
C Programming Tools: Part 3
Building your own Tools

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

June 2018

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 1 / 17

mailto:d.white@imperial.ac.uk

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (apart from the two Makefile
builders we mentioned in passing in Lecture 1).

But we said then: When necessary: build your own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

As in previous weeks, there’s a tarball of examples associated with this lecture.

This lecture’s slides and tarballs are available on CATE under Programming III.

Also at: http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 2 / 17

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (apart from the two Makefile
builders we mentioned in passing in Lecture 1).

But we said then: When necessary: build your own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

As in previous weeks, there’s a tarball of examples associated with this lecture.

This lecture’s slides and tarballs are available on CATE under Programming III.

Also at: http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 2 / 17

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (apart from the two Makefile
builders we mentioned in passing in Lecture 1).

But we said then: When necessary: build your own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

As in previous weeks, there’s a tarball of examples associated with this lecture.

This lecture’s slides and tarballs are available on CATE under Programming III.

Also at: http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 2 / 17

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (apart from the two Makefile
builders we mentioned in passing in Lecture 1).

But we said then: When necessary: build your own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

As in previous weeks, there’s a tarball of examples associated with this lecture.

This lecture’s slides and tarballs are available on CATE under Programming III.

Also at: http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 2 / 17

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (apart from the two Makefile
builders we mentioned in passing in Lecture 1).

But we said then: When necessary: build your own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

As in previous weeks, there’s a tarball of examples associated with this lecture.

This lecture’s slides and tarballs are available on CATE under Programming III.

Also at: http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 2 / 17

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (apart from the two Makefile
builders we mentioned in passing in Lecture 1).

But we said then: When necessary: build your own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

As in previous weeks, there’s a tarball of examples associated with this lecture.

This lecture’s slides and tarballs are available on CATE under Programming III.

Also at: http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 2 / 17

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (apart from the two Makefile
builders we mentioned in passing in Lecture 1).

But we said then: When necessary: build your own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

As in previous weeks, there’s a tarball of examples associated with this lecture.

This lecture’s slides and tarballs are available on CATE under Programming III.

Also at: http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 2 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

The Pragmatic Programmers exhort us to: Learn a Text Manipulation Language (tip
28) - such as Perl - and Write Code that Writes Code (tip 29).

Let’s see an example of those tips together, remembering..

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 3 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

The Pragmatic Programmers exhort us to: Learn a Text Manipulation Language (tip
28) - such as Perl - and Write Code that Writes Code (tip 29).

Let’s see an example of those tips together, remembering..

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 3 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern instances” like this:
int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s editor using
clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int functions and another 100
double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool, scaffolding that you
build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int <F>(int a, int b) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 4 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern instances” like this:
int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s editor using
clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int functions and another 100
double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool, scaffolding that you
build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int <F>(int a, int b) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 4 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern instances” like this:
int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s editor using
clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int functions and another 100
double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool, scaffolding that you
build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int <F>(int a, int b) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 4 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern instances” like this:
int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s editor using
clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int functions and another 100
double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool, scaffolding that you
build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int <F>(int a, int b) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 4 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern instances” like this:
int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s editor using
clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int functions and another 100
double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool, scaffolding that you
build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int <F>(int a, int b) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 4 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern instances” like this:
int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s editor using
clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int functions and another 100
double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool, scaffolding that you
build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int <F>(int a, int b) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 4 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern instances” like this:
int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s editor using
clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int functions and another 100
double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool, scaffolding that you
build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int <F>(int a, int b) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 4 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo).

Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Doing it in Perl

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part before the comma into
the variable $f, and the part after the comma into $op.

The Perl code:
print "int ${f}(int a, int b) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to split on comma: See
01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 5 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool

Note that our tool doesn’t have to be perfect; just good enough to save us time.

Once you have a tiny tool, don’t be afraid to modify it:

Left-justify the function names in a field of some suitable width:
perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", $f’ < input

Or, prefix the typename onto function names, eg. int_plus:

perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", "int_${f}"’ < input

Why not let the user change the type at any point in the input:

TYPE,int

plus,+

minus,-

TYPE,double

plus,+

minus,-

generates:

int int_plus (int a, int b) { return (a+b); }

int int_minus (int a, int b) { return (a-b); }

double double_plus (double a, double b) { return (a+b); }

double double_minus (double a, double b) { return (a-b); }

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 6 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool

Note that our tool doesn’t have to be perfect; just good enough to save us time.

Once you have a tiny tool, don’t be afraid to modify it:

Left-justify the function names in a field of some suitable width:
perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", $f’ < input

Or, prefix the typename onto function names, eg. int_plus:

perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", "int_${f}"’ < input

Why not let the user change the type at any point in the input:

TYPE,int

plus,+

minus,-

TYPE,double

plus,+

minus,-

generates:

int int_plus (int a, int b) { return (a+b); }

int int_minus (int a, int b) { return (a-b); }

double double_plus (double a, double b) { return (a+b); }

double double_minus (double a, double b) { return (a-b); }

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 6 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool

Note that our tool doesn’t have to be perfect; just good enough to save us time.

Once you have a tiny tool, don’t be afraid to modify it:

Left-justify the function names in a field of some suitable width:
perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", $f’ < input

Or, prefix the typename onto function names, eg. int_plus:

perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", "int_${f}"’ < input

Why not let the user change the type at any point in the input:

TYPE,int

plus,+

minus,-

TYPE,double

plus,+

minus,-

generates:

int int_plus (int a, int b) { return (a+b); }

int int_minus (int a, int b) { return (a-b); }

double double_plus (double a, double b) { return (a+b); }

double double_minus (double a, double b) { return (a-b); }

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 6 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool

Note that our tool doesn’t have to be perfect; just good enough to save us time.

Once you have a tiny tool, don’t be afraid to modify it:

Left-justify the function names in a field of some suitable width:
perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", $f’ < input

Or, prefix the typename onto function names, eg. int_plus:

perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", "int_${f}"’ < input

Why not let the user change the type at any point in the input:

TYPE,int

plus,+

minus,-

TYPE,double

plus,+

minus,-

generates:

int int_plus (int a, int b) { return (a+b); }

int int_minus (int a, int b) { return (a-b); }

double double_plus (double a, double b) { return (a+b); }

double double_minus (double a, double b) { return (a-b); }

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 6 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool

To implement this, change the specification to:
INPUT:

foreach line: F, Op pair (but F=="TYPE" is special)

OUTPUT:

foreach F, Op pair

if F=="TYPE" then T=Op

else print "<T> <T>_<F>(<T> a, <T> b) { return (a <Op> b); }"

Make our Perl one-liner:
perl -nle ’($f,$op)=split(/,/); if($f eq "TYPE") { $t=$op; next; }

printf "${t} %-15s(${t} a, ${t} b) { return (a${op}b); }\n", "${t}_${f}"’ < input

Final thought, instead of hardcoding the output format in the printf, we could replace TYPEs
with TEMPLATEs in the input, for example:

TEMPLATE,int int_<0>(int a, int b) { return (a<1>b); }

plus,+

minus,-

TEMPLATE,double double_<0>(double a, double b) { return (a<1>b); }

plus,+

minus,-

Here, the marker <0> means ”replace this marker with the current value of the first field”.
Our Perl one-liner becomes more powerful but shorter:

perl -nle ’@f=split(/,/,$_,2); if($f[0] eq "TEMPLATE") { $t=$f[1]; next; }

$_=$t; s/<(\d+)>/$f[$1]/g; print’ < input

This is now a simple macro processor.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 7 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool

To implement this, change the specification to:
INPUT:

foreach line: F, Op pair (but F=="TYPE" is special)

OUTPUT:

foreach F, Op pair

if F=="TYPE" then T=Op

else print "<T> <T>_<F>(<T> a, <T> b) { return (a <Op> b); }"

Make our Perl one-liner:
perl -nle ’($f,$op)=split(/,/); if($f eq "TYPE") { $t=$op; next; }

printf "${t} %-15s(${t} a, ${t} b) { return (a${op}b); }\n", "${t}_${f}"’ < input

Final thought, instead of hardcoding the output format in the printf, we could replace TYPEs
with TEMPLATEs in the input, for example:

TEMPLATE,int int_<0>(int a, int b) { return (a<1>b); }

plus,+

minus,-

TEMPLATE,double double_<0>(double a, double b) { return (a<1>b); }

plus,+

minus,-

Here, the marker <0> means ”replace this marker with the current value of the first field”.
Our Perl one-liner becomes more powerful but shorter:

perl -nle ’@f=split(/,/,$_,2); if($f[0] eq "TEMPLATE") { $t=$f[1]; next; }

$_=$t; s/<(\d+)>/$f[$1]/g; print’ < input

This is now a simple macro processor.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 7 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Let’s move on to an example medium scale tool I built.

While developing C code, you may find certain things irritate you.

The Pragmatic Programmers describe such things as broken windows, and tell us - in
tip 4 - Don’t live with broken windows. Find a way to fix the problem!

One particular thing irritated me some years ago: keeping the prototype declarations
in .h files in sync with the function definitions in the paired .c files that form modules.

Whenever you add a public function to intlist.c you need to remember to add the
corresponding prototype to intlist.h.

Even adding or removing parameters to existing functions means you need to make a
corresponding change in the prototype too. What a pain!

The problem here is that there’s a lot of repetition between the .c file and the .h file.
This violates the most important Pragmatic Programmers tip: DRY - Don’t Repeat
Yourself (tip 11).

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 8 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Let’s move on to an example medium scale tool I built.

While developing C code, you may find certain things irritate you.

The Pragmatic Programmers describe such things as broken windows, and tell us - in
tip 4 - Don’t live with broken windows. Find a way to fix the problem!

One particular thing irritated me some years ago: keeping the prototype declarations
in .h files in sync with the function definitions in the paired .c files that form modules.

Whenever you add a public function to intlist.c you need to remember to add the
corresponding prototype to intlist.h.

Even adding or removing parameters to existing functions means you need to make a
corresponding change in the prototype too. What a pain!

The problem here is that there’s a lot of repetition between the .c file and the .h file.
This violates the most important Pragmatic Programmers tip: DRY - Don’t Repeat
Yourself (tip 11).

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 8 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Let’s move on to an example medium scale tool I built.

While developing C code, you may find certain things irritate you.

The Pragmatic Programmers describe such things as broken windows, and tell us - in
tip 4 - Don’t live with broken windows. Find a way to fix the problem!

One particular thing irritated me some years ago: keeping the prototype declarations
in .h files in sync with the function definitions in the paired .c files that form modules.

Whenever you add a public function to intlist.c you need to remember to add the
corresponding prototype to intlist.h.

Even adding or removing parameters to existing functions means you need to make a
corresponding change in the prototype too. What a pain!

The problem here is that there’s a lot of repetition between the .c file and the .h file.
This violates the most important Pragmatic Programmers tip: DRY - Don’t Repeat
Yourself (tip 11).

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 8 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Let’s move on to an example medium scale tool I built.

While developing C code, you may find certain things irritate you.

The Pragmatic Programmers describe such things as broken windows, and tell us - in
tip 4 - Don’t live with broken windows. Find a way to fix the problem!

One particular thing irritated me some years ago: keeping the prototype declarations
in .h files in sync with the function definitions in the paired .c files that form modules.

Whenever you add a public function to intlist.c you need to remember to add the
corresponding prototype to intlist.h.

Even adding or removing parameters to existing functions means you need to make a
corresponding change in the prototype too.

What a pain!

The problem here is that there’s a lot of repetition between the .c file and the .h file.
This violates the most important Pragmatic Programmers tip: DRY - Don’t Repeat
Yourself (tip 11).

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 8 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Let’s move on to an example medium scale tool I built.

While developing C code, you may find certain things irritate you.

The Pragmatic Programmers describe such things as broken windows, and tell us - in
tip 4 - Don’t live with broken windows. Find a way to fix the problem!

One particular thing irritated me some years ago: keeping the prototype declarations
in .h files in sync with the function definitions in the paired .c files that form modules.

Whenever you add a public function to intlist.c you need to remember to add the
corresponding prototype to intlist.h.

Even adding or removing parameters to existing functions means you need to make a
corresponding change in the prototype too. What a pain!

The problem here is that there’s a lot of repetition between the .c file and the .h file.
This violates the most important Pragmatic Programmers tip: DRY - Don’t Repeat
Yourself (tip 11).

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 8 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Let’s move on to an example medium scale tool I built.

While developing C code, you may find certain things irritate you.

The Pragmatic Programmers describe such things as broken windows, and tell us - in
tip 4 - Don’t live with broken windows. Find a way to fix the problem!

One particular thing irritated me some years ago: keeping the prototype declarations
in .h files in sync with the function definitions in the paired .c files that form modules.

Whenever you add a public function to intlist.c you need to remember to add the
corresponding prototype to intlist.h.

Even adding or removing parameters to existing functions means you need to make a
corresponding change in the prototype too. What a pain!

The problem here is that there’s a lot of repetition between the .c file and the .h file.
This violates the most important Pragmatic Programmers tip: DRY - Don’t Repeat
Yourself (tip 11).

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 8 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Don’t live with broken windows suggests we should find, or write, a tool to solve this
problem, then integrate it into our editor for convenience!

Years ago, I wrote proto to solve this. It reads a C file looking for function
definitions, and produces a prototype (an extern declaration) for each function.

But this sounds pretty hard. Don’t we need a complete C parser?

I found an easier way. I imposed LIMITATIONS on my layout approach to make the
tool easier to construct: I decided that the whole function heading must be placed on
one line, and also that the function heading could only use simple type declarations
(use typedef for complex declarations).

Then I wrote a vi macro bound to an unused key that piped the next paragraph into
proto % (current filename). See http://www.doc.ic.ac.uk/~dcw/PSD/article4/

for an article I wrote about how easy similar editor extensions can be.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 9 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Don’t live with broken windows suggests we should find, or write, a tool to solve this
problem, then integrate it into our editor for convenience!

Years ago, I wrote proto to solve this. It reads a C file looking for function
definitions, and produces a prototype (an extern declaration) for each function.

But this sounds pretty hard. Don’t we need a complete C parser?

I found an easier way. I imposed LIMITATIONS on my layout approach to make the
tool easier to construct: I decided that the whole function heading must be placed on
one line, and also that the function heading could only use simple type declarations
(use typedef for complex declarations).

Then I wrote a vi macro bound to an unused key that piped the next paragraph into
proto % (current filename). See http://www.doc.ic.ac.uk/~dcw/PSD/article4/

for an article I wrote about how easy similar editor extensions can be.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 9 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Don’t live with broken windows suggests we should find, or write, a tool to solve this
problem, then integrate it into our editor for convenience!

Years ago, I wrote proto to solve this. It reads a C file looking for function
definitions, and produces a prototype (an extern declaration) for each function.

But this sounds pretty hard. Don’t we need a complete C parser?

I found an easier way. I imposed LIMITATIONS on my layout approach to make the
tool easier to construct: I decided that the whole function heading must be placed on
one line, and also that the function heading could only use simple type declarations
(use typedef for complex declarations).

Then I wrote a vi macro bound to an unused key that piped the next paragraph into
proto % (current filename). See http://www.doc.ic.ac.uk/~dcw/PSD/article4/

for an article I wrote about how easy similar editor extensions can be.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 9 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Don’t live with broken windows suggests we should find, or write, a tool to solve this
problem, then integrate it into our editor for convenience!

Years ago, I wrote proto to solve this. It reads a C file looking for function
definitions, and produces a prototype (an extern declaration) for each function.

But this sounds pretty hard. Don’t we need a complete C parser?

I found an easier way. I imposed LIMITATIONS on my layout approach to make the
tool easier to construct: I decided that the whole function heading must be placed on
one line, and also that the function heading could only use simple type declarations
(use typedef for complex declarations).

Then I wrote a vi macro bound to an unused key that piped the next paragraph into
proto % (current filename). See http://www.doc.ic.ac.uk/~dcw/PSD/article4/

for an article I wrote about how easy similar editor extensions can be.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 9 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Don’t live with broken windows suggests we should find, or write, a tool to solve this
problem, then integrate it into our editor for convenience!

Years ago, I wrote proto to solve this. It reads a C file looking for function
definitions, and produces a prototype (an extern declaration) for each function.

But this sounds pretty hard. Don’t we need a complete C parser?

I found an easier way. I imposed LIMITATIONS on my layout approach to make the
tool easier to construct: I decided that the whole function heading must be placed on
one line, and also that the function heading could only use simple type declarations
(use typedef for complex declarations).

Then I wrote a vi macro bound to an unused key that piped the next paragraph into
proto % (current filename).

See http://www.doc.ic.ac.uk/~dcw/PSD/article4/

for an article I wrote about how easy similar editor extensions can be.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 9 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Don’t live with broken windows suggests we should find, or write, a tool to solve this
problem, then integrate it into our editor for convenience!

Years ago, I wrote proto to solve this. It reads a C file looking for function
definitions, and produces a prototype (an extern declaration) for each function.

But this sounds pretty hard. Don’t we need a complete C parser?

I found an easier way. I imposed LIMITATIONS on my layout approach to make the
tool easier to construct: I decided that the whole function heading must be placed on
one line, and also that the function heading could only use simple type declarations
(use typedef for complex declarations).

Then I wrote a vi macro bound to an unused key that piped the next paragraph into
proto % (current filename). See http://www.doc.ic.ac.uk/~dcw/PSD/article4/

for an article I wrote about how easy similar editor extensions can be.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 9 / 17

Large: Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of trusted reusable ADT
modules:

indefinite length dynamic strings
indefinite length dynamic arrays

linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes (aka maps/dictionaries/associative arrays).
sets of strings - several possible implementations.
bags - frequency hashes, mapping strings to integers.
anything else you find useful (.ini file parsers? test frameworks? CSV splitters?)

Unlike C++, the C standard library fails to provide any of the following: So, either
find a collection of such modules that others have written, or build them yourself as
and when you need them, and reuse them at every opportunity.

Note: Reuse can be done without OO or generics, Make it Easy to Reuse (PP Tip
12) - just use void *.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 10 / 17

Large: Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of trusted reusable ADT
modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees

hashes (aka maps/dictionaries/associative arrays).
sets of strings - several possible implementations.
bags - frequency hashes, mapping strings to integers.
anything else you find useful (.ini file parsers? test frameworks? CSV splitters?)

Unlike C++, the C standard library fails to provide any of the following: So, either
find a collection of such modules that others have written, or build them yourself as
and when you need them, and reuse them at every opportunity.

Note: Reuse can be done without OO or generics, Make it Easy to Reuse (PP Tip
12) - just use void *.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 10 / 17

Large: Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of trusted reusable ADT
modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes (aka maps/dictionaries/associative arrays).
sets of strings - several possible implementations.
bags - frequency hashes, mapping strings to integers.

anything else you find useful (.ini file parsers? test frameworks? CSV splitters?)

Unlike C++, the C standard library fails to provide any of the following: So, either
find a collection of such modules that others have written, or build them yourself as
and when you need them, and reuse them at every opportunity.

Note: Reuse can be done without OO or generics, Make it Easy to Reuse (PP Tip
12) - just use void *.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 10 / 17

Large: Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of trusted reusable ADT
modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes (aka maps/dictionaries/associative arrays).
sets of strings - several possible implementations.
bags - frequency hashes, mapping strings to integers.
anything else you find useful (.ini file parsers? test frameworks? CSV splitters?)

Unlike C++, the C standard library fails to provide any of the following: So, either
find a collection of such modules that others have written, or build them yourself as
and when you need them, and reuse them at every opportunity.

Note: Reuse can be done without OO or generics, Make it Easy to Reuse (PP Tip
12) - just use void *.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 10 / 17

Large: Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of trusted reusable ADT
modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes (aka maps/dictionaries/associative arrays).
sets of strings - several possible implementations.
bags - frequency hashes, mapping strings to integers.
anything else you find useful (.ini file parsers? test frameworks? CSV splitters?)

Unlike C++, the C standard library fails to provide any of the following: So, either
find a collection of such modules that others have written, or build them yourself as
and when you need them, and reuse them at every opportunity.

Note: Reuse can be done without OO or generics, Make it Easy to Reuse (PP Tip
12) - just use void *.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 10 / 17

Large: Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of trusted reusable ADT
modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes (aka maps/dictionaries/associative arrays).
sets of strings - several possible implementations.
bags - frequency hashes, mapping strings to integers.
anything else you find useful (.ini file parsers? test frameworks? CSV splitters?)

Unlike C++, the C standard library fails to provide any of the following: So, either
find a collection of such modules that others have written, or build them yourself as
and when you need them, and reuse them at every opportunity.

Note: Reuse can be done without OO or generics, Make it Easy to Reuse (PP Tip
12) - just use void *.

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 10 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a dozen ADTs (plus unit
test programs) that I’ve written over the years, plus a Makefile to package them as
the libADTs.a library.

Investigate them all at your own leisure - but make install them now so they’re
installed in your TOOLDIR (~/c-tools) directory.

Next, tarball 04.hash-set.eg contains an example application that uses some of
those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where the keys are strings,
and the values are generic void * pointers - yes, it’s our old friend hash.c, after Lecture
2’s memory-leak fixes and profiling-led optimizations.
and Sets of strings.
Then combines them to represent family information, i.e. a mapping from a named
parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re almost programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 11 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a dozen ADTs (plus unit
test programs) that I’ve written over the years, plus a Makefile to package them as
the libADTs.a library.

Investigate them all at your own leisure - but make install them now so they’re
installed in your TOOLDIR (~/c-tools) directory.

Next, tarball 04.hash-set.eg contains an example application that uses some of
those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where the keys are strings,
and the values are generic void * pointers - yes, it’s our old friend hash.c, after Lecture
2’s memory-leak fixes and profiling-led optimizations.
and Sets of strings.
Then combines them to represent family information, i.e. a mapping from a named
parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re almost programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 11 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a dozen ADTs (plus unit
test programs) that I’ve written over the years, plus a Makefile to package them as
the libADTs.a library.

Investigate them all at your own leisure - but make install them now so they’re
installed in your TOOLDIR (~/c-tools) directory.

Next, tarball 04.hash-set.eg contains an example application that uses some of
those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where the keys are strings,
and the values are generic void * pointers - yes, it’s our old friend hash.c, after Lecture
2’s memory-leak fixes and profiling-led optimizations.
and Sets of strings.
Then combines them to represent family information, i.e. a mapping from a named
parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re almost programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 11 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a dozen ADTs (plus unit
test programs) that I’ve written over the years, plus a Makefile to package them as
the libADTs.a library.

Investigate them all at your own leisure - but make install them now so they’re
installed in your TOOLDIR (~/c-tools) directory.

Next, tarball 04.hash-set.eg contains an example application that uses some of
those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where the keys are strings,
and the values are generic void * pointers - yes, it’s our old friend hash.c, after Lecture
2’s memory-leak fixes and profiling-led optimizations.

and Sets of strings.
Then combines them to represent family information, i.e. a mapping from a named
parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re almost programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 11 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a dozen ADTs (plus unit
test programs) that I’ve written over the years, plus a Makefile to package them as
the libADTs.a library.

Investigate them all at your own leisure - but make install them now so they’re
installed in your TOOLDIR (~/c-tools) directory.

Next, tarball 04.hash-set.eg contains an example application that uses some of
those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where the keys are strings,
and the values are generic void * pointers - yes, it’s our old friend hash.c, after Lecture
2’s memory-leak fixes and profiling-led optimizations.
and Sets of strings.

Then combines them to represent family information, i.e. a mapping from a named
parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re almost programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 11 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a dozen ADTs (plus unit
test programs) that I’ve written over the years, plus a Makefile to package them as
the libADTs.a library.

Investigate them all at your own leisure - but make install them now so they’re
installed in your TOOLDIR (~/c-tools) directory.

Next, tarball 04.hash-set.eg contains an example application that uses some of
those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where the keys are strings,
and the values are generic void * pointers - yes, it’s our old friend hash.c, after Lecture
2’s memory-leak fixes and profiling-led optimizations.
and Sets of strings.
Then combines them to represent family information, i.e. a mapping from a named
parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re almost programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 11 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a dozen ADTs (plus unit
test programs) that I’ve written over the years, plus a Makefile to package them as
the libADTs.a library.

Investigate them all at your own leisure - but make install them now so they’re
installed in your TOOLDIR (~/c-tools) directory.

Next, tarball 04.hash-set.eg contains an example application that uses some of
those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where the keys are strings,
and the values are generic void * pointers - yes, it’s our old friend hash.c, after Lecture
2’s memory-leak fixes and profiling-led optimizations.
and Sets of strings.
Then combines them to represent family information, i.e. a mapping from a named
parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re almost programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 11 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features from other languages.

Many years ago, I realised that one of the best features of functional programming
languages such as Haskell is the ability to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and automatically writes a C
module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have ever suggested that
such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with parser, lexical analyser,
data structures, tree walking code generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 12 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features from other languages.

Many years ago, I realised that one of the best features of functional programming
languages such as Haskell is the ability to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and automatically writes a C
module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have ever suggested that
such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with parser, lexical analyser,
data structures, tree walking code generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 12 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features from other languages.

Many years ago, I realised that one of the best features of functional programming
languages such as Haskell is the ability to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and automatically writes a C
module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have ever suggested that
such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with parser, lexical analyser,
data structures, tree walking code generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 12 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features from other languages.

Many years ago, I realised that one of the best features of functional programming
languages such as Haskell is the ability to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and automatically writes a C
module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have ever suggested that
such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with parser, lexical analyser,
data structures, tree walking code generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 12 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features from other languages.

Many years ago, I realised that one of the best features of functional programming
languages such as Haskell is the ability to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and automatically writes a C
module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have ever suggested that
such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with parser, lexical analyser,
data structures, tree walking code generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 12 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features from other languages.

Many years ago, I realised that one of the best features of functional programming
languages such as Haskell is the ability to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and automatically writes a C
module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have ever suggested that
such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with parser, lexical analyser,
data structures, tree walking code generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 12 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features from other languages.

Many years ago, I realised that one of the best features of functional programming
languages such as Haskell is the ability to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and automatically writes a C
module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have ever suggested that
such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with parser, lexical analyser,
data structures, tree walking code generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 12 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

I made the tool! After a fortnight’s work, the result was datadec - in the 06.datadec
directory (also installed throughout DoC labs). After installing it, use as follows:

In 07.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int head, intlist tail);

tree = leaf(string name)

or node(tree left, tree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

This creates datatypes.c and datatypes.h, two normal looking C files, you can read them,
write test programs against the interface, use them in production code with no license
restrictions. But don’t modify these files - if you do then you can’t...

... change types.in later - suppose you realise that a tree node also needs to store a name
(just as the leaves do). Change the type defn, rerun datadec. The tree_node() constructor
now takes 3 arguments!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 13 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

I made the tool! After a fortnight’s work, the result was datadec - in the 06.datadec
directory (also installed throughout DoC labs). After installing it, use as follows:

In 07.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int head, intlist tail);

tree = leaf(string name)

or node(tree left, tree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

This creates datatypes.c and datatypes.h, two normal looking C files, you can read them,
write test programs against the interface, use them in production code with no license
restrictions. But don’t modify these files - if you do then you can’t...

... change types.in later - suppose you realise that a tree node also needs to store a name
(just as the leaves do). Change the type defn, rerun datadec. The tree_node() constructor
now takes 3 arguments!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 13 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

I made the tool! After a fortnight’s work, the result was datadec - in the 06.datadec
directory (also installed throughout DoC labs). After installing it, use as follows:

In 07.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int head, intlist tail);

tree = leaf(string name)

or node(tree left, tree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

This creates datatypes.c and datatypes.h, two normal looking C files, you can read them,
write test programs against the interface, use them in production code with no license
restrictions. But don’t modify these files - if you do then you can’t...

... change types.in later - suppose you realise that a tree node also needs to store a name
(just as the leaves do). Change the type defn, rerun datadec. The tree_node() constructor
now takes 3 arguments!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 13 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

I made the tool! After a fortnight’s work, the result was datadec - in the 06.datadec
directory (also installed throughout DoC labs). After installing it, use as follows:

In 07.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int head, intlist tail);

tree = leaf(string name)

or node(tree left, tree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

This creates datatypes.c and datatypes.h, two normal looking C files, you can read them,
write test programs against the interface, use them in production code with no license
restrictions.

But don’t modify these files - if you do then you can’t...

... change types.in later - suppose you realise that a tree node also needs to store a name
(just as the leaves do). Change the type defn, rerun datadec. The tree_node() constructor
now takes 3 arguments!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 13 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

I made the tool! After a fortnight’s work, the result was datadec - in the 06.datadec
directory (also installed throughout DoC labs). After installing it, use as follows:

In 07.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int head, intlist tail);

tree = leaf(string name)

or node(tree left, tree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

This creates datatypes.c and datatypes.h, two normal looking C files, you can read them,
write test programs against the interface, use them in production code with no license
restrictions. But don’t modify these files - if you do then you can’t...

... change types.in later - suppose you realise that a tree node also needs to store a name
(just as the leaves do). Change the type defn, rerun datadec. The tree_node() constructor
now takes 3 arguments!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 13 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

I made the tool! After a fortnight’s work, the result was datadec - in the 06.datadec
directory (also installed throughout DoC labs). After installing it, use as follows:

In 07.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int head, intlist tail);

tree = leaf(string name)

or node(tree left, tree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

This creates datatypes.c and datatypes.h, two normal looking C files, you can read them,
write test programs against the interface, use them in production code with no license
restrictions. But don’t modify these files - if you do then you can’t...

... change types.in later - suppose you realise that a tree node also needs to store a name
(just as the leaves do). Change the type defn, rerun datadec. The tree_node() constructor
now takes 3 arguments!

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 13 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Let’s look inside datatypes.h, to find what tree functions datadec generates, and how
to use them.

There are two constructor functions, one for each shape of tree:

extern tree tree_leaf(string name);

extern tree tree_node(tree l, tree r);

So, this allows us to build trees as in:

tree t1 = tree_leaf("absolutely");

tree t2 = tree_leaf("fabulous");

tree t = tree_node(t1, t2);

Then a function telling you which shape a tree is: is it a leaf or a node?

typedef enum { tree_is_leaf, tree_is_node } kind_of_tree;

extern kind_of_tree tree_kind(tree t);

Then two deconstructor functions which, given a tree of the appropriate shape,
breaks it into it’s constituent pieces:

extern void get_tree_leaf(tree t, string *namep);

extern void get_tree_node(tree t, tree *lp, tree *rp);

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 14 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Let’s look inside datatypes.h, to find what tree functions datadec generates, and how
to use them.

There are two constructor functions, one for each shape of tree:

extern tree tree_leaf(string name);

extern tree tree_node(tree l, tree r);

So, this allows us to build trees as in:

tree t1 = tree_leaf("absolutely");

tree t2 = tree_leaf("fabulous");

tree t = tree_node(t1, t2);

Then a function telling you which shape a tree is: is it a leaf or a node?

typedef enum { tree_is_leaf, tree_is_node } kind_of_tree;

extern kind_of_tree tree_kind(tree t);

Then two deconstructor functions which, given a tree of the appropriate shape,
breaks it into it’s constituent pieces:

extern void get_tree_leaf(tree t, string *namep);

extern void get_tree_node(tree t, tree *lp, tree *rp);

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 14 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Let’s look inside datatypes.h, to find what tree functions datadec generates, and how
to use them.

There are two constructor functions, one for each shape of tree:

extern tree tree_leaf(string name);

extern tree tree_node(tree l, tree r);

So, this allows us to build trees as in:

tree t1 = tree_leaf("absolutely");

tree t2 = tree_leaf("fabulous");

tree t = tree_node(t1, t2);

Then a function telling you which shape a tree is: is it a leaf or a node?

typedef enum { tree_is_leaf, tree_is_node } kind_of_tree;

extern kind_of_tree tree_kind(tree t);

Then two deconstructor functions which, given a tree of the appropriate shape,
breaks it into it’s constituent pieces:

extern void get_tree_leaf(tree t, string *namep);

extern void get_tree_node(tree t, tree *lp, tree *rp);

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 14 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Let’s look inside datatypes.h, to find what tree functions datadec generates, and how
to use them.

There are two constructor functions, one for each shape of tree:

extern tree tree_leaf(string name);

extern tree tree_node(tree l, tree r);

So, this allows us to build trees as in:

tree t1 = tree_leaf("absolutely");

tree t2 = tree_leaf("fabulous");

tree t = tree_node(t1, t2);

Then a function telling you which shape a tree is: is it a leaf or a node?

typedef enum { tree_is_leaf, tree_is_node } kind_of_tree;

extern kind_of_tree tree_kind(tree t);

Then two deconstructor functions which, given a tree of the appropriate shape,
breaks it into it’s constituent pieces:

extern void get_tree_leaf(tree t, string *namep);

extern void get_tree_node(tree t, tree *lp, tree *rp);

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 14 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Let’s look inside datatypes.h, to find what tree functions datadec generates, and how
to use them.

There are two constructor functions, one for each shape of tree:

extern tree tree_leaf(string name);

extern tree tree_node(tree l, tree r);

So, this allows us to build trees as in:

tree t1 = tree_leaf("absolutely");

tree t2 = tree_leaf("fabulous");

tree t = tree_node(t1, t2);

Then a function telling you which shape a tree is: is it a leaf or a node?

typedef enum { tree_is_leaf, tree_is_node } kind_of_tree;

extern kind_of_tree tree_kind(tree t);

Then two deconstructor functions which, given a tree of the appropriate shape,
breaks it into it’s constituent pieces:

extern void get_tree_leaf(tree t, string *namep);

extern void get_tree_node(tree t, tree *lp, tree *rp);

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 14 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

These allow you to write tree-walking code like this leaf-counter:

int nleaves(tree t)

{

if(tree_kind(t) == tree_is_leaf)

{

string name; get_tree_leaf(t, &name);

return 1; // leaf(name): contains 1 leaf.

} else

{

tree l, r; get_tree_node(t, &l, &r);

// node(l, r): process l and r trees.

return nleaves(l) + nleaves(r);

}

}

In Haskell, this’d be:

nleaves(leaf(name)) = 1

nleaves(node(l,r)) = nleaves(l) + nleaves(r)

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 15 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in human readable format:

extern void print_tree(FILE *out, tree t);

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why? Hard to do right due to
shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE() functions, although
you still have to be careful using these - see the README file for details.

Looking back, I now view the fortnight I spent building datadec (and, more recently,
the day or two adding free TYPE() support) as the single best investment of
programming time in my career. I have saved hundreds of days programming time
using it - and so can you!

You can read a 3-part article I wrote about how I designed datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 16 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in human readable format:

extern void print_tree(FILE *out, tree t);

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why? Hard to do right due to
shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE() functions, although
you still have to be careful using these - see the README file for details.

Looking back, I now view the fortnight I spent building datadec (and, more recently,
the day or two adding free TYPE() support) as the single best investment of
programming time in my career. I have saved hundreds of days programming time
using it - and so can you!

You can read a 3-part article I wrote about how I designed datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 16 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in human readable format:

extern void print_tree(FILE *out, tree t);

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why?

Hard to do right due to
shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE() functions, although
you still have to be careful using these - see the README file for details.

Looking back, I now view the fortnight I spent building datadec (and, more recently,
the day or two adding free TYPE() support) as the single best investment of
programming time in my career. I have saved hundreds of days programming time
using it - and so can you!

You can read a 3-part article I wrote about how I designed datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 16 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in human readable format:

extern void print_tree(FILE *out, tree t);

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why? Hard to do right due to
shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE() functions, although
you still have to be careful using these - see the README file for details.

Looking back, I now view the fortnight I spent building datadec (and, more recently,
the day or two adding free TYPE() support) as the single best investment of
programming time in my career. I have saved hundreds of days programming time
using it - and so can you!

You can read a 3-part article I wrote about how I designed datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 16 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in human readable format:

extern void print_tree(FILE *out, tree t);

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why? Hard to do right due to
shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE() functions, although
you still have to be careful using these - see the README file for details.

Looking back, I now view the fortnight I spent building datadec (and, more recently,
the day or two adding free TYPE() support) as the single best investment of
programming time in my career. I have saved hundreds of days programming time
using it - and so can you!

You can read a 3-part article I wrote about how I designed datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 16 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in human readable format:

extern void print_tree(FILE *out, tree t);

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why? Hard to do right due to
shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE() functions, although
you still have to be careful using these - see the README file for details.

Looking back, I now view the fortnight I spent building datadec (and, more recently,
the day or two adding free TYPE() support) as the single best investment of
programming time in my career. I have saved hundreds of days programming time
using it - and so can you!

You can read a 3-part article I wrote about how I designed datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 16 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in human readable format:

extern void print_tree(FILE *out, tree t);

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why? Hard to do right due to
shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE() functions, although
you still have to be careful using these - see the README file for details.

Looking back, I now view the fortnight I spent building datadec (and, more recently,
the day or two adding free TYPE() support) as the single best investment of
programming time in my career. I have saved hundreds of days programming time
using it - and so can you!

You can read a 3-part article I wrote about how I designed datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2018 16 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Remember:

(and learn Perl, it’s great!)
Duncan White (Imperial) C Programming Tools: Part 3 June 2018 17 / 17

	Today's Contents
	Build your own tools

	Tiny: Building Shortlived tools on the fly
	Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)
	Doing it in Perl
	Improving our Tiny tool

	Medium: Generating Prototypes Automatically
	proto: (tarball 02.proto)

	Large: Reusable ADT modules
	hashes, lists, trees, sets etc
	Some ADTs: tarball 03.adts/example 04.hash-set-eg

	Large: Autogenerating ADTs
	datadec (tarball 06.datadec/07.datadec-eg)

