
C Programming Tools: Part 4
Building and Using your own Toolkit

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

14th June 2018

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 1 / 17

Today’s Contents

Last week, we started building our own tools when necessary, at
a range of scales from tiny to large. Those tools were Code
Generators - Code that Writes Code.
A Code Generator defines some Little Language and then
translates that into some other form - eg valid C source code.
Today, in the last C Programming Tools lecture, we’ll find how to
make writing Code Generators even easier.
The first part of writing any Code Generator is to build a lexical
analyser (aka a lexer) and a parser for your little language. It’s
instructive to write a couple of lexers and parsers by hand to get
the hang of it, but..
This problem has been solved! Lex generates C code (a lexer)
from declarative definitions of lexical tokens. Yacc generates C
code (a parser) from declarative definitions of the grammar, plus
actions to take when grammatical constructs are parsed
successfully.
The handout and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2018/lecture4/

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 2 / 17

Parser and Lexer Generator tools: Yacc and Lex Expressions: (01..05.expr* in tarball)

In the tarball, you will find a whole set of worked examples of
using Yacc and Lex, choosing as our little language integer
constant expressions such as

3*(10+16*(123/3) mod 7)

In 01.expr1 we start with a plain grammar and lexer.
In 02.expr2 we add evaluation actions to build a calculator.
In 03.expr3 we add named constants into the grammar, using our
longhash module.
In 04.expr4 we use our macro processor to make the evaluation
actions easier.
Finally, in 05.expr5 change the evaluation actions to tree-building
actions using datadec to define the tree types, and then evaluate
the expression by walking the tree.

I used to present several of those examples here, over half a
dozen slides, taking half the lecture. But this year, I’ve decided
to try something different.

I’m going to present only one example of using Lex and Yacc: a
complex one. So this is an experiment - let’s see what happens:-)

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 3 / 17

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

Let’s define a tiny Haskell subset called THS. Then build a Lexer
and Parser using Lex and Yacc. Then build an Abstract Syntax
Tree using Datadec and Yacc tree-building actions.
Ok, what Haskell subset should we choose?

Zero-or-more function definitions, with optional type definitions,
Followed by a compulsory integer expression (often a call to some
of those functions).
Each function takes and returns a single integer value,
Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean
expressions, eg. x==0,

For example:
f :: Int -> Int

f x = x*2

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

fact x | x==1 = 1

| x>1 = x * fact(x-1)

f(20) + abs(0-2)*fact(arg1)

In a break with strict Haskell-syntax, we’ll decide that brackets on
function calls like abs(10) are compulsory. Why? Because the lack of
brackets confuses me:-)

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 4 / 17

mailto:d.white@imperial.ac.uk

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

The basic lexical tokens we need are:

A few keywords ‘mod’, ‘Int’, ‘True’.
Various one-or-two character tokens (eg. ‘(’, ‘+’, ‘*’, ‘)’, ‘::’ etc).
Numeric constants (eg ‘123’).
Identifiers (eg ‘fact’).

With Lex, specify the tokens as regular expression/action pairs:
[\t\n]+ /* ignore whitespace */;

mod return MOD;

Int return INTTYPE;

True return TRUEV;

:: return COLONCOLON;

-> return IMPLIES;

== return EQ;

= return IS;

> return GT;

!= return NE;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

\(return OPEN;

\) return CLOSE;

\| return GUARD;

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

. return TOKERR;

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 5 / 17

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

Note that we are being extremely minimal with our tokens,
including (for example) True but not False, ‘>’ but not ‘<’ etc.
These can trivially be added later.

See lexer.l for the full Lex input file, containing the above plus
some prelude. This file can be turned into compilable C code via:
lex -o lexer.c lexer.l.

Our next task is to combine these tokens into THS programs via
our grammar. However the grammar and (Datadec-generated)
Abstract Syntax Trees intertwine, so let’s start by looking at
types.in - our Datadec input file:

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or call(string s, expr e)

or binop(expr l, arithop op, expr r);

boolop = eq or ne or gt;

bexpr = truev

or binop(expr l, boolop op, expr r);

guard = pair(bexpr cond, expr e);

guardlist = nil or cons(guard hd, guardlist tl);

fdefn = onerule(string fname, string param, expr e)

or manyrules(string fname, string param, guardlist l);

flist = nil or cons(fdefn hd, flist tl);

program = pair(flist l, expr e);

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 6 / 17

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

Now let’s look at the Yacc input file parser.y, it starts with a long
prelude of plain C code:
%{

// some includes

extern int yylex (void);

extern int yylineno;

extern bool verbose;

program ast = NULL;

int yyerrors = 0;

void yyerror(const char *str)

{

fprintf(stderr,"line %d: error: %s\n", yylineno, str);

yyerrors++;

}

int yywrap(void) { return 1; }

%}

Note that among the prelude, we see:
program ast = NULL;

which is where the AST (the program) will be stored after a
successful parse.

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 7 / 17

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

Next parser.y contains a %union declaration, which lists all
possible types of data associated with tokens and grammar rules:

%union

{

int n; char *s;

expr e; bexpr b;

guard g; guardlist gl;

fdefn f; flist fl;

}

In the generated C code, the union is turned into a type called
YYSTYPE in parser.h. The Lex prelude includes parser.h, and
Lex then defines the variable YYSTYPE yylval, which explains
how yylval.n is an int, and yylval.s is a char *.
Next, parser.y defines all the tokens:

%token COLONCOLON IMPLIES EQ GT NE TRUEV PLUS MINUS MUL

DIV MOD OPEN CLOSE GUARD IS INTTYPE TOKERR TOKEOF

%token <n> NUMBER

%token <s> IDENT

Yacc turns each token into an integer constant which the lexer
uses (via including parser.h). The final two lines tell Yacc that a
NUMBER token has an associated integer value (int n in the
union), and that an IDENT token has an associated char *s
(identifier name).

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 8 / 17

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

Next, we do the same for those grammar rules with associated
data: we associate a specific field in the union with particular
rules:

%type <e> factor term expr %type bexpr

%type <g> guard %type <gl> guardrules

%type <f> fdefinition %type <fl> defns

Next, we tell Yacc which rule to start parsing with:
%start program

%%

Then we list the grammar rules and corresponding tree-building
actions to take:

program : defns expr { ast = program_pair($1, $2); }

;

defns : /* empty */ { $$ = flist_nil(); }

| defns ftypedefn { $$ = $1; /* ignore type defns */ }

| defns fdefinition { $$ = flist_cons($2, $1); }

;

ftypedefn : IDENT COLONCOLON INTTYPE IMPLIES INTTYPE { free_string($1); }

;

fdefinition : IDENT IDENT IS expr { $$ = fdefn_onerule($1, $2, $4); }

| IDENT IDENT guardrules { ... }

;

guardrules : guard { $$ = guardlist_cons($1, guardlist_nil()); }

| guardrules guard { $$ = guardlist_push($1, $2); }

;

I’ll explain all the strange $n and $$ syntax shortly.
Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 9 / 17

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

The grammar rules continue, defining guarded expressions
(guard), boolean expressions (bexpr) and arithmetic expressions
(rules expr, term and factor).
Picking one rule out, we see:

guard : GUARD bexpr IS expr { $$ = guard_pair($2, $4); }

This means that one possible way of parsing a guarded expression
is to find a GUARD token (the ‘|’ symbol), followed
immediately by an arbitrarily complicated boolean expression,
followed by an IS token (the ‘=’ symbol), followed by an
expression.
If this rule matches, then the action is executed, with:

$1 set to the value (if any) associated with the GUARD token,
$2 set to the value (if any) associated with the bexpr rule,
$3 set to the value (if any) associated with the IS token, and
$4 set to the value (if any) associated with the expr rule.

Here, only the bexpr and the expr have associated values, so we
use $2 and $4 to build a guard: guard_pair($2, $4).
Assigning that new guard to $$ sets the value associated with
the whole guard rule, think of this as the return value.

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 10 / 17

Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (06.ths-treebuilder)

Note that recursive (list-handling) rules in Yacc, such as:
guardrules : guardrules guard { ACTION }

must be written with the recursive invocation first. If we write
the action as $$ = guardlist_cons($2,$1) we would generate
the list in reverse order.

Instead, the action is $$ = guardlist_push($1,$2). This
function was manually written (you’ll find it in types.in) and
modifies the existing guardlist, finding the last node and adding
the new guard there. That’s fine when we’re building the list up.

Turn parser.y into C code (parser.c and parser.h) via: yacc -vd -o
parser.c parser.y.

Putting it all together, using our macro tool from the previous
lecture, and adding a main program that initializes the lexer,
invokes the parser and (when parsing is successful) prints out the
AST that was built, plus several other modules we haven’t
discussed, and a Makefile, compile and link by typing make.

We end up with a THS parser and treebuilder ths1, in which we
only write about 460 lines of code. Give it a try!

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 11 / 17

Parser and Lexer Generator tools: Yacc and Lex THS cont: (07.ths-codegen)

07.ths-codegen extends our treebuilder, adding semantic checking
(eg. checking that we define every function we call) and then
code generation - translating THS to C!
How do we do semantic checks? A semantic checker either walks
the AST, or builds and iterates over equivalent data structures.
In fact, to reduce tree-walking, we enhanced parser.y to create a
hash and a set as well: the funchash maps from a defined
functionname to it’s AST representation. The callset names all
called functions.
The Semantic checker then iterates through the callset checking
that each called function is present in the funchash.
How do we do code generation? A code generator is just another
AST and funchash walker, one with suitable print statements!
In fact, using datadec’s print hints mechanism, 80% of the C
code generation was done by making each AST type print itself
in valid C form. The remaining 20% (approx 130 lines) was
custom C code, mainly building and sorting an array of functions,
then invoking datadec-generated print TYPE() functions.

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 12 / 17

Parser and Lexer Generator tools: Yacc and Lex Recap..

They say a picture’s worth a thousand words, so let’s recap:

Abstract Syntax Tree
datadec

binop

num(123) times num(7)

Code Generator

Parser
yacc

lex

Tokens eg NUMBER(123), MUL, NUMBER(7)

Output: valid C code

Semantic Errors or ok

Input: Little Language, eg 123*7

Lexer

Semantic Checker

Errors or AST,funchash&callset

Our Lexer (constructed for us by
Lex) turns our input (eg “123*7”,
possibly with whitespace) into a
stream of tokens.

Our Parser (constructed for us by
Yacc) checks whether the token
stream matches the grammar, builds
an AST and builds funchash and
callset.

Our Semantic checker uses the
funchash and callset to check that
there are no consistency problems.

Our Code generator walks the AST
and funchash, emitting C code.

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 13 / 17

Parser and Lexer Generator tools: Yacc and Lex Yacc/Lex summary

We’re now using so many tools to build our code, let’s see what
percentage of the source code we’re writing manually.

In 07.ths-codegen, we have only written about 850 lines of code
ourselves.

However, after datadec, macro, Yacc and Lex have run, there are
approximately 5100 lines of C code (including headers) overall.

850/5100 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

That’s pretty impressive - very few combinations of tools
automate anywhere near that much of our code!

So, Yacc and Lex and Datadec are a scalable way of building
translators for little languages, vital tools for your toolbox.

In order to completely make sense of how they all fit together,
with the %union and the %type <f> and %token <f> syntax
and all the $n notation, please work slowly through the much
smaller examples of Yacc and Lex from the tarball (parsing and
manipulating expressions).

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 14 / 17

Another parsing approach 08.cm-translator

More recently, I’ve been playing with an entirely different
approach to language parsing:

Suppose instead of defining a complete little language, we want
to add a single well-defined feature to a large language like (say)
C. We work out the syntax of the new feature, and define it’s
semantics via a precise description of how to translate it back to
standard C.

We could get a complete C compiler and graft our new feature
into it. That might be simple, or a nightmare.

Or we could get a complete Yacc/Lex C grammar and extend
that - adding our new feature. That’s relatively easy.

But we can’t ignore all the boring standard C. We have to deal
with it somehow. We could build and walk a complete AST
(turning our new feature back into standard C, while
re-generating all the unaltered C code).

But there’s a lot of “do-nothing” work going on here.

Is there any way of avoiding this?

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 15 / 17

Another parsing approach 08.cm-translator

Yes! graft our new feature into C by writing a simple line-by-line
pre-processor that copies most lines through unchanged (hoping
they’re valid C), but locates specially marked extension
directives, turning each into a corresponding chunk of plain C.
In 08.cm-translator you’ll find a Perl script called CM that grafts
a simple “C with Modules” syntax onto the front of C. An
example tiny.cm CM input file:
// tiny "C+Module" example: a 100 element array type and one operation on it

#include <stdio.h>

#include <stdbool.h>

%pubconst MAXELEMENTS 100

%defn

{

typedef int array[MAXELEMENTS];

}

%pubfunc bool ok = initialize(array x)

initialize an array, did it work?

{

for(int i=0; i<MAXELEMENTS; i++)

{

x[i] = 0;

}

return true;

}

CM turns this into a complete plain C module - tiny.c and tiny.h.
See intstack.cm for a bigger example.

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 16 / 17

Summary Everyone needs their toolkit!

Follow 100,000 years of human history by tool-using and
tool-making. Build yourself a powerful toolkit. Choose tools you
like; become expert in each.

When necessary, build tools yourself to solve problems that
irritate you. Be strong! Tools often save you much more time
than they cost you to make.

Text manipulation languages are fantastic timesavers. Perl is
especially good - known as The Swiss Army Chainsaw by
SysAdmins. I used to run a Perl course, see
http://www.doc.ic.ac.uk/~dcw/perl2014/

I also write an occasional series of Practical (Pragmatic?)
Software Development articles:
http://www.doc.ic.ac.uk/~dcw/PSD/

Most importantly: enjoy your C programming! Build your toolkit
- and let me know if you find, or build, any particularly cool tools!

Finally, read The Pragmatic Programmer. That’s all folks!

Duncan White (Imperial) C Programming Tools: Part 4 14th June 2018 17 / 17

	Today's Contents
	Parser and Lexer Generator tools: Yacc and Lex
	Expressions: (01..05.expr* in tarball)
	THS: a Tiny Haskell Subset: (06.ths-treebuilder)
	THS cont: (07.ths-codegen)
	Recap..
	Yacc/Lex summary

	Another parsing approach
	08.cm-translator

	Summary
	Everyone needs their toolkit!

