Introduction to Perl: Sixth Lecture J

Duncan White (CSG)

Duncan White (CSG)

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2015

Introduction to Perl: Sixth Lecture January 2015 1/24

EEGNVEEIECN List module (list-v0)

@ We might speculatively write the following main program (egl),
using a module that doesn't exist yet. (Find this in the list-v0/

tarball directory):

use List; # if it exists!

die "Usage: egl wordfile [wordfile...]\n" unless QARGV;

my $wordlist = List::nil();
while(my $line = <>)

{
chomp $line;
$line =" s/ \s+//;
$line =" s/\s+$//;
next unless $line;
$line = lc($line);
my @wd = split(/\s+/, $line);
foreach my $word (@wd)
{
$wordlist = List::cons($word,
¥
}

$wordlist = List::rev($wordlist);

my $len = List::len($wordlist);
print "len(list) = $len\n";

my $str = List::as_string($wordlist);
print "list = $str\n";

#*

make list of every lowercased word in every file
for every line in every file

*

remove leading..

. and trailing whitespace
skip empty lines

lower case

foreach word in line

EE N

$wordlist);

reverse wordlist

print length of wordlist

print the wordlist

@ Syntax check this with per1 -cx eg1 - you get a fatal error (even Perl
complains about a missing module!)

Introduction to Perl: Sixth Lecture January 2015 3/24

@ In this session, we'll see how we construct Perl modules:

creating Perl modules
controlling symbol export/import
how to write Perl classes

how to inherit classes

@ Modules in any language: allow you to split a large program into
separate source files and namespaces, controlling the interface.
These separate components are variously called modules,
packages, libraries, units or (in extreme cases) classes.

@ Perl’s approach to modularity, information hiding, abstraction
and OO is refreshingly lightweight: Perl constructs its modules
and classes using about half a dozen new concepts and keywords.

@ Now, let's see how easy it is to build a Perl module from scratch:
let's implement a linked list type - without using arrays.
(Although we normally use arrays as lists in Perl, inserting an
element on the front of a large array requires shuffling all the
existing elements up 1, an O(N) operation).

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 2/24

RTRVEGIISN List stub module (list-v1)

o Create a stub module as follows (file List.pm in the list-v1/
examples tarball directory):

package List;

List module: linked lists using references. STUB VERSION..
use strict;

use warnings;

use Function::Parameters qw(:strict);

use Data::Dumper;

$1 = nil(): - return an empty list
fun nil() { return "nil"; }

$1 = cons($head, $tail) - return a new list node.
$head becomes the head of the new list, and $tail the tail.

fun cons($head, $tail) { return "cons"; }

$isnil = isnil($list) - return true iff the given list is nil
fun isnil($list) { return 1; }

($head, $tail) = headtail($list) - break nonempty list into head and tail
fun headtail($list) { return ("head", "tail"); }

$len = len($list) - return the length of the given list
fun len($list) { return 0; }

$revlist = rev($list) - return the reverse of $list
fun rev($list) { return "reverse"; }

$str = as_string($list) - return the printable form of the given list
fun as_string($list) { return "as_string"; }

1;

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 4/ 24

IRV List stub module (list-v1)

@ What can we see immediately?

@ A Perl module called List is stored in a file called List.pm.
List.pm starts with the declaration ‘package List> to give its’
functions (and global variables) a private namespace. The default
package we've been using so far is called nain.

List.pm switches on strict mode, imports the new runction: :Paraneters
module and pata::pumper, and then defines several ordinary functions
- with stub implementations at present. We've chosen names rev0
and 1en0 to avoid future name clashes.

One weird detail is that each module must end with a spurious
true value, eg <1;>, showing that the module loaded successfully.
Such a module is imported into a program by the usual ‘use List’
syntax, just like pre-written modules.

@ Now syntax check both the module per1 -cu List.pn and egl
perl —cw egl. RUN egt ../wora1ist t0 Make it read a small wordlist file.

@ Of course it doesn't produce sensible answers - with a stub
module. We have to really implement module List!

Introduction to Perl: Sixth Lecture January 2015

Duncan White (CSG)

IRV Implementing the List module (list-v2)

@ fun headtail($list) IS!:

die "List::headtail, bad list ".Dumper($list) unless
ref ($list) eq "ARRAY" && (@$list == 0 || @$list == 2);
die "List::headtail, empty list\n" if @$list == 0;
my($h, $t) = @$list;
return ($h, $t);

@ fun len($list) iSZ

my $len = 0;

while(! isnil($list))

<
(my $h, $list) = headtail($list);
$len++;

}

return $len;

@ Find the full version of List.pm (containing all the above plus rev
and as_string) inside the list-v2/ tarball directory.

o After syntax checking, if we rerun e ../woraiise it should actually
report the number of words in the wordlist and display the words
as a comma-separated list. Independent check:

wc -w ../wordlist
cat ../wordlist
@ You can write many other useful list routines, appenatsi1, s12),

$newl = copylist($1), €VEN maplist {0P} $list and greplist {0OP} $list.

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015

EIRVELIISN Implementing the List module (list-v2)

To implement our linked lists, we must decide how to represent
empty »i10 and non-empty consm,v) lists. Let's use the nearest
thing Perl has to pointers - references:

u, ie. a reference to an empty array, seems the obvious
representation of ai10, although waer is another sensible choice.

[n, + 1 Seems the most obvious representation of consam,vy. That's a
reference to a 2-element array, where the first array element is
the head and the second element is the tail.

fun nil() |S thUS Written: return [];
fun cons($head,$tail) iSZ return [$head, $tail];

un 1sni1cs1ist) Checks whether a list is nil or not, first doing a sanity
check that the list is a suitable array ref, using puper to display the
unknown scalar if it's not a list:

die "List::isnil, bad list ".Dumper($list) unless

ref ($list) eq "ARRAY" && (@$list == 0 || @$list == 2);
return @$list == 0 ? 1 : 0;

Introduction to Perl: Sixth Lecture January 2015 6 /24

Duncan White (CSG)

5/ 24

Perl Modules Client Convenience: Printing very long lists (list-v3)

@ What if our list contains a million elements? Should as_stringes1ist)
display the whole thing? Many programmers might like the
option of displaying only the first N elements!

@ Let's add an optional second parameter to as_string, @ per-call limit
(defaulting to 0 if missing):

fun as_string($list, $limit = 0)

{
my $str = "";
for(my $i = 1; ! isnil($list) && ($limit == 0 || $i <= $limit); $i++)
{
(my $h, $list) = headtail($list);
$str .= "$h,";
¥
chop $str; # remove trailing ’,’
$str .= "..." unless isnil($list); # must show that list has been cutoff!
return "[$str]";
¥

@ A system wide default limit would also be useful - add a shared
variable to List.pm, near the top: uy sas_string_1init

0;

@ Add a new setter function: fun set_as_string_limit($n) { $as_string limit = $n; }

@ Now change as_stringo to use the system wide limit (rather than 0)
as the default: fun as_string(s1ist, $linit = Sas_string limit). |iSt—V3/
contains this version. Play with it.

Duncan White (CSG)

7/24 Introduction to Perl: Sixth Lecture January 2015 8 /24

RIRVIGIIS Shared Variables: my vs our (list-v4)

o We've just seen that we can declare a shared variable in a
module via ‘ny sas_string_11mit - o» NEar the top.

@ This variable is associated with the lexical scope - it is only
accessible in the List.pm source file, from the line of declaration

down to the bottom. Hence, only functions below a «y variable's

declaration can see it, and it's shared between those functions -
and truly private to them.

@ However, a second type of shared variables exist: package
variables, using <u not wy. What's the difference?

o If we redefine <our sas_string_11mic - 07, it belongs to the package not
the file. We can access such a variable from outside the package
via $List::as_string_limit = 20.

@ In general, use «y variables most of the time. Only use <our
where there's a good reason. Personally, | reckon abolishing
setter functions is an excellent reason!

o list-v4/ contains the ‘our limit' version. Compare it with
list-v3/, play with both versions. Pick the one you prefer:-)

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015

FEGNVELIECE Interface Control (list-v5)

@ The client controls what is imported via «use> variations:

Perl Modules Interface Control

@ This List::neaatain stuff is horrid. The module designer should be
able to choose which symbols to export, and the module user
choose which exported symbols to import.

@ Use module Exporter to control this. Exporter defines three
conceptual sets, which are «ur variables:

e The set of symbols exported from a module and imported into a
client by default (our ezxeorr).

@ The set of additional symbols exported from a module which a
client can choose to import (our eexporr_ok).

e The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %export_tacS).

@ We will cover the first two - see peridoc exporter for all the gory details
(tagged symbol sets, importing symbols matching a regex, etc).
@ To make List an Exporter module, add:

use Exporter qw(import);

our @EXPORT = qw(nil cons isnil headtail len rev as_string);
our @EXPORT_OK = qw(append) ;

9 /24 Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 10 / 24

Perl Objects and Classes

@ The purpose of classes in any language is to provide objects -

tidy little collections of data and behaviour.

@ We've already seen how to use predefined classes to create and
use objects, now we'll see how to write classes.

use module; import the default set of symbols - everything on the module’s
QEXPORT list.

use module (); import no symbols.

use module qw(A B C); import only symbols A, B and C - these symbols must either be on
the default list @EXPORT or the optional list @EXPORT_OK.

use module qw(:DEFAULT A B C); import the default set (everything on @EXPORT) and symbols A, B
and C from the optional list @EXPORT_OK.

@ The main concepts involved here are objects, classes, class

e Find the Exporter-friendly version of List.pm and egl (with all
List:: prefixes removed, and appena0 added) inside the tarball's
list-v5/ directory. Experiment with e variations if you like.

What can/should we Export?

@ Export only public functions, as few as possible.

@ Put as little as possible (eg. “inner core” functions that everyone
will need) into eexeorr. Put occasionally used functions in eexeorr_ox.

@ Name clashes: If two modules both export symbol X (especially
in their exeorr arrays), and a single client script tries to import X
from both modules, you get a perl warning: packagenane: :x redetined.
The second X is used!

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 1

methods, object methods and inheritance. Here's a rough set of
Perlish definitions:

e A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.

e An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it's own class. This is
called a blessed reference.

o A class method (such as the class constructor) is a function that
takes the class name as it's first argument. The constructor is
conventionally called nev - but you can have any number of
constructors with any names.

o An object method takes the object (sse1¢) as the first argument.

o Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

1/24 Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 12 / 24

EENCINSSEN NG Example Perl Class - List.pm (OO version list-v6)

Let's take our List module and turn it into a class:

@ 5110 and cons(snead,$taily beCOmMe constructors, so take the classname
as an extra first argument, and USe biess sobject, sc1ass tO associate
the object reference with the class name (ie. “List”).

@ Here are the new versions:

$1 = List->nil - return an empty list
fun nil($class)

{
return bless [], $class;
¥
$1 = List->cons($head, $tail) - return a new list node.
$head becomes the head of the new list, and $tail the tail.
fun cons($class, $head, $tail)
{
return bless [$head, $tail], $class;
}

@ Wherever we call ni1¢) OF cons(shead,stainy - either in the List module
or in clients using the List module, ie egl - we have to write
List->nil() OF List->cons($head,$tai) tO provide the classname for blessing.

@ All other functions already take a list as the first argument, so
coincidentally already obey the object method conventions. We
could leave them alone, although...

EENCINSSENNEEES Example Perl Class - List.pm (OO version list-v6)

@ You probably should update the comments - for clarity - as in:

$isnil = $list->isnil - return true iff the given list is nil
($head, $tail) = $list->headtail - break nonempty list into head and tail
$len = $list->len - return the length of the given list

@ One subtlety: isni10 and neaataino have checks:

die "..... " unless

ref ($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

@ These now fail, because res(sviessea_object_rer) returns the classname
the object belongs to - i.e. “List”. Could write: rer(siist) eq "List",
but a better alternative is: siist->isacList.

@ Note that you can leave object method calls in their non OO
syntax, eg. isniisiist), O write them in the OO form siist->icni1.

@ Note also that the name clash problem is solved, so revo and 1en0
could become reverse and 1engtno.

o If we're prepared to rename siuist as sseis throughout,

Function: :Paraneters NAS Specific new syntax for method declarations:
method name(args) # equivalent to fun name($self, args)

@ Find the OO version of List.pm (using the new ‘method’ syntax)
and egl (using OO syntax) inside the tarball’s list-v6/ directory.

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 13 / 24 Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 14 / 24

EINCINISSENL NG Aside - Overloading Stringification (list-v7)

@ Perl has an advanced feature called operator overloading. One

Perl Objects and Classes Another Perl Class - Person.pm (person-v1)

New example: model attributes of a Person:

strange “operator” is called stringify, written -», which controls package Person;
. . . use strict;
how our objects are converted into strings. use varnings;

use Function::Parameters qw(:strict);

@ To enable this, add the following into List.pm below the
declaration of as_string:

Operator overloading of "stringify" (turn into a string)

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26);

the object constructor
fun new($class, %arg) {

use overload ’""’ => \&overload_as_string;
£ Toad tring($list, $x, $y) # don’t bout last 2 my $obj bless({}, $class)
{un overload_as_string ist, $x, $y on’t care about las params $obj->{NAME} = $arg{NAME} // $default{NANE};

$arg{SEX} // $default{SEX};

. Slistos cring: $obj->{SEX}
return $list->as_string; $arg{AGE} // $default{AGE};

} $obj->{AGE}
return $obj;

@ Now, when any List object such as suiss is used in a string ’

. . . . # get/set methods - set the value if given extra arg
context, eg. variable interpolation, Perl will do a method call method name($value = undef) {
. $self->{NAME} = $value if defined $value;
$1ist->overload_as_string(undef,0) aNd interpolate the returned value, eg: return $self->{NAME};
print "list = $wordlist\n"; +

method sex($value = undef) {
$self->{SEX} = $value if defined $value;
return $self->{SEX};

@ Find the ‘OO with stringification’ version of List.pm and an
altered version of egl (using interpolation as above) inside the N
tarball’s list-v7/ directory. Syntax check and rerun.

@ This is so convenient that I've started writing more classes than |
used to - simply to get automatic stringification.

method age($value = undef) {
$self->{AGE} = $value if defined $value;
return $self->{AGE};

¥

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 16 / 24

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 15 / 24

ENCINSSEN NG Another Perl Class - Person.pm (person-v1)

@ Person cont:

method as_string # stringification
{
my $class = ref($self); my $name = $self->name;
my $age = $self->age; my $sex = $self->sex;
return "$class(name=$name, age=$age, sex=$sex)";
}
use overload ’""’ => \&overload_as_string;
fun overload_as_string($list, $x, $y) { return $list->as_string; }

1;

@ Here's eg2, the main program that uses Person:

use Person;

my $dunc = Person->new(NAME => "Duncan", AGE => 45, SEX => "m");
print "$dunc\n";

$dunc->age(20); $dunc->name("Young dunc");

print "$dunc\n";

@ When syntax checked and run, eg2 produces:
Person(name=Duncan, age=45, sex=m)
Person(name=Young dunc, age=20, sex=m)
@ We can reimplement all the get/set methods (in person-v2):

method _getset($field, $value = undef) {

$self->{$field} = $value if defined $value;

return $self->{$field};
¥
method name($value = undef) { return $self->_getset("NAME", $value); }
method sex($value = undef) { return $self->_getset("SEX" , $value); }
method age($value = undef) { return $self->_getset("AGE" , $value); }

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 17 / 24

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

@ Let's create a Programmer subclass of Person, with an
additional property - a hashref storing language skills (each skill
is a language name and an associated competence level).

@ It's good practice when subclassing to check that an empty
(stub) subclass doesn’t break things, before adding new stuff.

@ So, here's our stub subclass version of Programmer:

stub class Programmer - reuse all methods!
package Programmer;

use strict; use warnings;

use base qw(Person);

1;

@ Let's make eg3 a copy of our final version of eg2, and then
change both occurrences of Person to Programmer, i.e.:

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",
AGE => 45,
SEX => 'm’);

@ What do we expect to happen? It should work just like before,
but the object should know that it's a Programmer! After
syntax checking, run eg3 to see what happens:

Programmer (name=Duncan, age=45, sex=m)
Programmer (name=Young dunc, age=20, sex=m)

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 19 / 24

Perl Objects and Classes Inheritance = Method Search

@ Now let's see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

@ A Perl class can name one or more parent classes via:

use base qw(PARENT1 PARENT2...);

@ These relationships are used to determine which package's
function should be invoked when a method call is made. Here's
the method search algorithm for a method (say ne11):

o Start the search in the object’s class (the package the object was
blessed into). If that package has a nei1o function, use that.
Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.

And so on through the remaining parent classes.

o
o
o
e If still not found, report an error.

@ Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 18 / 24

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

@ But how did it work? Let's start by understanding how the
constructor call works:

Constructor call: Programmer->new (args)
Does Programmer: :new exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person
Does Person: :new exist? yes! use that!
Call Person: :new as a class method: Person: :new("Programmer" ,args)
@ Person::new IS Ca”ed Wlth the arguments:
$class = "Programmer";

Yharg = ("NAME" => "Duncan", "AGE" => 45, "SEX" => "m");
and then creates a new object, viesses it into package
Programmer, initializes it and finally returns it.
@ Now consider an object method call such as saunc->age¢ 20 5, Where
saunc IS @ Programmer:

Method call: $dunc->age (20)

What is $dunc? ref ($dunc) is "Programmer"! start search there...
Does Programmer: :age exist? no!l continue search...

Find the first parent class of Programmer Person

Does Person: :age exist? yes! use that!

Call Person: :age as an object method: Person: :age($dunc, 20)

@ Note that stringifying our object for printing still works - so even
the stringification overloading is inherited properly.
@ Ok, now let's start really implementing Programmer.

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 20 / 24

EENCINSSEN NG Subclassing: Implementing Programmers (programmer-v2) EENCINISSENNEEEEI Subclassing: Implementing Programmers (programmer-v2)

° Ad(i a r:ew skinis method, a helper skiiis_as_string and override as_string: o Here's our test harness eg3a which uses the new features:
package Programmer;

use strict; use warnings; use strict;
use Function::Parameters qw(:strict);

use warnings;
use base qw(Person);

use Programmer;

method skills($value = undef) { return $self->_getset("SKILLS", $value); } my $dunc = Programmer->new(NAME => "Duncan",
AGE => 45,
method skills_as_string { # additional method SEX => "m",
my $sk = $self->skills; SKILLS => {
my @str = map { "$_:$sk->{$_}" } sort(keys(%$sk)); "c" => "godlike",

return "{" . join(", ", @str) . "}"; "perl" => "godlike",
} NG => Mokh

"java" => "minimal"

method as_string { # override method })

my $pers = $self->Person::as_string; print "$dunc\n"

$pers =" s/ \)$//; $dunc->age(20);

my $skills = $self->skills_as_string; $dunc->name("Young dunc");

return "$pers, skills=$skills)"; $dunc->skills({ "C" => "good", "prolog" => "good" })
} print "$dunc\n";

13
_ o _ @ When syntax checked and run, eg3a produces:
@ gselt->person::as_string IS aN example of method chaining, which does a

Programmer: name=Duncan, age=45, sex=m

normal method Ca” to Person: :as_string. skills={}
i Programmer: name=Young dunc, age=20, sex=m
@ Note that we don’t have to override _getset) OF even skills={C:good, pascal:ok}

overload_as_string(). When overload_as_string() iS Ca”ed to Str|ng|fy a

@ But... this is awfull Where have all Duncan's skills gone?
Programmer it performs a method call to sseit->as_string Which

Answers on a postcard please:-)
Ca||S Programmer: :as_string.

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 21 /24 Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 22 /24

Perl Objects and Classes Subclassing: Skills for Programmers (programmer-v3) Perl Objects and Classes Lists of People and Programmers (list-of-programmers)

@ The problem is that person::new has no code to initialize a sk field. o Give this version (inside the tarball programer-vs/ dir) a try.
And nor should it! @ Isn’t there a better way? The extra notes document on the
@ So we must define our own programer::new. | he following works, but website has some more ideas. But this'll do us for now!
repeats person::new'S initializations: @ Do List, Person and Programmer work together? Here's eg4:

use strict; use warnings;

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"}); use Programmer; use List:

sub new { . # the object constructor my $dunc = Programmer->new(NAME => "Duncan",
my($class, %arg) = @_; =
AGE => 45,
my $self bless({}, $class); SEX => "m"
$self->{NAME} $arg{NAME} // $default{NAME}; SKILLS => {

$self->{SEX}
$self->{AGE}
$self->{SKILLS}
return $self;

$arg{SEX} // $default{SEX};
$arg{AGE} // $default{AGE};
$arg{SKILLS} // $default{SKILLS};

"C" => "godlike",
"perl" => "godlike",
NCH+M => NokM,

3 "java" => "minimal"
});
. . my $bob = Person->new(NAME => "Bob", SEX => ’'m’);
@ Here we're breaking a cardinal rule of programmers: Don’t my $shirley = Person->new;
R my $list = List->cons($shirley, List->cons($dunc, List->cons($bob, List->nil)));

Repeat Yourself - this is very prone to errors. print "$list\n";
@ What we need is constructor chaining - create a Person, change @ When run, this produces:

it to an instance of $class (by a second viess) and add skills: [Person(name=Shirley, age=26, sex=f),

Programmer (name=Duncan, age=45, sex=m, skills={C:godlike, perl:godlike}),

my %default = (SKILLS => { java => "ok" });

Person(name=Bob, age=26, sex=m)]
fun new($class, %arg) {

my $obj = Person->new (arg) ; # create a person @ A newer alternative to Perl bless-based OO is called woose, and is
$obj = bless($obj, $class); # now a $class)
$0bj->{SKILLS} = $arg{SKILLS} // $default{SKILLS}; # add skills very popular. See the extranotes document fOI’ an examp|e Of It’S
return $obj;

} Use, then I’ead perldoc Moose.

Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 23 /24 Duncan White (CSG) Introduction to Perl: Sixth Lecture January 2015 24 /24

	Contents
	Perl Modules
	List module (list-v0)
	List stub module (list-v1)
	Implementing the List module (list-v2)
	Client Convenience: Printing very long lists (list-v3)
	Shared Variables: my vs our (list-v4)
	Interface Control
	Interface Control (list-v5)

	Perl Objects and Classes
	Example Perl Class - List.pm (OO version list-v6)
	Aside - Overloading Stringification (list-v7)
	Another Perl Class - Person.pm (person-v1)
	Inheritance = Method Search
	Subclassing: Programmers are People too (programmer-v1)
	Subclassing: Implementing Programmers (programmer-v2)
	Subclassing: Skills for Programmers (programmer-v3)
	Lists of People and Programmers (list-of-programmers)

