous in the model; and so on. More generally, if a
variable is shared between two models, then it is exogenous
in one and endogenous in the other, and no shared variable is
an ancestor of another shared variable. Thus, MI1 and MI2
trivially hold for each shared variable (where the dominating
model is the one where the variable is endogenous). More-
over, it is reasonable to assume that there is a default value
such that MI4 holds. For example, the variable CP describes

whether a child is put on the Child Protection Register. CP
is endogenous in the social services and police submodel;
its value is determined by criteria involving physical abuse
and neglect. CP is exogenous is the medical care submodel.
Its default value is 0 (the child is not on the Child Protec-
tion register). As long as the exogenous variables in social
services and police submodel take on their default values
(which involve children being well taken care of), CP will
also take on value 0 in that submodel. Thus, MI4 holds for
CP. Similar reasoning shows that MI4 holds for all variables.
Thus, we can combine the submodels into one large model,
which is effectively what Chockler et al. 2015 did in their
analysis.
Victoria Climbiè. Victoria Climbiè’s death occurred in
2000, seven years before Baby P, under the jurisdiction of
the same council. Following her death from repeated abuse,
an inquiry into her case suggested several interventions into
the procedures of social workers and paediatricians. Yet,
these interventions turned out to be inadequate, as the death
of Baby P occurred under somewhat similar circumstances
and his abuse also went unnoticed until his death.

Victoria Climbiè died in 2000, 18 months after arriving
in the UK from the Ivory Coast to live with her great-aunt.
Her great-aunt and the great-aunt’s boyfriend were found
guilty of Victoria’s murder (in contrast with Baby P’s case,
where the adults in the house were found guilty of causing
or allowing his death). The inquiry into the circumstances
of Victoria’s death placed the blame on social workers, who
failed to notice Victoria’s injuries, paediatricians, who ac-
cepted the explanation of Victoria’s great-aunt that Victo-
ria’s injuries were self-inflicted, and the metropolitan police.
In addition, the inquiry noted that the pastors in the church
to which Victoria’s great-aunt belonged, had concerns about
the child’s well-being but failed to contact any child protec-
tion services.

Victoria Climbiè died in her house from hypothermia, af-
ter sustaining a series of injuries over the 18 months that she
was in custody of her great-aunt. As the circumstances of her
death were different from that of Baby P (he died in the hos-
pital), the causal model differs in the set of dependencies it
captures. Victoria Climbiè’s case is also complex with many
variables and interactions between them, and, similarly to
the Baby P’s case, decomposable into compatible submod-
els in the sense of Section 4. The submodels are, however,
a bit different. Specifically, we identify the submodels of
“family life”, “social services and police”, “medical care”,
and “church” (note that this case was not presented in court
prior to Victoria’s death, so the submodel “court” is absent
from the overall model).

The schematic breakdown is presented in Figure 7.
As evident from those and numerous other examples, case

reviews and inquiries do not guarantee that similar cases will
not happen in the future; in fact, Baby P died under the same
council jurisdiction as Victoria Climbiè seven years earlier,
despite interventions being proposed and implemented fol-
lowing the inquiry of the case. Following another case of a
child dying from abuse in the hands of his family in 2013,
Jones raised the question of whether the interventions im-
plemented as a result of an inquiry are ever successful in
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Figure 7: Schematic representation of causal sub-models in
the Victoria Climbiè’s case.

preventing similar cases in the future (Jones 2013). On the
other hand, a child protection group stated, after reviewing
both cases, that the interventions recommended in the case
review of Victoria Climbiè’s case had not been implemented,
and that had they been implemented, it would prevent the
death of Baby P in similar circumstances.

6.2 Countering Violent Behaviour in Prisons
Much of the recent literature on understanding and counter-
ing violent extremism (such as radicalization) has advocated
for more structured data and analysis to support the mak-
ing of policy interventions more effective (see, e.g., (Veld-
huis and Kessels 2013)). We illustrate how our framework
can help support this goal. Our case study elaborates on re-
ports of inmate violence and radicalization in two US prison
settings discussed by Useem and Clayton 2009, and the in-
terventions that were introduced to tackle them. We note
that radicalization in this context means, according to the
authors, “[espousing] an ideology that endorses the use of
violence calculated to spread fear, disrupt the social order,
and achieve political goals external to the prison environ-
ment.” The two models are presented graphically and briefly
explained in Figure 4 of Example 3. Below, we explain in
more detail the models and the meanings of the variables.

The first prison setting was that of the State Correctional
Institution Camp Hill, near Graterford, Pennsylvania, de-
noted SCICH. In 1989, the facility witnessed a major riot
resulting in damage to the buildings and injuries to 100 indi-
viduals. An investigation into the event showed evidence of
corruption (CG) and lax management (LM) in the prison’s
staff causing disorder (PD) amongst inmates in the run-up
to the riots. It was noted that, prior to the riot, prisoners
were allowed to wear street clothing (SC) which, accord-
ing to experts, the prisoners used to signal their membership
in various communities within the prison (CM). In addition,
prisoners were allowed to “move through the prison rela-
tively freely” (FM), and prison authorities exercised internal
punishments, such as administrative segregation (AS), away
from external oversight. The second prison setting consid-
ered by Useem and Clayton was a Texas prison, denoted
TDCR. It was noted that “rapid growth” (RG) in inmate
numbers led to prison disorder (PD). Other influences on
radicalization included inmates (1) being allowed to assist
prison authorities in maintaining order, called the “build-
ing tenders” system (T) and (2) experiencing significantly
greater deprivation D. The latter involved prisoners being
required to work without being paid, being forced to wear
short hair, and being given minimum allowance for phone

calls. As in Graterford, the prison officials exercised ad-
ministrative segregation, which contributed to the prisoners’
sense of deprivation. Racial segregation (RS) contributed to
increased membership in particular communities. The build-
ing tender system and racial segregation were the target of
a court intervention. The court banned inmates from being
involved in the enforcement of order within the prisons and
ordered an end to racial segregation. These intervention were
deemed effective in ensuring less radicalization within Texas
prisons.

Two causal models were constructed, one for SCICH and
another for TDCR from the description provided by Useem
and Clayton. Although the two models use quite different
variables, they both point to three main factors upon which
the emergence of radicalization settings in both prison set-
tings is dependent: “order in prisons” (PD), “a boundary be-
tween the prison and potentially radicalizing communities”
(CB), and having “agency leadership . . . infuse their agen-
cies with an antiradicalization mission” (AM).3 As can be
observed from the descriptions provided, some variables and
their dependency relations are specific to a prison. However,
both descriptions involve the same outcome—emerging rad-
icalization (R)—and assume that R has the same parents:
PD, CB, and AM. Indeed, both models agree that the equa-
tion for R is R = PD∧CB∧AM. Furthermore, both models
agree that AS affects prison order—in the first it affects PD
directly whereas in the second it does so through prisoners’
increased sense of deprivation D.

Note that there is still a sense in which the models are
compatible. Intuitively, we can think of model M2 as as-
suming that T,D and RG have some default value, whileM1

assumes that CG, LM and FM have some default value. In a
richer model, PD might have six parents. This suggests the
need for a yet more general notion of combination, which is
defined in Section 4.2.

7 Conclusions
We have provided a method for combining causal models
whenever possible, and used that as a basis for combining
experts’ causal judgments in a way that gets around the im-
possibility result of Bradley, Dietrich, and List (2014). We
provided a gradual weakening of our definition of compat-
ibility, allowing us to combine models that only agree on
some of their parts. Our approach can be viewed as a formal-
ization of what was done informally in earlier work (Chock-
ler et al. 2015; Sampson, Winship, and Knight 2013). Our
analysis of the case studies suggests that our approach can
be applied in practice. We believe that using causal models
as a way of formalizing experts’ judgments, and then provid-
ing a technique for combining these judgments, will prove
to be a powerful tool with which to approach the problem
of finding the best intervention(s) that can be performed to
ameliorate a situation.
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8 Proof of Proposition 4.1
Proof: For part (a), suppose that M1 ∼~v

∗

C M2 and, by way
of contradiction, that ParM1

(C) 6= ParM2
(C). We can as-

sume without loss of generality that there is some variable
Y ∈ ParM1

(C)−ParM2
(C). Let ~Z = ParM1

(C)−{Y }.
Since Y is a parent of C in M1, there must be some setting
~z of the variables in ~Z and values y and y′ for Y such that
F 1
C(y, ~z) 6= F 1

C(y
′, ~z) in M1, where F 1

C = F1(C). Suppose
that F 1

C(y, ~z) = c and F 1
C(y
′, ~z) = c′. Let ~X = ((U1 ∪

V1)∩ (U2∪V2)). By MI1, (ParM1
(C)∪ParM2

(C)) ⊆ ~X .
Let ~x be a setting of the variables in ~X − {C} such that ~x
agrees with ~z for the variables in ~Z and ~x assigns y to Y . Let
~x′ be identical to ~x except that it assigns y′ to Y . Since the
values of the variables in ParM1(C) determine the value of
C in M1, for all contexts ~u1 for M1, we have (M1, ~u1) |=
[ ~X ← ~x](C = c) and (M1, ~u1) |= [ ~X ← ~x′](C = c′).
Since ~x and ~x′ assign the same values to all the variables in
Par2(C), we must have (M2, ~u2) |= [ ~X ← ~x](C = c) iff



(M2, ~u2) |= [ ~X ← ~x′](C = c) for all contexts ~u2 for M2.
Thus, we get a contradiction to MI4M1,M2,C . It follows that
ParM1

(C) = ParM2
(C). The fact that F1(C) = F2(C)

also follows from MI4M1,M2,C . For suppose that ~z is a set-
ting of the variables in Par1(C) = Par2(C) and ~x is a set-
ting of the variables in ~X ′ = ~X −{C} that agrees with ~z on
the variables in Par1(C). Then, for all contexts ~u1 for M1

and ~u2 for M2 such that ~u1 and ~u2 agree on the variables in
U1∩U2, we have F 1

C(~z) = c iff (M1, ~u1) |= [ ~X ′ ← ~x](C =

c) iff (M2, ~u2) |= [ ~X ′ ← ~x](C = c) (by MI4M1,M2,C) iff
F 2
C(~z) = c. Thus, F1(C) = F2(C).
For part (b), note that M1 ⊕M2 is well defined unless (i)

R1(C) 6= R2(C) for some C ∈ ((U1 ∪ V1)∩ (U2 ∪ V2)) or
(ii)M1 ∼~v

∗

C M2 butF1(C) 6= F2(C) for someC ∈ V1∩V2.
SinceM1 andM2 are compatible, (i) cannot happen; by part
(a), (ii) cannot happen.

For part (c), we first show part (d): if A and B are both
nodes in M1 (i.e., A and B are in U1 ∪ V1), then (the node
labeled) A is an ancestor of (the node labeled) B in (the
causal graph corresponding to) M1 iff A is an ancestor of B
in M1 ⊕M2, and similarly for M2.

Suppose that A is an ancestor of B in M1, Then there is
a finite path A0, . . . , An in the causal graph for M1, where
A0 = A and An = B. We first show that if A0, . . . , An
is an arbitrary sequence of nodes in M1 such that none of
the intermediate nodes (i.e., A1, . . . , An−1) are in M2, and
either A0 = An or at most one of A0 and An is in M2,
then A0, . . . , An is a path in M1 iff A0, . . . , An is a path
in M1 ⊕M2. We proceed by induction on n, the length of
the path. Since all the nodes in M1 are nodes in M1 ⊕M2,
the result clearly holds if n = 0. Suppose that n > 0 and
the result holds for n − 1; we prove it for n. We cannot
have An ∈ U1 − V2, since then An has no parents in M1

or M1 ⊕ M2. If An ∈ V1 − V2 or An ∈ V1 ∩ V2 and
M1 �~v

∗

An
M2, then F1,2(An) = F1(An), so the parents of

An inM1 are also the parents ofAn inM1⊕M2. In particu-
lar, An−1 is a parent of An in M1⊕M2 iff An−1 is a parent
ofAn inM1⊕M2, and the result follows from the induction
hypothesis. Finally, ifAn ∈ (U∪V1)∩V2 andM2 �~v

∗

An
M1,

then F1,2(An) = F2(An), so An−1 must be in M2. But this
contradicts our assumption, that no intermediate nodes are
in M2 and at most one of A0 and An is in M2. This com-
pletes the argument. Note that the same argument applies if
we reverse the roles of M1 and M2.

Now suppose that there are m > 0 nodes in M2 on the
path from A to B in M1, say C1, . . . , Cm, in that order. We
show that (i) Cm is an ancestor of B in M1 ⊕M2, (ii) A is
an ancestor of C1 in M1 ⊕M2, and (iii) C1 is an ancestor
of Cm in M1 ⊕M2. Parts (i) and (ii) follow from the earlier
argument, since there are no intermediate nodes in M2 on
the path from Cm to B or on the path from A to C1. So
it remains to prove part (iii). We proceed by induction on
m. If m = 1, the result is trivially true, since C1 is a node
in M1 ⊕ M2. So suppose that m > 1. Since M1 and M2

are compatible and C2 is a node in both M1 and M2 for
j > 1, we must have either M1 �~v

∗

C2
M2 or M2 �~v

∗

C2
M1.

If M1 �~v
∗

C2
M2 then the parents of C2 in M1 are the parents

of C2 in M1 ⊕M2. In particular, if D is the parent of C2

on the path from C1 to C2 in M1, then D is a parent of
C2 in M1 ⊕M2. Since none of the intermediate nodes on
the path from C1 to D in M1 are in M2 except for C1, it
follows by our earlier argument than the path from C1 to D
in M1 is also a path from C1 to D in M1 ⊕M2. Thus, C1

is an ancestor of C2 in M1 ⊕M2. If M2 �~v
∗

C2
M1, then the

parents of C2 in M1 must also be in M2 (in fact, they must
be M1-immediate ancestors of C2 in M2). Since none of the
intermediate nodes on the path from C1 to C2 is in M2, it
must be the case that the path from C1 to C2 has length 1,
and C1 is a parent of C2 in M1. By MI1M2,M1,C2

, there is
a path from C1 to C2 in M2 none of whose intermediate
nodes is in M1. Then the same argument given for the case
that M1 �~v

∗

C2
M2 shows that this path in M2 also exists

in M1 ⊕M2. Thus, C1 is an ancestor of C2 in M1 ⊕M2

in this case as well. The fact that C2 is ancestor of Cm in
M1 ⊕M2 follows from the induction hypothesis. Thus, C1

is an ancestor of Cm in M1 ⊕M2.
For the converse, suppose that A and B are nodes in M1

and A is an ancestor of B in M1 ⊕M2. We want to show
that A is an ancestor of B in M1. The argument is similar to
that above, but slightly simpler. Again, there is a finite path
A0, . . . , An in the causal graph forM1⊕M2, whereA0 = A
and An = B. If none of the intermediate nodes on the path
are in M2 and at most one of A0 and An is in M2, then our
initial argument shows that this path also exists in M1.

Now suppose that there are m > 0 nodes in M2 on the
path fromA toB inM1⊕M2, sayC1, . . . , Cm, in that order.
Much like before, we show that (i) Cm is an ancestor of B
in M1, (ii) A is an ancestor of C1 in M1, and (iii) C1 is an
ancestor of Cm in M1. And again, parts (i) and (ii) follow
from the earlier argument, since there are no intermediate
nodes in M2 on the path from Cm to B or the path from A
to C1. For part (iii), we again proceed by induction on m. If
m = 1, the result is trivially true. So suppose that m > 1.
Since M1 and M2 are compatible and C2 is a node in both
M1 and M2 for j > 1, we must have either M1 �~v

∗

C2
M2

or M2 �~v
∗

C2
M1. If M1 �~v

∗

C2
M2, then the parents of C2

in M1 are just the parents of C2 in M1 ⊕ M2, so if D is
the parent of C2 on the path from C1 to C2 in M1 ⊕M2,
D is a parent of C2 in M1. Since the path from C1 to D in
M1 ⊕M2 has no intermediate nodes in M2, we can apply
earlier argument to show that there is a path from C1 to D
in M1, and complete the proof as before. If M2 �~v

∗

C2
M1,

then all the parents of C2 in M1⊕M2 must be in M2, so the
path has length 1 and C1 is a parent of C2 in M1 ⊕M2 and
in M2. Thus, C1 is an immediate M1-ancestor of C2 in M2.
MI1M2,M1,C2

implies that C1 must be a parent of C2 in M1.
Again, we can complete the proof as before.

The acyclicity of M1 ⊕ M2 is now almost immediate.
For suppose that there is a cycle A0, . . . , An in the causal
graph for M1 ⊕ M2, where A0 = An and n > 0. Either
An and An−1 are both in M1 (if F1,2(An) = F1(An)) or
they are both in M2 (if F1,2(An) = F2(An)). Suppose that
they are both in M1. Then, since An−1 is an ancestor of An
in M1 ⊕M2 and An is an ancestor of An−1 in M1 ⊕M2,
by the preceding argument, An−1 is an ancestor of An in



M1 and An is an ancestor of An−1 in M1, contradicting the
acyclicity of M1. A similar argument applies if both An−1
and An are in M2.

For part (e), suppose that ~u and ~u1 agree on the variables
in U1∩U2, ~u agrees with ~v∗ on the variables in U−(U1∩U2),
and ~u1 agrees with ~v∗ on the variables in U1 −U2. It clearly
suffices to show that (M1, ~u1) |= ϕ iff (M1 ⊕M2, ~u) |= ϕ

if ϕ has the form [ ~X ← ~x](Y = y), where ( ~X ∪ {Y }) ⊆
V1. To show this, it suffices to show that ((M1) ~X=~x, ~u1) |=
(Y = y) iff ((M1 ⊕M2) ~X=~x, ~u) |= (Y = y). Define the
depth of a variable Y in a causal graph to be the length of the
longest path from an exogenous variable to Y in the graph.
We prove, by induction on the depth of the variable Y in the
causal graph of M1⊕M2, that for all contexts ~u1 in M1, ~u2
in M2, and ~u in M1 ⊕M2, (i) if Y ∈ U1 ∪ V1, ~X ⊆ V1, ~u
and ~u1 agree on the variables in U1 ∩ U2, ~u agrees with ~v∗
on the variables in U − (U1 ∩ U2), and ~u1 agrees with ~v∗ on
the variables in U1 − U2, then ((M1) ~X=~x, ~u1) |= (Y = y)
iff ((M1⊕M2) ~X=~x, ~u) |= (Y = y), and (ii) if Y ∈ U2∪V2,
~X ⊆ V2, ~u and ~u2 agree on the variables in U1∩U2, ~u agrees
with ~v∗ on the variables in U − (U1 ∩ U2), and ~u2 agrees
with ~v∗ on the variables in U2−U1, then ((M2) ~X=~x, ~u2) |=
(Y = y) iff ((M1 ⊕M2) ~X=~x, ~u) |= (Y = y). (Note that if
Y ∈ (U1 ∪V1)∩ (U2 ∪V2), then it must satisfy both (i) and
(ii).)

If Y has depth 0, then Y is an exogenous variable, and
the result is immediate. Suppose that Y has depth d > 0. If
Y ∈ V1−(U2∪V2), then the parents of Y inM1⊕M2 are the
same as the parents of Y in M1; (i) is then immediate from
the induction hypothesis and (ii) is vacuously true. Similarly,
if Y ∈ V2 − (U1 ∪ V1), then (ii) is immediate from the
induction hypothesis and (i) is vacuously true. If Y ∈ (U1 ∪
V1) ∩ (U2 ∪ V2) and M1 �~v

∗

Y M2, then again, the parents
of Y in M1 ⊕M2 are the same as the parents of Y in M1,
so (i) is immediate from the induction hypothesis. To show
that (ii) holds, fix appropriate contexts ~u2 and ~u. Now the
parents of Y in M2 are the immediate M2-ancestors of Y
in M1. Let ~Z = ParM2

(Y ). It follows from the arguments
for part (c) that for all Z ∈ ParM2

(Y ), all the paths from
Z to Y in M1 also exist in M1 ⊕ M2 and the parents of
Y in M2 are exactly the immediate M2-ancestors of Y in
M1 ⊕M2. That is, ~Z screens Y from all other variables in
M2 not only in M2, but also in M1 and M1 ⊕M2. Suppose
that ((M2) ~X←x, ~u2) |= ~Z = ~z. It follows from the induction
hypothesis that ((M1 ⊕M2) ~X=~x, ~u) |= ~Z = ~z. Let ~W =

((U1 ∪ V1) ∩ (U2 ∪ V2)) − {Y }. Let ~w be a setting for ~W
that agrees with ~z on the variables in ~Z. Then we have the

following chain of equivalences:

((M2) ~X=~x, ~u) |= Y = y

iff ((M2) ~X=~x, ~u2) |= [~Z ← ~z](Y = y)

iff ((M2) ~X=~x, ~u2) |= [ ~W ← ~w](Y = y)

iff (M2, ~u2) |= [ ~W ← ~w](Y = y)

iff (M1, ~u1) |= [ ~W ← ~w](Y = y) [by MI4M1,M2,Y ]
iff (M1, ~u1) |= [~Z ← ~z](Y = y)
iff ((M1)~Z=~z, ~u1) |= (Y = y)
iff ((M1 ⊕M2)~Z=~z, ~u1) |= (Y = y) [already shown]
iff ((M1 ⊕M2), ~u1) |= [~Z ← ~z](Y = y)

iff ((M1 ⊕M2) ~X=~x, ~u1) |= [~Z ← ~z](Y = y)
iff ((M1 ⊕M2) ~X=~x, ~u1) |= Y = y

[since (M1 ⊕M2) ~X=~x, ~u1) |= ~Z = ~z]

This completes the proof of (d).
Part (f) is immediate from the definitions.
For part (g), suppose that M1 = ((U1,V1,R1),F1),

M2 = ((U2,V2,R2),F2), M3 = ((U3,V3,R3),F3),
M1 ⊕ M2 = ((U1,2,V1,2,R1,2),F1,2), M2 ⊕ M3 =
((U2,3,V2,3,R2,3),F2,3), M1 ⊕ (M2 ⊕ M3) =
((U1,2,3,V1,2,3,R1,2,3),F1,2,3), and (M1 ⊕ M2) ⊕ M3 =
((U ′1,2,3,V ′1,2,3,R′1,2,3),F ′1,2,3). We want to show that
M1 ⊕ (M2 ⊕ M3) = (M1 ⊕ M2) ⊕ M3. It is almost
immediate from the definitions that U1,2,3 = U ′1,2,3,
V1,2,3 = V ′1,2,3, and R1,2,3 = R′1,2,3. To show
that F1,2,3 = F ′1,2,3, we show that for all variables
C ∈ V1,2,3, F1,2,3(C) = F ′1,2,3(C). We proceed by cases.
If C = V1 − (V2 ∪ V3), then C /∈ V2,3, so it is easy
to check that F1,2,3(C) = F ′1,2,3 = F1(C). Similarly, if
C ∈ V2−(V1∪V3), thenF1,2,3(C) = F ′1,2,3 = F2(C), and
if C ∈ V3 − (V1 ∪ V2), then F1,2,3(C) = F ′1,2,3 = F3(C).

If C ∈ (V1 ∩ V2) − V3, since M1 and M2 are com-
patible, either M1 �~v

∗

C M2 or M2 �~v
∗

C M1 (or both). If
M1 �~v

∗

C M2, then F1,2(C) = F1(C), so F1,2,3(C) =
F1(C). Since C /∈ V3, we have F2,3(C) = F2(C). If we
also have M2 �~v

∗

C M1, then by (a), F1(C) = F2(C), and
it is easy to see that F ′1,2,3(C) = F1(C). Now suppose that
M2 6�~v

∗

C M1. M1 is compatible with M2 ⊕ M3, we must
have either M1 �~v

∗

C M2 ⊕ M3 or M2 ⊕ M3 �~v
∗

C M1.
It is easy to see that since M2 6�~v

∗

C M1, we cannot have
M2 ⊕M3 �~v

∗

C M1, so we must have M1 �~v
∗

C M2 ⊕M3. It
follows that F ′1,2,3(C) = F1(C). The argument is similar if
C ∈ (V1 ∩ V3)− V2 or C ∈ (V2 ∩ V3)− V2.

Finally, suppose that C ∈ (V1 ∩ V2 ∩ V3). We first show
that � ~v∗

C is transitive when restricted to M1, M2, and M3.
For suppose that M1 �~v

∗

C M2 and M2 �~v
∗

C M3. If M1 ∼~v
∗

C

M2 or M2 ∼~v
∗

C M3, then it is easy to see that M1 �~v
∗

C

M3. So suppose that M1 �~v
∗

C M2 and M2 �~v
∗

C M3. Since
M1 and M3 are compatible, we must have either M1 �~v

∗

C

M3 or M3 �~v
∗

C M1. Suppose by way of contradiction that
M3 �~v

∗

C M1. Let ~X1 = ParM1(C), ~X2 = ParM2(C), and
~X3 = ParM3

(C). We now construct an infinite sequence of
variables A0, A1, . . . such that each variable in the sequence
is either in ~X2 − ~X1, ~X3 − ~X2, or ~X1 − ~X3, and if variable



An is in ~Xi − ~Xj , then the next variable is in ~Xj and there
is a path in Mj from An to An+1. We proceed by induction.
Since M1 �~v

∗

C M2, by MI1M1,M2,C there must be at least
one variable in A0 ∈ ~X2 − ~X1 and a path from Z1 to C
in M1 that does not go through any other variables in ~X2.
Since ~X1 screens C from all ancestors in M1, this path must
go through a variable A1 ∈ ~X1 − ~X2. If A1 ∈ ~X3, then it is
in ~X3− ~X2; ifA1 /∈ ~X3, it is in ~X1− ~X3. Either way,A1 is an
appropriate successor of A0 in the sequence. The inductive
step of the argument is identical; if An ∈ ~Xi − ~Xj , we use
the fact that Mj �~v

∗

C Mi to construct An+1. Note that, for
all n ≥ 0, since An ∈ ~Xi − ~Xj and An+1 ∈ ~Xj , we must
haveAn 6= An+1. Moreover, by the argument in the proof of
(c) since there is a path from An to An+1 in Mj , there must
also be such a path in M1 ⊕ (M2 ⊕ M3). Since there are
only finitely many variables altogether, there must be some
N1 and N2 such that AN1 = AN2 . That means we have a
cycle in M1 ⊕ (M2 ⊕M3), contradicting (c).

Since �~v∗C is transitive and complete on {M1,M2,M3}
(completeness says that for each pair, one of the two must
be dominant), one of M1, M2, and M3 must dominate the
other two with respect to �~v∗C . Suppose it is M1. It is easy
to see that M1 ⊕M2 �~v

∗

C M3 and M1 �~v
∗

C (M2 ⊕M3). It
then easily follows that F1,2,3(C) = F ′1,2,3(C) = F1(C).
A similar argument holds if M2 or M3 is the model that
dominates with respect to �~v∗C .


