
C Programming Tools: Part 1
Building and Using your own Toolkit

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing, Imperial College London

23rd May 2019

The handout and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2019/lecture1/

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 1 / 21

mailto:d.white@imperial.ac.uk


Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language.

But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.
Learn the tricky bits eg. pointers, and shallow vs deep copies.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language. But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.
Learn the tricky bits eg. pointers, and shallow vs deep copies.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language. But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.
Learn the tricky bits eg. pointers, and shallow vs deep copies.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language. But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.

Learn the tricky bits eg. pointers, and shallow vs deep copies.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language. But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.
Learn the tricky bits eg. pointers, and shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language. But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.
Learn the tricky bits eg. pointers, and shallow vs deep copies.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.

Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language. But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.
Learn the tricky bits eg. pointers, and shallow vs deep copies.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.

Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your career. Right now,
you’re learning C - with Will.

Hopefully you’ll learn something from each language. But some languages
flower briefly and then die, while others endure.

C is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps to achieve basic
competence:

Learn the syntax.
Learn the semantics.
Learn the tricky bits eg. pointers, and shallow vs deep copies.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 2 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!

Build your own toolkit of:
Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,

Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,

Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive?

especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the second or third time?

You are a programmer, so think to yourself: Can I save time by automating
this?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 3 / 21



Introduction Toolkits and Craftsmanship

Or, to put that another way (as seen on the walkway a couple of years ago):

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 4 / 21



Introduction Toolkits and Craftsmanship

Or, to put that another way (thanks due to SwissMiss):

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 5 / 21



Introduction Toolkits and Craftsmanship

Or, adding SysAdmins into the mix:

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 6 / 21



Introduction Contents

Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation: Use make.

Multi-Directory Programs and Libraries: How to lay out programs in multiple
directories, a Makefile per directory.

Automating Compilation: An alternative tool called CMake.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by Hunt & Thomas.
The woodworking metaphor - and a series of excellent Programming Tips - comes
from there.

I also recommend The Practice of Programming (PoP) book, by Kernighan & Pike.
Both books are brilliant expositions of expert-level programming craft.

There’s a tarball of examples associated with each lecture, as a shorthand tarball
01.intlist refers to the directory called 01.intlist inside the tarball. Each directory
contains a README file.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 7 / 21



Introduction Contents

Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation: Use make.

Multi-Directory Programs and Libraries: How to lay out programs in multiple
directories, a Makefile per directory.

Automating Compilation: An alternative tool called CMake.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by Hunt & Thomas.
The woodworking metaphor - and a series of excellent Programming Tips - comes
from there.

I also recommend The Practice of Programming (PoP) book, by Kernighan & Pike.
Both books are brilliant expositions of expert-level programming craft.

There’s a tarball of examples associated with each lecture, as a shorthand tarball
01.intlist refers to the directory called 01.intlist inside the tarball. Each directory
contains a README file.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 7 / 21



Introduction Contents

Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation: Use make.

Multi-Directory Programs and Libraries: How to lay out programs in multiple
directories, a Makefile per directory.

Automating Compilation: An alternative tool called CMake.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by Hunt & Thomas.
The woodworking metaphor - and a series of excellent Programming Tips - comes
from there.

I also recommend The Practice of Programming (PoP) book, by Kernighan & Pike.
Both books are brilliant expositions of expert-level programming craft.

There’s a tarball of examples associated with each lecture, as a shorthand tarball
01.intlist refers to the directory called 01.intlist inside the tarball. Each directory
contains a README file.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 7 / 21



Introduction Contents

Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation: Use make.

Multi-Directory Programs and Libraries: How to lay out programs in multiple
directories, a Makefile per directory.

Automating Compilation: An alternative tool called CMake.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by Hunt & Thomas.
The woodworking metaphor - and a series of excellent Programming Tips - comes
from there.

I also recommend The Practice of Programming (PoP) book, by Kernighan & Pike.
Both books are brilliant expositions of expert-level programming craft.

There’s a tarball of examples associated with each lecture, as a shorthand tarball
01.intlist refers to the directory called 01.intlist inside the tarball. Each directory
contains a README file.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 7 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

Use a Single Editor Well: The editor should be an extension of your hand; make
sure your editor is configurable, extensible and programmable.

As a programmer, you will spend years of your life editing programs.

Coding might be 80% thinking and 20% typing, but your typing must not interfere
with your thought process.

So: Explore a few editors, choose one, and spend time becoming expert in it.

That includes: learning how to plug external tools in.

It’s more than my life’s worth to tell you which editor to use.

Why? Because programmers are notoriously sectarian when it comes to..

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 8 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

Use a Single Editor Well: The editor should be an extension of your hand; make
sure your editor is configurable, extensible and programmable.

As a programmer, you will spend years of your life editing programs.

Coding might be 80% thinking and 20% typing, but your typing must not interfere
with your thought process.

So: Explore a few editors, choose one, and spend time becoming expert in it.

That includes: learning how to plug external tools in.

It’s more than my life’s worth to tell you which editor to use.

Why? Because programmers are notoriously sectarian when it comes to..

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 8 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

Use a Single Editor Well: The editor should be an extension of your hand; make
sure your editor is configurable, extensible and programmable.

As a programmer, you will spend years of your life editing programs.

Coding might be 80% thinking and 20% typing, but your typing must not interfere
with your thought process.

So: Explore a few editors, choose one, and spend time becoming expert in it.

That includes: learning how to plug external tools in.

It’s more than my life’s worth to tell you which editor to use.

Why? Because programmers are notoriously sectarian when it comes to..

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 8 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

Use a Single Editor Well: The editor should be an extension of your hand; make
sure your editor is configurable, extensible and programmable.

As a programmer, you will spend years of your life editing programs.

Coding might be 80% thinking and 20% typing, but your typing must not interfere
with your thought process.

So: Explore a few editors, choose one, and spend time becoming expert in it.

That includes: learning how to plug external tools in.

It’s more than my life’s worth to tell you which editor to use.

Why? Because programmers are notoriously sectarian when it comes to..

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 8 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

Use a Single Editor Well: The editor should be an extension of your hand; make
sure your editor is configurable, extensible and programmable.

As a programmer, you will spend years of your life editing programs.

Coding might be 80% thinking and 20% typing, but your typing must not interfere
with your thought process.

So: Explore a few editors, choose one, and spend time becoming expert in it.

That includes: learning how to plug external tools in.

It’s more than my life’s worth to tell you which editor to use.

Why? Because programmers are notoriously sectarian when it comes to..

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 8 / 21





Programmer’s Editors Use a Single Editor Well (PP tip 22)

The leading Programmer’s editors are (probably) vim and emacs:

IDEs such as Idea and CLion provide an editor, an automated compilation system
and a debugging environment. If you’re going to use an IDE, learn how to use it well,
and how to extend and program it.

Note that Hunt & Thomas aren’t much in favour of IDEs. Neither am I:-)

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 10 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

The leading Programmer’s editors are (probably) vim and emacs:

IDEs such as Idea and CLion provide an editor, an automated compilation system
and a debugging environment. If you’re going to use an IDE, learn how to use it well,
and how to extend and program it.

Note that Hunt & Thomas aren’t much in favour of IDEs. Neither am I:-)

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 10 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

The leading Programmer’s editors are (probably) vim and emacs:

IDEs such as Idea and CLion provide an editor, an automated compilation system
and a debugging environment. If you’re going to use an IDE, learn how to use it well,
and how to extend and program it.

Note that Hunt & Thomas aren’t much in favour of IDEs. Neither am I:-)

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 10 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

Actually, it’s well known that Real Programmers use Butterflies to edit source code:

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 11 / 21



Automatic Compilation Make (tarball 01.intlist)

When multi-file C programming, there are many source files, eg:

testlist.c

defns.h

avgwordlen.c

intlist.h

intlist.c

Module intlist comprising two files (interface intlist.h and implementation intlist.c) -
defining a list-of-integers type.

Separate basic definitions header file defns.h.

Test program testlist.c, and a main program avgwordlen.c, that use intlists.

So, what should we compile? what should we link?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 12 / 21



Automatic Compilation Make (tarball 01.intlist)

When multi-file C programming, there are many source files, eg:

testlist.c

defns.h

avgwordlen.c

intlist.h

intlist.c

Module intlist comprising two files (interface intlist.h and implementation intlist.c) -
defining a list-of-integers type.

Separate basic definitions header file defns.h.

Test program testlist.c, and a main program avgwordlen.c, that use intlists.

So, what should we compile? what should we link?

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 12 / 21



Automatic Compilation Make (tarball 01.intlist)

When multi-file C programming, there are many source files, eg:

testlist.c

defns.h

avgwordlen.c

intlist.h

intlist.c

Module intlist comprising two files (interface intlist.h and implementation intlist.c) -
defining a list-of-integers type.

Separate basic definitions header file defns.h.

Test program testlist.c, and a main program avgwordlen.c, that use intlists.

So, what should we compile? what should we link?
Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 12 / 21



Automatic Compilation Make (tarball 01.intlist)

What we shouldn’t do: gcc -Wall *.c.

Dependencies between the files are vital, determined by the #include structure. See
this via:

grep ’#include’ *.[ch] | grep ’"’

Which gives:

intlist.c:#include "intlist.h"

avgwordlen.c:#include "intlist.h"

avgwordlen.c:#include "defns.h"

testlist.c:#include "intlist.h"

intlist.c includes intlist.h (to check implementation vs interface).

avgwordlen.c includes intlist.h (because it uses intlists) and defns.h, etc

Make uses such file dependencies, encoded in a Makefile, to automatically compile
your programs.

The Makefile contains dependency rules between target and source files with optional
actions (commands) to generate each target from the corresponding sources.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 13 / 21



Automatic Compilation Make (tarball 01.intlist)

What we shouldn’t do: gcc -Wall *.c.

Dependencies between the files are vital, determined by the #include structure. See
this via:

grep ’#include’ *.[ch] | grep ’"’

Which gives:

intlist.c:#include "intlist.h"

avgwordlen.c:#include "intlist.h"

avgwordlen.c:#include "defns.h"

testlist.c:#include "intlist.h"

intlist.c includes intlist.h (to check implementation vs interface).

avgwordlen.c includes intlist.h (because it uses intlists) and defns.h, etc

Make uses such file dependencies, encoded in a Makefile, to automatically compile
your programs.

The Makefile contains dependency rules between target and source files with optional
actions (commands) to generate each target from the corresponding sources.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 13 / 21



Automatic Compilation Make (tarball 01.intlist)

What we shouldn’t do: gcc -Wall *.c.

Dependencies between the files are vital, determined by the #include structure. See
this via:

grep ’#include’ *.[ch] | grep ’"’

Which gives:

intlist.c:#include "intlist.h"

avgwordlen.c:#include "intlist.h"

avgwordlen.c:#include "defns.h"

testlist.c:#include "intlist.h"

intlist.c includes intlist.h (to check implementation vs interface).

avgwordlen.c includes intlist.h (because it uses intlists) and defns.h, etc

Make uses such file dependencies, encoded in a Makefile, to automatically compile
your programs.

The Makefile contains dependency rules between target and source files with optional
actions (commands) to generate each target from the corresponding sources.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 13 / 21



Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Makefiles also contain macros, eg $(CC) which C compiler to use, $(CFLAGS) what C
compiler flags etc. Environment variables become macros too, eg $(HOME).

Note that Make needs very few explicit dependencies and even fewer explicit actions, because
it already knows that intlist.o depends on intlist.c, and how to compile .c files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 14 / 21



Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Makefiles also contain macros, eg $(CC) which C compiler to use, $(CFLAGS) what C
compiler flags etc. Environment variables become macros too, eg $(HOME).

Note that Make needs very few explicit dependencies and even fewer explicit actions, because
it already knows that intlist.o depends on intlist.c, and how to compile .c files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 14 / 21



Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Makefiles also contain macros, eg $(CC) which C compiler to use, $(CFLAGS) what C
compiler flags etc. Environment variables become macros too, eg $(HOME).

Note that Make needs very few explicit dependencies and even fewer explicit actions, because
it already knows that intlist.o depends on intlist.c, and how to compile .c files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 14 / 21



Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Makefiles also contain macros, eg $(CC) which C compiler to use, $(CFLAGS) what C
compiler flags etc. Environment variables become macros too, eg $(HOME).

Note that Make needs very few explicit dependencies and even fewer explicit actions, because
it already knows that intlist.o depends on intlist.c, and how to compile .c files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 14 / 21



Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Makefiles also contain macros, eg $(CC) which C compiler to use, $(CFLAGS) what C
compiler flags etc. Environment variables become macros too, eg $(HOME).

Note that Make needs very few explicit dependencies and even fewer explicit actions, because
it already knows that intlist.o depends on intlist.c, and how to compile .c files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 14 / 21



Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Makefiles also contain macros, eg $(CC) which C compiler to use, $(CFLAGS) what C
compiler flags etc. Environment variables become macros too, eg $(HOME).

Note that Make needs very few explicit dependencies and even fewer explicit actions, because
it already knows that intlist.o depends on intlist.c, and how to compile .c files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 14 / 21



Automatic Compilation Make (tarball 01.intlist)

Effectively, Make sees the more complete compilation rule:

intlist.o: intlist.c intlist.h

$(CC) $(CFLAGS) -c intlist.c

This rule declares that intlist.o is up to date only if it is newer than intlist.c and
intlist.h. If it doesn’t exist or is older than either file, then the action is triggered -
compiling intlist.c.

make takes optional target names on the command line (defaulting to the first
target), then performs the minimum number of actions needed to bring the desired
targets up to date, based on the timestamps of the target and source files.

For example, if intlist.h is altered, you run make, that builds the target all, which
recursively applies all the rules checking timestamps and concludes that...

...intlist.c, testlist.c and avgwordlen.c need recompiling, and then the new testlist.o
and avgwordlen.o need relinking against the new intlist.o, giving the 2 executables
testlist and avgwordlen.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 15 / 21



Automatic Compilation Make (tarball 01.intlist)

Effectively, Make sees the more complete compilation rule:

intlist.o: intlist.c intlist.h

$(CC) $(CFLAGS) -c intlist.c

This rule declares that intlist.o is up to date only if it is newer than intlist.c and
intlist.h. If it doesn’t exist or is older than either file, then the action is triggered -
compiling intlist.c.

make takes optional target names on the command line (defaulting to the first
target), then performs the minimum number of actions needed to bring the desired
targets up to date, based on the timestamps of the target and source files.

For example, if intlist.h is altered, you run make, that builds the target all, which
recursively applies all the rules checking timestamps and concludes that...

...intlist.c, testlist.c and avgwordlen.c need recompiling, and then the new testlist.o
and avgwordlen.o need relinking against the new intlist.o, giving the 2 executables
testlist and avgwordlen.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 15 / 21



Automatic Compilation Make (tarball 01.intlist)

Effectively, Make sees the more complete compilation rule:

intlist.o: intlist.c intlist.h

$(CC) $(CFLAGS) -c intlist.c

This rule declares that intlist.o is up to date only if it is newer than intlist.c and
intlist.h. If it doesn’t exist or is older than either file, then the action is triggered -
compiling intlist.c.

make takes optional target names on the command line (defaulting to the first
target), then performs the minimum number of actions needed to bring the desired
targets up to date, based on the timestamps of the target and source files.

For example, if intlist.h is altered, you run make, that builds the target all, which
recursively applies all the rules checking timestamps and concludes that...

...intlist.c, testlist.c and avgwordlen.c need recompiling, and then the new testlist.o
and avgwordlen.o need relinking against the new intlist.o, giving the 2 executables
testlist and avgwordlen.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 15 / 21



Automatic Compilation Make (tarball 01.intlist)

Effectively, Make sees the more complete compilation rule:

intlist.o: intlist.c intlist.h

$(CC) $(CFLAGS) -c intlist.c

This rule declares that intlist.o is up to date only if it is newer than intlist.c and
intlist.h. If it doesn’t exist or is older than either file, then the action is triggered -
compiling intlist.c.

make takes optional target names on the command line (defaulting to the first
target), then performs the minimum number of actions needed to bring the desired
targets up to date, based on the timestamps of the target and source files.

For example, if intlist.h is altered, you run make, that builds the target all, which
recursively applies all the rules checking timestamps and concludes that...

...intlist.c, testlist.c and avgwordlen.c need recompiling, and then the new testlist.o
and avgwordlen.o need relinking against the new intlist.o, giving the 2 executables
testlist and avgwordlen.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 15 / 21



Automatic Compilation Make (tarball 01.intlist)

Effectively, Make sees the more complete compilation rule:

intlist.o: intlist.c intlist.h

$(CC) $(CFLAGS) -c intlist.c

This rule declares that intlist.o is up to date only if it is newer than intlist.c and
intlist.h. If it doesn’t exist or is older than either file, then the action is triggered -
compiling intlist.c.

make takes optional target names on the command line (defaulting to the first
target), then performs the minimum number of actions needed to bring the desired
targets up to date, based on the timestamps of the target and source files.

For example, if intlist.h is altered, you run make, that builds the target all, which
recursively applies all the rules checking timestamps and concludes that...

...intlist.c, testlist.c and avgwordlen.c need recompiling, and then the new testlist.o
and avgwordlen.o need relinking against the new intlist.o, giving the 2 executables
testlist and avgwordlen.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 15 / 21



Automatic Compilation Make (tarball 01.intlist)

If, instead, make is run after intlist.c is modified, it figures out that it needs to
recompile intlist.c, and relink both executables against the new intlist.o.

If, instead, make is run after nothing is modified, it figures out that nothing needs to
be done. This parsimonious property of Make is its best feature!

It’s easy to auto-generate Makefiles for single directory C projects containing a single
main program and any number of modules - see tarball 02.c-mfbuild and
03.perl-mfbuild for two attempts.

Summary: Always use make, or some similar tool. Keep your Makefile dependencies
up to date, optionally auto-generating your Makefiles.

Google make tutorial for more info.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 16 / 21



Automatic Compilation Make (tarball 01.intlist)

If, instead, make is run after intlist.c is modified, it figures out that it needs to
recompile intlist.c, and relink both executables against the new intlist.o.

If, instead, make is run after nothing is modified, it figures out that nothing needs to
be done. This parsimonious property of Make is its best feature!

It’s easy to auto-generate Makefiles for single directory C projects containing a single
main program and any number of modules - see tarball 02.c-mfbuild and
03.perl-mfbuild for two attempts.

Summary: Always use make, or some similar tool. Keep your Makefile dependencies
up to date, optionally auto-generating your Makefiles.

Google make tutorial for more info.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 16 / 21



Automatic Compilation Make (tarball 01.intlist)

If, instead, make is run after intlist.c is modified, it figures out that it needs to
recompile intlist.c, and relink both executables against the new intlist.o.

If, instead, make is run after nothing is modified, it figures out that nothing needs to
be done. This parsimonious property of Make is its best feature!

It’s easy to auto-generate Makefiles for single directory C projects containing a single
main program and any number of modules - see tarball 02.c-mfbuild and
03.perl-mfbuild for two attempts.

Summary: Always use make, or some similar tool. Keep your Makefile dependencies
up to date, optionally auto-generating your Makefiles.

Google make tutorial for more info.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 16 / 21



Automatic Compilation Make (tarball 01.intlist)

If, instead, make is run after intlist.c is modified, it figures out that it needs to
recompile intlist.c, and relink both executables against the new intlist.o.

If, instead, make is run after nothing is modified, it figures out that nothing needs to
be done. This parsimonious property of Make is its best feature!

It’s easy to auto-generate Makefiles for single directory C projects containing a single
main program and any number of modules - see tarball 02.c-mfbuild and
03.perl-mfbuild for two attempts.

Summary: Always use make, or some similar tool. Keep your Makefile dependencies
up to date, optionally auto-generating your Makefiles.

Google make tutorial for more info.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 16 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

As a C project gets larger, you may wish to break it into several sub-directories.

Core concept: each sub-directory contains:

One or more modules (each a paired .c and .h file as usual).
Ideally these modules should only depend on each other, and the C standard library.
Along with any associated test programs.
Plus a Makefile that compiles all the .c files, builds all the test programs, and builds a
library containing the .o files belonging to those modules.

Let’s split our existing intlist and avgwordlen directory up.

What to split? The intlist module is:

Logically separate.
Reusable - whenever we want a list of integers.
Depends on only the standard library.

That is, it’s highly cohesive.

So: it’s perfect for splitting out into a library sub-directory.

In tarball directory 04.intlist-with-lib, you’ll see what we have done to achieve this.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 17 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

As a C project gets larger, you may wish to break it into several sub-directories.

Core concept: each sub-directory contains:

One or more modules (each a paired .c and .h file as usual).
Ideally these modules should only depend on each other, and the C standard library.
Along with any associated test programs.
Plus a Makefile that compiles all the .c files, builds all the test programs, and builds a
library containing the .o files belonging to those modules.

Let’s split our existing intlist and avgwordlen directory up.

What to split? The intlist module is:

Logically separate.
Reusable - whenever we want a list of integers.
Depends on only the standard library.

That is, it’s highly cohesive.

So: it’s perfect for splitting out into a library sub-directory.

In tarball directory 04.intlist-with-lib, you’ll see what we have done to achieve this.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 17 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

As a C project gets larger, you may wish to break it into several sub-directories.

Core concept: each sub-directory contains:

One or more modules (each a paired .c and .h file as usual).
Ideally these modules should only depend on each other, and the C standard library.
Along with any associated test programs.
Plus a Makefile that compiles all the .c files, builds all the test programs, and builds a
library containing the .o files belonging to those modules.

Let’s split our existing intlist and avgwordlen directory up.

What to split?

The intlist module is:

Logically separate.
Reusable - whenever we want a list of integers.
Depends on only the standard library.

That is, it’s highly cohesive.

So: it’s perfect for splitting out into a library sub-directory.

In tarball directory 04.intlist-with-lib, you’ll see what we have done to achieve this.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 17 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

As a C project gets larger, you may wish to break it into several sub-directories.

Core concept: each sub-directory contains:

One or more modules (each a paired .c and .h file as usual).
Ideally these modules should only depend on each other, and the C standard library.
Along with any associated test programs.
Plus a Makefile that compiles all the .c files, builds all the test programs, and builds a
library containing the .o files belonging to those modules.

Let’s split our existing intlist and avgwordlen directory up.

What to split? The intlist module is:

Logically separate.
Reusable - whenever we want a list of integers.
Depends on only the standard library.

That is, it’s highly cohesive.

So: it’s perfect for splitting out into a library sub-directory.

In tarball directory 04.intlist-with-lib, you’ll see what we have done to achieve this.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 17 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

There’s a separate lib sub-directory, let’s explore it first:

lib contains intlist.c, intlist.h, testlist.c and it’s own Makefile, lib/Makefile, which
builds two core targets:

The executable testlist.
The library libintlist.a containing intlist.o.

To do this, lib/Makefile has the following new parts:

LIB = libintlist.a

LIBOBJS = intlist.o

BUILD = testlist $(LIB)

...

$(LIB): $(LIBOBJS)

ar rc $(LIB) $(LIBOBJS)

ranlib $(LIB)

The new rule says that $(LIB) depends on $(LIBOBJS), i.e. libintlist.a

depends on intlist.o, and that the action invokes ar and ranlib - tools that build
library files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 18 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

There’s a separate lib sub-directory, let’s explore it first:

lib contains intlist.c, intlist.h, testlist.c and it’s own Makefile, lib/Makefile, which
builds two core targets:

The executable testlist.
The library libintlist.a containing intlist.o.

To do this, lib/Makefile has the following new parts:

LIB = libintlist.a

LIBOBJS = intlist.o

BUILD = testlist $(LIB)

...

$(LIB): $(LIBOBJS)

ar rc $(LIB) $(LIBOBJS)

ranlib $(LIB)

The new rule says that $(LIB) depends on $(LIBOBJS), i.e. libintlist.a

depends on intlist.o, and that the action invokes ar and ranlib - tools that build
library files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 18 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

There’s a separate lib sub-directory, let’s explore it first:

lib contains intlist.c, intlist.h, testlist.c and it’s own Makefile, lib/Makefile, which
builds two core targets:

The executable testlist.
The library libintlist.a containing intlist.o.

To do this, lib/Makefile has the following new parts:

LIB = libintlist.a

LIBOBJS = intlist.o

BUILD = testlist $(LIB)

...

$(LIB): $(LIBOBJS)

ar rc $(LIB) $(LIBOBJS)

ranlib $(LIB)

The new rule says that $(LIB) depends on $(LIBOBJS), i.e. libintlist.a

depends on intlist.o, and that the action invokes ar and ranlib - tools that build
library files.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 18 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

The top-level directory contains avgwordlen.c and defns.h, and a Makefile, containing
the following new parts:

CFLAGS = -Wall -Ilib

LDLIBS = -Llib -lintlist

BUILD = libs avgwordlen

In CFLAGS, -Ilib tells the C compiler to search for include files in the lib directory.

In LDLIBS, -Llib tells the linker to search for libraries in the lib directory, and
-lintlist links the intlist library in.

In BUILD, I’ve added libs before avgwordlen. Later down the main Makefile, we see a
rule to make libs:

libs:

cd lib; make

This new always run rule tricks Make, with it’s single directory view of the world, into
first building in the lib sub-directory, before building in the current directory.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 19 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

The top-level directory contains avgwordlen.c and defns.h, and a Makefile, containing
the following new parts:

CFLAGS = -Wall -Ilib

LDLIBS = -Llib -lintlist

BUILD = libs avgwordlen

In CFLAGS, -Ilib tells the C compiler to search for include files in the lib directory.

In LDLIBS, -Llib tells the linker to search for libraries in the lib directory, and
-lintlist links the intlist library in.

In BUILD, I’ve added libs before avgwordlen. Later down the main Makefile, we see a
rule to make libs:

libs:

cd lib; make

This new always run rule tricks Make, with it’s single directory view of the world, into
first building in the lib sub-directory, before building in the current directory.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 19 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

The top-level directory contains avgwordlen.c and defns.h, and a Makefile, containing
the following new parts:

CFLAGS = -Wall -Ilib

LDLIBS = -Llib -lintlist

BUILD = libs avgwordlen

In CFLAGS, -Ilib tells the C compiler to search for include files in the lib directory.

In LDLIBS, -Llib tells the linker to search for libraries in the lib directory, and
-lintlist links the intlist library in.

In BUILD, I’ve added libs before avgwordlen. Later down the main Makefile, we see a
rule to make libs:

libs:

cd lib; make

This new always run rule tricks Make, with it’s single directory view of the world, into
first building in the lib sub-directory, before building in the current directory.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 19 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

The top-level directory contains avgwordlen.c and defns.h, and a Makefile, containing
the following new parts:

CFLAGS = -Wall -Ilib

LDLIBS = -Llib -lintlist

BUILD = libs avgwordlen

In CFLAGS, -Ilib tells the C compiler to search for include files in the lib directory.

In LDLIBS, -Llib tells the linker to search for libraries in the lib directory, and
-lintlist links the intlist library in.

In BUILD, I’ve added libs before avgwordlen. Later down the main Makefile, we see a
rule to make libs:

libs:

cd lib; make

This new always run rule tricks Make, with it’s single directory view of the world, into
first building in the lib sub-directory, before building in the current directory.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 19 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

The top-level directory contains avgwordlen.c and defns.h, and a Makefile, containing
the following new parts:

CFLAGS = -Wall -Ilib

LDLIBS = -Llib -lintlist

BUILD = libs avgwordlen

In CFLAGS, -Ilib tells the C compiler to search for include files in the lib directory.

In LDLIBS, -Llib tells the linker to search for libraries in the lib directory, and
-lintlist links the intlist library in.

In BUILD, I’ve added libs before avgwordlen. Later down the main Makefile, we see a
rule to make libs:

libs:

cd lib; make

This new always run rule tricks Make, with it’s single directory view of the world, into
first building in the lib sub-directory, before building in the current directory.

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 19 / 21



Automatic Compilation Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the new target:

spotless: clean

cd lib; make clean

I chose a separate spotless target, because in my head, make spotless cleans more
thoroughly than make clean.

In tarball 05.libintlist and 06.avgwordlen-only, you’ll see how to split the intlist
module out completely from the avgwordlen application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into your
~/c-tools/lib/x86_64 directory, and install intlist.h into ~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools library permanently
contains the intlist ADT, for you to reuse whenever you like - as shown in
06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 20 / 21



Automatic Compilation Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the new target:

spotless: clean

cd lib; make clean

I chose a separate spotless target, because in my head, make spotless cleans more
thoroughly than make clean.

In tarball 05.libintlist and 06.avgwordlen-only, you’ll see how to split the intlist
module out completely from the avgwordlen application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into your
~/c-tools/lib/x86_64 directory, and install intlist.h into ~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools library permanently
contains the intlist ADT, for you to reuse whenever you like - as shown in
06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 20 / 21



Automatic Compilation Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the new target:

spotless: clean

cd lib; make clean

I chose a separate spotless target, because in my head, make spotless cleans more
thoroughly than make clean.

In tarball 05.libintlist and 06.avgwordlen-only, you’ll see how to split the intlist
module out completely from the avgwordlen application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into your
~/c-tools/lib/x86_64 directory, and install intlist.h into ~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools library permanently
contains the intlist ADT, for you to reuse whenever you like - as shown in
06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 20 / 21



Automatic Compilation Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the new target:

spotless: clean

cd lib; make clean

I chose a separate spotless target, because in my head, make spotless cleans more
thoroughly than make clean.

In tarball 05.libintlist and 06.avgwordlen-only, you’ll see how to split the intlist
module out completely from the avgwordlen application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into your
~/c-tools/lib/x86_64 directory, and install intlist.h into ~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools library permanently
contains the intlist ADT, for you to reuse whenever you like - as shown in
06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 20 / 21



Automatic Compilation Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the new target:

spotless: clean

cd lib; make clean

I chose a separate spotless target, because in my head, make spotless cleans more
thoroughly than make clean.

In tarball 05.libintlist and 06.avgwordlen-only, you’ll see how to split the intlist
module out completely from the avgwordlen application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into your
~/c-tools/lib/x86_64 directory, and install intlist.h into ~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools library permanently
contains the intlist ADT, for you to reuse whenever you like - as shown in
06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 20 / 21



Automatic Compilation Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the new target:

spotless: clean

cd lib; make clean

I chose a separate spotless target, because in my head, make spotless cleans more
thoroughly than make clean.

In tarball 05.libintlist and 06.avgwordlen-only, you’ll see how to split the intlist
module out completely from the avgwordlen application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into your
~/c-tools/lib/x86_64 directory, and install intlist.h into ~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools library permanently
contains the intlist ADT, for you to reuse whenever you like - as shown in
06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 20 / 21



Automatic Compilation CMake (tarball 07.intlist-with-cmake)

I recommend learning Make thoroughly, and personally I find it’s all I need.

But if you find that keeping Makefiles up to date begins to bore you (especially at
large scale), there are alternatives - or frontends - to Make:

For example CMake and the Gnu autoconf system, both of these generate Makefiles
automatically from simpler inputs, and are supposed to scale well. Let’s briefly look
at CMake:

In tarball 07.intlist-with-cmake you will find a copy of our familiar intlist-with-lib
example, in which the only differences are that the Makefiles have been replaced with
CMakeLists.txt files, and the README has been modified to explain it.

Go through that, and you’ll get a taste of how CMake lists files are constructed. But
CMake is over complex for my tastes. Also, any tool that needs to be run in it’s own
build subdirectory in order to leave the source code directory uncluttered is too
messy for me!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 21 / 21



Automatic Compilation CMake (tarball 07.intlist-with-cmake)

I recommend learning Make thoroughly, and personally I find it’s all I need.

But if you find that keeping Makefiles up to date begins to bore you (especially at
large scale), there are alternatives - or frontends - to Make:

For example CMake and the Gnu autoconf system, both of these generate Makefiles
automatically from simpler inputs, and are supposed to scale well. Let’s briefly look
at CMake:

In tarball 07.intlist-with-cmake you will find a copy of our familiar intlist-with-lib
example, in which the only differences are that the Makefiles have been replaced with
CMakeLists.txt files, and the README has been modified to explain it.

Go through that, and you’ll get a taste of how CMake lists files are constructed. But
CMake is over complex for my tastes. Also, any tool that needs to be run in it’s own
build subdirectory in order to leave the source code directory uncluttered is too
messy for me!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 21 / 21



Automatic Compilation CMake (tarball 07.intlist-with-cmake)

I recommend learning Make thoroughly, and personally I find it’s all I need.

But if you find that keeping Makefiles up to date begins to bore you (especially at
large scale), there are alternatives - or frontends - to Make:

For example CMake and the Gnu autoconf system, both of these generate Makefiles
automatically from simpler inputs, and are supposed to scale well. Let’s briefly look
at CMake:

In tarball 07.intlist-with-cmake you will find a copy of our familiar intlist-with-lib
example, in which the only differences are that the Makefiles have been replaced with
CMakeLists.txt files, and the README has been modified to explain it.

Go through that, and you’ll get a taste of how CMake lists files are constructed. But
CMake is over complex for my tastes. Also, any tool that needs to be run in it’s own
build subdirectory in order to leave the source code directory uncluttered is too
messy for me!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 21 / 21



Automatic Compilation CMake (tarball 07.intlist-with-cmake)

I recommend learning Make thoroughly, and personally I find it’s all I need.

But if you find that keeping Makefiles up to date begins to bore you (especially at
large scale), there are alternatives - or frontends - to Make:

For example CMake and the Gnu autoconf system, both of these generate Makefiles
automatically from simpler inputs, and are supposed to scale well. Let’s briefly look
at CMake:

In tarball 07.intlist-with-cmake you will find a copy of our familiar intlist-with-lib
example, in which the only differences are that the Makefiles have been replaced with
CMakeLists.txt files, and the README has been modified to explain it.

Go through that, and you’ll get a taste of how CMake lists files are constructed. But
CMake is over complex for my tastes. Also, any tool that needs to be run in it’s own
build subdirectory in order to leave the source code directory uncluttered is too
messy for me!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 21 / 21



Automatic Compilation CMake (tarball 07.intlist-with-cmake)

I recommend learning Make thoroughly, and personally I find it’s all I need.

But if you find that keeping Makefiles up to date begins to bore you (especially at
large scale), there are alternatives - or frontends - to Make:

For example CMake and the Gnu autoconf system, both of these generate Makefiles
automatically from simpler inputs, and are supposed to scale well. Let’s briefly look
at CMake:

In tarball 07.intlist-with-cmake you will find a copy of our familiar intlist-with-lib
example, in which the only differences are that the Makefiles have been replaced with
CMakeLists.txt files, and the README has been modified to explain it.

Go through that, and you’ll get a taste of how CMake lists files are constructed. But
CMake is over complex for my tastes. Also, any tool that needs to be run in it’s own
build subdirectory in order to leave the source code directory uncluttered is too
messy for me!

Duncan White (Imperial) C Programming Tools: Part 1 23rd May 2019 21 / 21


	Introduction
	Toolkits and Craftsmanship
	Contents

	Programmer's Editors
	Use a Single Editor Well (PP tip 22)

	Automatic Compilation
	Make (tarball 01.intlist)
	Multi-directory Projects (tarball 04.intlist-with-lib)
	Multi-directory Projects (tarball 05.libintlist)
	CMake (tarball 07.intlist-with-cmake)


