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model revision 

Behavioural model revision through probabilistic rule learning  
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Factory floor reactive plan 
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Sykes et al., SEAMS 2008 

Goal 



Factory floor at runtime 
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Factory floor at runtime 
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Model revision 

• Model does not reflect real environment 

– Unmodelled states or transitions 

– Original model not probabilistic  

– Difficult to estimate probabilities without 
testing 
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update model according to 
observed environment 

Task 
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Inductive logic programming 
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Background knowledge Observations 
(traces) 

Hypothesis 
(rules) 

Many possible hypotheses, some very 
specific, some more general 

Muggleton 1995 



Mode declarations 
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mode(h, 2, succeeds(act, +time)) 

mode(b, 2, holdsAt(cond, +time)) 

mode(b, 2, not holdsAt(cond, +time)) 

Head or body 

Maximum occurrences 
in a rule 

Want to learn action 
success under 
holdsAt conditions 

Mode declaration 
for each action act 
and condition cond 



Domain modelling 
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possible(pickup, T) :-  

 not holdsAt(holdingObject, T), 

 holdsAt(at(loc1), T). 

possible(putdown, T) :- 

 holdsAt(holdingObject, T), 

 holdsAt(at(loc5), T). 

possible(move(L1, L2), T) :- 

 holdsAt(at(L1), T), 

 connected(L1, L2). 

... 

initiates(pickup, holdingObject, T). 

terminates(putdown, holdingObject, T). 

initiates(move(L1, L2), at(L2), T). 

terminates(move(L1, L2), at(L1), T). 

!holdingObject 
at(loc1) 

holdingObject 
at(loc1) 

... 

pickup 



Step 1: Rule learning 
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holdsAt(at(loc1), 0). 

do(pickup, 0). 

 

holdsAt(at(loc1), 1). 

holdsAt(holdingObj, 1). 

do(move(loc1, loc3), 1). 

 

holdsAt(at(loc3), 2). 

holdsAt(holdingObj, 2). 

do(move(loc3, loc5), 2). 

 

holdsAt(at(loc5), 3). 

holdsAt(holdingObj, 3). 

do(putdown, 3). 

succ(move(loc3, loc5), T) :- 

 holdsAt(at(loc3), T), 

 holdsAt(holdingObj, T). 

Observations (traces) 

Explanatory rules (hypothesis) 

Learned rules result in new 
transitions in the domain model 



Many traces, many hypotheses 
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holdsAt(at(loc1), 0). 

do(pickup, 0). 

holdsAt(at(loc1), 1). 

holdsAt(holdingObject, 1). 

do(move(loc1, loc3), 1). 

holdsAt(at(loc3), 2). 

holdsAt(holdingObject, 2). 

do(move(loc3, loc5), 2). 

holdsAt(at(loc5), 3). 

holdsAt(holdingObject, 3). 

do(putdown, 3). 

succeeds(move(loc3, loc5), T) :- 

 holdsAt(at(loc3), T), 

 holdsAt(holdingObject, T). 

• Traces may exhibit 
inconsistent 
behaviour 

Maximum 
likelihood 

hypotheses has 
greatest probability 

of explaining 
observations 



Step 2: Probability estimation 

daniel.sykes@imperial.ac.uk 19 

θ11 holdsAt(holdingObject, T) 

holdsAt(at(loc3), T) 

θ21 

θ12 θ22 

Rule 1 Rule 2 

... ... ... 

... 

... 

... 

... 

Explains 
trace –

increase 
probability 

Does not 
explain 
trace –

decrease 
probability 

Probability of a hypothesis h 



Step 2: Probability estimation 
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Predictive ratio for observation x 

MSE of current estimates θ 
Minimise 
(by gradient 
descent) 

i.e. maximise 
prob. of hyp. 
predicting 
observations 



Applying learned rules 
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r1:0.7 : succeeds(pickup, T). 

r2:0.9 : succeeds(move(L1, L2), T) :- 

  holdsAt(at(L1), T), 

  connected(L1, L2), 

  L2 != loc3. 

r3:0.9 : succeeds(putdown, T) :- 

  not happened(move(loc2, loc3), T-2). 

r4:0.1 : succeeds(putdown, T) :- 

  happened(move(loc2, loc3), T-2). 

Rule probabilities calculated 
from condition probabilities 

Learned rules result in new states 
and transitions in the domain 

model – with probabilities 



Updated factory floor model 
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New factory floor plan 
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Experience 
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Robot navigation: global 
failure rate reduced from 

30% to 10% 

Human-readable 
explanations 

succeeds(move(L1, L2), T) :- 

  holdsAt(at(L1), T), 

  connected(L1, L2), 

  L2 != loc3. 



Challenges 

• High complexity of ILP 

– Limit rule length with mode declarations 

• Improve tool support (GD, integration) 

• Scope for adaptation is limited by set of actions 
and sensed conditions 

– Cannot learn rules based on conditions not present in 
traces 

• Opportunity for starting from a minimal model 
– exploration of environment 
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Summary 

• Behavioural model revision using ILP 

– Traces gathered from plan execution 

– Missing states/transitions 

– Estimated probabilities, find maximum 
likelihood hypothesis 

– Mitigate inaccuracy and incompleteness 
(uncertainty) in model 

• Revised model remains human-readable 
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Thanks, questions? 
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