
C Programming Tools: Part 3
Building your own Tools

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

June 2019

The handout and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2019/lecture3/

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 1 / 17

Today’s Contents Build your own tools

So far, most tools we’ve covered have already existed (not all
though - there were two Makefile builders in Lecture 1, the
summarisetests utility, and the intlist and testutils modules).

But we said then: When necessary: don’t be afraid to build your
own tools!

Today, we’re going to cover building tools at a range of scales:

Tiny: Building shortlived tools on the fly.

Medium: Generating prototypes automatically: proto.

Large: Reusable ADT modules: hashes, sets, lists, trees etc.

Large: Generating ADT modules automatically.

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 2 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

The Pragmatic Programmers exhort us to: Learn a Text
Manipulation Language (tip 28) - such as Perl - and Write Code
that Writes Code (tip 29).

Let’s see an example of those tips together, remembering..

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 3 / 17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

Suppose we find ourselves writing hundreds of repetitive “pattern
instances” like this:

int plus( int a, int b ) { return (a+b); }

int minus( int a, int b ) { return (a-b); }

int times( int a, int b ) { return (a*b); }

...

If we need to write 10 of them - do it in your favourite programmer’s
editor using clone-and-alter.

What if we need to write 50 of them? Or 100 of them? Or 100 int
functions and another 100 double functions?

Are we bored yet? Is clone-and-alter too error-prone? Then why not..

Generate such function instances automatically using a shortlived tool,
scaffolding that you build on demand, use a few times, then discard:

Clearly, all that varies from instance to instance is (funcname,operator),
eg. (plus,+).

Specify input format (as a little language) and corresponding output:

INPUT:

each line: F, Op pair

OUTPUT:

for each F, Op pair: "int <F>( int a, int b ) { return (a <Op> b); }"

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 4 / 17

mailto:d.white@imperial.ac.uk


Tiny: Building Shortlived tools on the fly Doing it in Perl - tarball 01.tiny-tool

Simple job for a scripting language like Perl.

Here’s a Perl oneliner I composed in a minute:
perl -nle ’($f,$op)=split(/,/); print "int ${f}( int a, int b ) { return (a ${op} b); }"’ < input

The basic structure:
perl -nle ’PERL CODE’ < input

means execute that chunk of Perl code for every line of the input.

The Perl code:
($f,$op)=split(/,/)

means split the current line on ”,” into two strings, storing the part
before the comma into the variable $f, and the part after the comma
into $op.

The Perl code:
print "int ${f}( int a, int b ) { return (a ${op} b); }"

means print out the string literal, replacing ${f} and ${op} with the
value of those variables.

Don’t want to do it in Perl? (weirdo). Then use a different tool!

I wrote it in C in 15 minutes using standard library function strtok() to
split on comma: See 01.tiny-tool/genfuncs1.c.

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 5 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool - tarball 01.tiny-tool

Note that our tool doesn’t have to be perfect; just good enough
to save us time.

Once you have a tiny tool, don’t be afraid to modify it:

Left-justify the function names in a field of some suitable width:
perl -nle ’($f,$op)=split(/,/); printf "int %-15s( int a, int b ) { return (a${op}b); }\n", $f’ < input

Or, prefix the typename onto function names, eg. int_plus:

perl -nle ’($f,$op)=split(/,/); printf "int %-15s( int a, int b ) { return (a${op}b); }\n", "int_${f}"’ < input

Why not let the user change the type at any point in the input:

TYPE,int

plus,+

minus,-

TYPE,double

plus,+

minus,-

generates:

int int_plus ( int a, int b ) { return (a+b); }

int int_minus ( int a, int b ) { return (a-b); }

double double_plus ( double a, double b ) { return (a+b); }

double double_minus ( double a, double b ) { return (a-b); }

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 6 / 17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool - tarball 01.tiny-tool

To implement this, change the specification to:
INPUT:

each line: F, Op pair

OUTPUT:

for each F, Op pair:

if F=="TYPE" then T=Op

else print "<T> <T>_<F>( <T> a, <T> b ) { return (a <Op> b); }"

Make our Perl one-liner:
perl -nle ’($f,$op)=split(/,/); if( $f eq "TYPE" ) { $t=$op; next; }

printf "${t} %-15s( ${t} a, ${t} b ) { return (a${op}b); }\n", "${t}_${f}"’ < input

Final thought, instead of hardcoding the output format in the printf, we
could replace TYPEs with TEMPLATEs in the input, for example:

TEMPLATE,int int_<0>( int a, int b ) { return (a<1>b); }

plus,+

minus,-

TEMPLATE,double double_<0>( double a, double b ) { return (a<1>b); }

plus,+

minus,-

Here, the marker <0> means ”replace this marker with the current
value of the first field”. Our Perl one-liner becomes more powerful but
shorter:

perl -nle ’@f=split(/,/,$_,2); if( $f[0] eq "TEMPLATE" ) { $t=$f[1]; next; }

$_=$t; s/<(\d+)>/$f[$1]/g; print’ < input

This is now a simple template processor.

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 7 / 17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Let’s move on to an example medium scale tool I built.

While developing C code, you may find certain things irritate you.

The Pragmatic Programmers describe such things as broken
windows, and tell us - in tip 4 - Don’t live with broken windows.
Find a way to fix the problem!

One particular thing irritated me some years ago: keeping the
prototype declarations in .h files in sync with the function
definitions in the paired .c files that form modules.

Whenever you add a public function to intlist.c you need to
remember to add the corresponding prototype to intlist.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.
What a pain!

The problem here is that there’s a lot of repetition between the
.c file and the .h file. This violates the most important Pragmatic
Programmers tip:
DRY - Don’t Repeat Yourself (tip 11).

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 8 / 17



Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

Don’t live with broken windows suggests we should find, or write,
a tool to solve this problem, then integrate it into our editor for
convenience!
Years ago, I wrote proto to solve this. It reads a C file looking for
function definitions, and produces a prototype (an extern
declaration) for each function.
But this sounds pretty hard. Don’t we need a complete C parser?
I found an easier way. I imposed LIMITATIONS on my layout
approach to make the tool easier to construct: I decided that the
whole function heading must be placed on one line, and also that
the function heading could only use simple type declarations eg.
typename [**..] paramname (use typedef for complex
declarations).
Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). See
http://www.doc.ic.ac.uk/~dcw/PSD/article4/ for an
article I wrote about how easy similar editor extensions can be.
Let’s see proto in action!
Duncan White (Imperial) C Programming Tools: Part 3 June 2019 9 / 17

Large: Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of
trusted reusable ADT modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes (aka maps/dictionaries/associative arrays).
sets of strings - several possible implementations.
bags - frequency hashes, mapping strings to integers.
anything else you find useful (.ini file parsers? test frameworks?
CSV splitters?)

Unlike C++, the C standard library fails to provide any of the
following: So, either find a collection of such modules that others
have written, or build them yourself as and when you need them,
and reuse them at every opportunity.

Note: Reuse can be done without OO or generics, Make it Easy
to Reuse (PP Tip 12) - just use void *.

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 10 / 17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a
dozen ADTs (plus unit test programs) that I’ve written over the
years, plus a Makefile to package them as the libADTs.a library.

Investigate them all at your own leisure - but make install them
now so they’re installed in your TOOLDIR (~/c-tools)
directory.

Next, tarball 04.hash-set.eg contains an example application
that uses some of those ADTs, specifically:

Hashes - (key,value) storage implemented using hash tables, where
the keys are strings, and the values are generic void * pointers -
yes, it’s our old friend hash.c, after Lecture 2’s memory-leak fixes
and profiling-led optimizations.
and Sets of strings.
Then combines them to represent family information, i.e. a
mapping from a named parent to set of named children.
It’s left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you’re
programming in Perl:-)

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 11 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Principle: It’s often an excellent idea to import cool features
from other languages.

Many years ago, I realised that one of the best features of
functional programming languages such as Haskell is the ability
to define inductive data types, as in:

intlist = nil or cons( int head, intlist tail );

I’d dearly love to have that ability in C.

If only there was a tool that reads such type definitions and
automatically writes a C module that implements them..

I looked around, but I couldn’t find one. Noone seemed to have
ever suggested that such a tool could be useful!

Decision time: do I abandon my brilliant idea, or build the tool?

Cost/benefit analysis: a serious tool, a mini-compiler (with
parser, lexical analyser, data structures, tree walking code
generator): at least a week’s work! Think hard!

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 12 / 17



Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

I built the tool! After a fortnight’s work, the result was datadec -
in the 06.datadec directory (also installed throughout DoC labs).
After installing it, use as follows:

In 07.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons( int head, intlist tail );

tree = leaf( string name )

or node( tree left, tree right );

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

This creates datatypes.c and datatypes.h, two normal looking C files,
you can read them, write test programs against the interface, use them
in production code with no license restrictions. But don’t modify these
files - if you do then you can’t...

... change types.in later - suppose you realise that a tree node also
needs to store a name (just as the leaves do). Change the type defn,
rerun datadec. The tree_node() constructor now takes 3 arguments!

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 13 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Let’s look inside datatypes.h, to find what tree functions datadec
generates, and how to use them.

There are two constructor functions, one for each shape of tree:

extern tree tree_leaf( string name );

extern tree tree_node( tree l, tree r );

So, this allows us to build trees as in:

tree t1 = tree_leaf( "absolutely" );

tree t2 = tree_leaf( "fabulous" );

tree t = tree_node( t1, t2 );

Then a function telling you which shape a tree is: is it a leaf or a
node?

typedef enum { tree_is_leaf, tree_is_node } kind_of_tree;

extern kind_of_tree tree_kind( tree t );

Then two deconstructor functions which, given a tree of the
appropriate shape, breaks it into it’s constituent pieces:

extern void get_tree_leaf( tree t, string *namep );

extern void get_tree_node( tree t, tree *lp, tree *rp );

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 14 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

These allow you to write tree-walking code like this leaf-counter:

int nleaves( tree t )

{

if( tree_kind(t) == tree_is_leaf )

{

string name; get_tree_leaf( t, &name );

return 1; // leaf( name ): contains 1 leaf.

} else

{

tree l, r; get_tree_node( t, &l, &r );

// node( l, r ): process l and r trees.

return nleaves(l) + nleaves(r);

}

}

In Haskell, this’d be:

nleaves(leaf(name)) = 1

nleaves(node(l,r)) = nleaves(l) + nleaves(r)

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 15 / 17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in
human readable format:

extern void print_tree( FILE *out, tree t );

To see all the above in use, see mintesttree.c.

By default, datadec does not generate free functions. Why?
Hard to do right due to shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE()
functions, although you still have to be careful using these - see
the README file for details.

Looking back, I now view the fortnight I spent building datadec
(and, more recently, the day or two adding free TYPE() support)
as the single best investment of programming time in my career.
I have saved hundreds of days programming time using it - and
so can you!

You can read a 3-part article I wrote about how I designed
datadec here:

http://www.doc.ic.ac.uk/~dcw/PSD/article8/

Duncan White (Imperial) C Programming Tools: Part 3 June 2019 16 / 17



Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

Remember:

(and learn Perl, it’s great!)
Duncan White (Imperial) C Programming Tools: Part 3 June 2019 17 / 17


	Today's Contents
	Build your own tools

	Tiny: Building Shortlived tools on the fly
	Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)
	Doing it in Perl - tarball 01.tiny-tool
	Improving our Tiny tool - tarball 01.tiny-tool

	Medium: Generating Prototypes Automatically
	proto: (tarball 02.proto)

	Large: Reusable ADT modules
	hashes, lists, trees, sets etc
	Some ADTs: tarball 03.adts/example 04.hash-set-eg

	Large: Autogenerating ADTs
	datadec (tarball 06.datadec/07.datadec-eg)


