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Historical Introduction 
 One of the lessons I have learned in thirty years of lecturing to students is that 
if you take great care in preparing lectures, finding the best intuitions to explain a 
technique and refining the equations to their simplest form, then the students will 
learn a good deal, but will think of you as a little naive - “he only teaching the simple 
things” will be their thoughts. On the other hand, if you do the opposite, rush the 
preparation, put up slides of badly formulated obscure equations and wave your arms 
wildly to avoid giving a proper explanation then they will learn nothing but will leave 
the lecture thinking “what a clever fellow he is”. In the light of this experience, I 
formulated the rule that to be obscure is to gain respect, and chose for my title 
“Hippocrates and the Beast of Business” to pose a puzzle, make you think that the 
lecture would contain insights into the ancient world and culture, and possibly tell a 
fable to entertain and give moral instruction. Had I called it “Computers in Medicine” 
you would have had a clear indication of its contents, but would doubtless have 
thought it a dull insipid topic unworthy of your attention. So, in order not to 
disappoint you I shall begin with Hippocrates. 
 Hippocrates of Cos, whose image, as conceived by Rembrandt, is seen in the 
picture above, lived from around 460BC to 370BC. He is widely regarded as the 
founder of modern medicine and is honoured by each newly graduating doctor taking 
the Hippocratic oath. In his teachings he rejected common superstitions that illness 
was either caused by an evil spirit or was a punishment inflicted by the gods. Instead 
he advocated that disease was an imbalance of the body’s “humours” caused by a 
combination of environmental factors, diet and living habits. His therapies were based 
on the idea of restoring the correct balance of the humours by rest and restraint. He 
was generally opposed to intervention and avoided the use of drugs if possible. His 
methods are nowadays sometimes known as “holistic medicine” based on the 
principle of Aristotle that the whole human is more than the sum of the parts. 
 Hippocratic ideas were accepted for more than two thousand years after his 
death, but came under increasing attack during the nineteenth and twentieth centuries. 



The doctors of the Victorian period increasingly began to take a reductionist approach 
to the subject. This involved isolating a single cause for a disease and treating it 
directly. The emergence of anaesthetics and antiseptics at the end of the nineteenth 
century paved the way for spectacular successes in the field of surgery. The discovery 
of antibiotics early in the twentieth century similarly revolutionised medicine. By the 
middle of the twentieth century it was a commonly held view that reductionism was 
key to the cure for all known diseases, and that it was simply a matter of time before 
the scourge of illness would be eliminated completely. However, that was not to be as 
bacteria mutated to escape the power of the antibiotics, and viruses adapted to find 
new ways to live off human cells.  Hippocratic ideas are again becoming popular with 
practitioners, in the United Kingdom at least, advocating rest and good diet as a cure, 
and avoiding the use of antibiotics wherever possible.   
 Next to Hippocrates is a picture of the Beast of Business, as it appeared in 
1960. This is the Control Data Corporation 1460 computer - then the fastest and most 
powerful computer ever built - designed by Seymour Cray one of the most innovative 
computer designers of the twentieth century. The Beast of Business was a nickname 
for the computer from that time reflecting its growing use and importance in 
commerce, though the 1460 was built as a military, not a business, machine. In the 
1960s the computer successfully took over many clerical office duties. It would print 
the payroll, send out invoices, print envelopes for mailing lists, keep stock inventories 
and a whole host of other like activities, much faster and much more accurately than 
ever a clerk could. It was a reductionist machine par excellence, solving isolated tasks 
to perfection. Yet at that time the world of computing and the world of medicine had 
barely become acquainted. All that was to change dramatically in my forty years of 
working with the Beast. 
 It is easy to forget just how primitive the computer was in 1960. Typically 
computers could execute four thousand instructions a second - today they can execute 
four thousand million instructions each second. They were built then from single 
transistors and diodes - the idea of making a device containing more than one 
transistor had only emerged in 1958. Nowadays they are built from a few integrated 
circuit devices each containing several million transistors. Memories in the 1960s 
were made from magnetic beads, threaded with three wires and would typically store 
around four thousand instructions in a bulky and expensive module. Today, a cheap 
memory card holds a thousand million bits. The large tape drives for storage have 
been replaced by faster, bigger capacity cards the size of a coin. As the computer 
mutated to its present form so it increasingly found new tasks within its grasp. 
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 In the nineteen sixties the computer, though crude, was driving change and 
ideas. Manufacturers were building systems that were smaller, cheaper and more 
applicable outside the business world. The Digital Equipment Corporation PdP-8 
computer, shown figure 2, introduced in 1965, was intended for engineering 
applications, and was built with medium-scale integrated (MSI) circuits each 
containing hundreds of transistors. The arrival PdP-8 was an important moment for 
the computer in medicine because it opened the door for dedicated or embedded 
computing. A computer could be dedicated to a single engineering task, such as the 
monitoring and control of a process plant, or some diagnostic purpose. Software 
advances were driven by the possibilities offered by the new technology. It is hardly a 
coincidence that the fast Fourier transform algorithm, of vital importance in medical 
imaging, was published in 1965. The theory behind it, which exploits the symmetric 
properties of sine waves, was known in the time of Fourier. The world famous paper 
by Cooley and Tukey was fundamentally concerned, not with theory, but with how to 
implement the Fourier transform algorithm on a small computer. New thinking in 
hardware and software opened the door for the centuries most important advance in 
medical imaging - computed tomography (CT) - which was demonstrated in 1970, 
and to new approaches to analysing and characterising medical signals. In the ten 
short years from 1960-1970 the computer had become an essential element in medical 
practice. Its importance has continued to grow from these beginnings to the present 
day. 
 There are many ways in which one can describe and classify the tasks 
undertaken by the computer in medicine. I have grouped them into five categories: 
retrieval, prosthetics, diagnosis, simulation and analysis. The name prosthetics is 
being used here in a figurative rather than a literal sense to describe tasks in which the 
computer extends the capability of the practitioner to assess or treat the patient, for 
example by being able to view the internal structures of the body through medical 
imaging. Of these five tasks the first three are fundamentally reductionist in nature, 
and have been accomplished with astounding success. The last two, analysis and 
diagnosis, are more holistic in nature and have enjoyed some success. 
 
Retrieval 
 One of the surprising things about the use of the computer for information 
retrieval was the length of time that elapsed before any effective patient records 
systems emerged. It is tempting to think that the business software of the 1960s could 
be easily adapted into hospital information systems, but this did not happen. Even as 
late as 1990, although there were many computer systems supporting records in 
specialist units in hospitals, there was no agreed health record system for general 
practice. The European union then funded a large research project, including 21 
participant institutions, to define the prefect medical record, but in the end it was de-
facto systems and standards that were finally applied. Very recently Fujitsu admitted 
that there were still major problems with their new patient records system for the 
NHS. The reasons for this are many. Health records are very diverse in the range and 
type of information they contain. Practitioners were slow to adopt new technology - 
the use of the keyboard for data entry was, for a long time, considered demeaning by 
some senior consultants. Computer scientists failed to recognise the difficulties, and 
were tempted to adopt the old-fashioned data processing approach of centralised 
computing, rather than distributed databases. Modern approaches have overcome 
many of these difficulties, with data being distributed widely and accessible through 



the internet. Such systems are easy to implement and easy to access, and are 
becoming increasingly important in medical research as we shall see later. 
 
Prosthetics 
 In contrast to retrieval, the prosthetic extensions offered to the clinician 
expanded dramatically in the 1970s, most notably in the field of imaging. Magnetic 
resonance imaging was demonstrated in 1976, and has been developing ever since. 
Some of the advances were gained by improved engineering of the magnets and coils, 
but much of the progress resulted from the development of computational techniques 
for reconstruction and visualisation of data. Other techniques of internal viewing were 
gaining ground at the same time - in particular flexible endoscopes were becoming 
widely used. A skilled endoscopist can insert a scope a distance of over one meter 
inside the body to examine the colon or the upper gastrointestinal tract, reaching as far 
as the caecum or the duodenum. However, there are difficulties with the technique. 
The endoscope itself is a difficult instrument to use, requiring the simultaneous 
control of two steering wheels and several buttons with the right hand while pushing 
or pulling the scope with the left hand. Initially it took two practitioners to perform an 
endoscopic examination. The unfavourable environment inside the human body 
complements the poor ergonomics of the scope. Even a well-prepared colon contains 
fluids that suddenly obscure the view, and is inclined to collapse in spasm at regular 
intervals. Its most awkward characteristic is its mobility. This makes advancing the 
endoscope difficult, and impossible in certain patients. Loops can form which cause 
paradoxical behaviour of the endoscope - pushing giving the appearance of moving 
the scope backwards - and have inherent danger in traumatising the colon wall. In 
1984 I started working with consultant endoscopist Christopher Williams to see what 
the computer could do to circumvent some of these problems. 

 
Figure 3 
 One of our main objectives was to design a system that would steer the 
endoscope automatically, freeing the consultant from the distracting task of using the 
thumb wheels. If we could design a system that would direct the endoscope towards 
the lumen, or centre line of the colon, the clinician would be left free to concentrate 
on the important task of observing the walls for early signs of cancer. Detecting the 



lumen in an image of the colon is a computer vision problem, and like all problems of 
the sort is solved by identifying intrinsic visual characteristics of the object that we 
are seeking to detect. We made use of three characteristics of the lumen, which can be 
seen in the colon image on the top left corner of figure 3. First, it is darker than the 
rest of the image, being further from the light source. Secondly concentric rings 
formed by the muscles of the colon wall surround it, and thirdly, the normal vectors at 
the colon wall will on average meet at the lumen. This third property is more readily 
observed in the image on the bottom left hand side. Of these the detection of a large 
dark region proved the easiest and most effective method of steering the endoscope 
providing the lumen is in view. As this is not always the case, we still needed to make 
use of the other two characteristics. The detection of the concentric rings proved an 
interesting and difficult task, and is a good example of how generally applicable 
results can result from studying practical problems. The picture on the upper right 
hand side of figure 3 shows the output of a standard edge detector applied to a colon 
image. The contours are visible, because the light intensity changes across them, but 
there are so many other edge points - caused by a variety of discontinuities such as 
vein patterns and light reflections - that the computer could not isolate the contours. 
Together with Gul Khan, from whose PhD thesis figure 3 originated, we came up with 
a solution based on perceptual grouping. By this principal we grouped together edge 
points if their perceptual characteristics agreed. These characteristics could be, 
similarity in intensity, similarity in directionality, similarity of colour and so on. We 
also made use of continuity by grouping together edge points if they formed a 
continuous smooth line. The results are shown in the bottom right picture. The 
contour lines have been detected, and all but a few other edge points have been 
removed. By changing the perceptual criteria we can detect other image features that 
may be weak but perceptually significant.   

 
Figure 4 
Figure 4 shows some of the test rig that we built to try out the self steering endoscope, 
and on the bottom left hand side is a servo driven endoscope (no wheels to turn) built 
by the Olympus Optical company for this work.   



 
Figure 5 
 There is a problem in having several different algorithms to compute the same 
property, and that is they don’t always agree. Figure 5, from Enrique Sucar’s PhD 
thesis, shows some examples of this, taken from our experimental endoscopy system. 
On the left and in the centre are images where the lumen is in view. The large square 
indicates the direction that the endoscope points in, the plus shows the estimate based 
on the detection of a large dark region, and the small square the detection based on the 
perpendiculars to the colon wall.  In the first two examples the agree, more or less, 
with the inaccuracies in the perpendicular algorithm resulting from the large areas of 
specular reflection which lack any reconstruction information. However in the third 
image, the two methods disagree completely, and not surprisingly since a human 
could not easily interpret this image. This exposes the problem of how to fuse the 
results of different algorithms together to come up with the best single estimate of the 
lumen position. It is the point where diagnosis and prognostics merge. In the third 
image, the clinician can observe two possible candidates for the lumen, but knows 
that only one can be correct, since the colon is an un-branching tube.   Making this 
decision requires visual diagnosis. There is also another possible interpretation of the 
image that one or both of the black regions may be diverticula - or pockets in the 
colon wall. In certain circumstances diverticula can look very similar to the colon 
lumen. Clearly we need to be able to diagnose diverticula disease from the visual 
characteristics of the colon images and avoid pushing the endoscope into a 
diverticulum, which could well result in a fatality.  
 
Diagnosis 
 Reasoning about medical data always involves a degree of uncertainty, and 
many other computer vision problems are also classic examples of reasoning under 
uncertainty. The most obvious approach to deal with uncertainty is to use some form 
of probabilistic inference. Thus, to guide our endoscope, and at the same time 
diagnose divertuicula disease we turned to the work of the Rev. Thomas Bayes whose 
picture is seen below. Probability theory is very old. It has been studied as long as 
man has had an interest in games of chance, which means as long as civilisation has 
existed. Bayes’ theorem is the fundamental theorem of probability and it expresses the 
relation between conditional and unconditional events.  Proving Bayes’ theorem is 



very simple. Suppose we wish to know the 
probability of two events occurring which we 
denote S and D. We write: 
 P(S&D) = P(S) P(D|S) 
that is the probability of both events 
occurring is the probability of S occurring, 
times the probability of D occurring given 
that we know S has occurred. We could 
equally well write: 
 P(S&D) = P(D) P(S|D) 
and equating the two forms we get: 
 P(S) P(D|S) = P(D) P(S|D) 
or 
 P(D|S) = P(D) P(S|D)/P(S).  
   (Bayes theorem) 
Now read disease for D and symptoms for S and immediately we see the utility of the 
equation for probabilistic inference. The left hand side is the probability of a disease 
given the symptoms - exactly what we want for diagnosis - and the right hand side is 
made up of probabilities we can measure from case histories: The probability of the 
disease and the symptoms, and the probability of the symptoms occurring given the 
disease. Most importantly the right hand side can be broken into two parts. One is the 
probability of the disease divided by the probability of the symptoms. This expresses 
established or prior knowledge about the domain of interest. The other part P(S|D) 
expresses a causal link. We say that the disease causes the symptoms with a certain 
probability. Both parts are crucial for inference. For example there is a very high 
probability that a patient who suffers from tuberculosis will have coughing as a 
symptom. However, a doctor observing a patient coughing will not immediately 
diagnose tuberculosis - unless of course the doctor is watching an Italian opera. This 
is because the prior probability of the disease is very low.  
 Bayes’ theorem gives us a simple fundamental mechanism for diagnostic 
reasoning. However, in practice its application is far from simple since diseases have 
many symptoms that are normally linked together through a complex causal chain. 
Until the 1980s causal chains were expressed through sets of equations, which were 
difficult to understand and to manipulate, and as a consequence probabilistic inference 
was hardly ever used in medical applications. Instead computer scientists adopted ad-
hoc ways of expressing uncertainty in diagnosis. In the 1980’s Judea Pearl of UCLA 
developed a graphical representation of causal chains, with probability propagation 
rules based on Bayes’ theorem, which was called a Bayesian network. This was a 
major breakthrough since these networks had both the expressive power and the 
strong theoretical foundation that were required for medical inference problems. 
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 Working with Enrique Sucar and my brother Donald, we designed a Bayesian 
network for reasoning about colonoscopy images, part of which is seen in figure 6. 
Each arc represents a cause, or in probabilistic terms a conditional probability. We 
can calculate probabilities by applying Bayes’ theorem independently at each node. 
The expressive power of the diagram is obvious. If we had written this out as a set of 
equations it would have been very difficult, if not impossible to understand its 
structure or reason about it with the domain experts. However, the simplicity is gained 
at the cost of some underlying assumptions that we must be aware of. When testing 
the system based on this network we made an interesting observation, namely that if 
we deleted either the node “mean” or the node “variance” the performance accuracy 
increased. This may look paradoxical at first, because we are removing information 
from the network, yet gaining performance, but the reason is quite simple. In a video 
image there is a relationship between mean and variance. If the endoscopist increases 
the brightness during an examination all the pixels intensities increase, hence the 
mean of any large dark region increases. But also, the range over which the intensity 
changes also increases, and thus the measured variance increases. Thus there is a 
relationship between mean and variance that we have not included in this diagram, 
and to make the network correct it is necessary to include another arc expressing this 
causal chain. This is bad news computationally since Pearl’s elegant propagation 
equations cannot, in general, cope with loops. Other algorithms can, but all other 
methods become computationally infeasible as the number of arcs gets larger and 
larger. Considerable progress has been made into computational methods for solving 
large multipy connected Bayesian networks. However there is a further problem as 
the number of arcs in a network increases. If we consider a slightly more complex 
network, and add to it all the causal links that exist, we end up with a structure that is 
not only computationally infeasible, but also intractable to any form of interpretation 
or reasoning.  

 
Figure 7 
 I was then working with Chee Keong Kwoh, and we adopted another approach 
to this problem. The idea was to change the structure of the network to incorporate the 
troublesome dependencies in a different way. Using our previous example, we 
explicitly model the relation between mean and variance in video images by adding a 
new node, which is called a hidden node. The process is shown in figure 7. The name 
“hidden” indicates that it is not one of our measured variables and doesn’t appear in 
any data set. The problem we tackled was how do we find the conditional 
probabilities of the hidden node without any data. The solution was to use an 
optimisation procedure. We devised an algorithm based on gradient descent, and out 
method was found to provide high computational accuracy at a fast speed. The 
method generalises from the simple case shown to any arbitrarily connected network, 
and works well in medical diagnosis where usually we can rely on a lot of data to 
estimate the conditional probabilities. 



 
 
Simulation 
 We turn now to a different problem - simulation of biological systems- but 
still with endoscopy as an exemplar. Aircraft pilots have been trained using simulators 
since 1920, and with computer based simulators since the 1960s, so it was an 
appealing idea in the 1980s to use the computer to train doctors to carry out difficult 
procedures.  

 
There is an underlying problem with this idea and that is that the computer must 
replicate the medical procedure accurately. If it does not then the training may well be 
counter productive. This makes the problem quite different from a computer game. 
An aircraft behaves in a way that is governed by fluid mechanics - a field that has 
been studied extensively and is well understood. It responds to controls in a uniform 
and predictable way, subject to some random displacements that can be simulated 
easily. By contrast, as we have seen already, an endoscope moves through the human 
colon in a complex way. Its behaviour is determined by the shape of the colon, the 
friction at the walls, the reactive forces caused by squashing the small intestine, which 
surrounds the colon and the configuration of the endoscope. The biggest difficulty of 
all is that the endoscope deforms the colon as the procedure is carried out. There is 
little or no data available on the mechanical properties of living tissue and what is 
known implies that the behaviour is complex non linear with time dependent 
properties. 
 However, there are two features of colonoscopy that make it amenable to 
computer simulation. Firstly it is a keyhole procedure. The consultant views the world 
through a video monitor, or an eyepiece, which is similar. Consequently, we don’t 
need any of the paraphernalia of virtual reality systems to create an animation. We 
can interact through a normal computer monitor.  Secondly the consultant never sees 
the deformation he is causing. He only looks at the view in front of the endoscope. I 
was working with Angelo Haritsis on the simulation. We abandoned the idea of 
creating a mechanical model to describe how the endoscope moves through the colon, 
and instead adopted a behavioural model. The behavioural model works by simulating 
what the trainee endoscopist sees rather than what he does. If the scope forms a loop, 
it behaves in a paradoxical fashion. It becomes harder to insert, and pushing it 
expands the loop and causes the tip to move backwards. In our simulation, once the 
endoscope is inserted beyond a critical distance we can choose to put it into a 
different mode of behaviour whereby we apply the brake a little and cause the tip to 



move backwards as the trainee pushes in. The trainee then has to follow the correct 
procedure to un-loop the endoscope. All modes of behaviour encountered during 
colonoscopy can be encoded in the same way, and can be invoked with certain 
probabilities to create easy or difficult cases.  
 All the time I worked in this field the beast of business was evolving, getting 
faster. In 1984 the best we could achieve was a simple line drawing representing the 
colon. Five years later we could produce reasonable realistic shaded colons. We knew 
how to create visually realistic images, but couldn’t do it in animation. Modern 
endoscopy simulation systems can now achieve this. The graphics has become more 
beautiful, but little further progress has been made on the modelling. 
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 Simulation of virtually all other medical procedures require that the computer 
shows the deformations accurately, and even where this is possible the computational 
demands are high. Figure 8, from Dino Moutsopoulos’ thesis, shows some work that 
we did in simulating laparoscopic cholesysectomy. Here we have a complex object, 
the gall bladder, partly filled with fluid, which is grabbed and pulled from side to side 
and finally cut off during the procedure. Our simulation computed the behaviour of an 
elastic membrane, and the deformations look plausible, yet we know that the real 
system is more complex. Cutting the gall bladder cannot be reproduced accurately. 
Moreover, the creation of tactile feedback is an enormous problem. At the time we 
were working on this simulation it was not possible to compute even a simple elastic 
model fast enough for animation, and that remains true today if accurate simulation is 
required.  
 We see that behind simulation for medical training there is the difficult 
problem of modelling the underlying biological system. There are other important 
uses for biomedical data modelling that were becoming apparent at that time. One of 
these was the area of pre-operative prediction of difficulties that might occur in 
medical procedures. Here we have the leeway to compute the model accurately as we 
no longer have the time constraint imposed by creating an animation. 
 In 1995 I began working with Peter Charters on preoperative prediction of 
patients that would present difficulties to the anaesthetists. One of the most common 
procedures carried out by anaesthetists is laryngoscopy in which the anaesthetist 
inserts a tube into the larynx through which a mixture of oxygen and anaesthetic gas 
can be administered to the patient keeping him or her safely asleep during the 
operation. To do this it is necessary to compress and displace the tongue so that the 
vocal chords and larynx can be seen.  As this is an unpleasant process the patient is 



sent to sleep first by injecting a small amount of muscle relaxant. Figure 9 shows the 
procedure in progress, the view of the vocal chords and the centre of the human 
airway in an MRI image. 

 
Figure 9 
Laryngoscopy sounds quite simple and straightforward, but the process carries the 
biggest risk associated with anaesthetics. Depending on the shape of the human 
airway it is perfectly possible that the larynx cannot be seen and if the anaesthetist is 
struggling to compress the tongue there is a risk that the incisor teeth may be broken. 
Worse still, but fortunately extremely rarely the tongue may, in its relaxed state block 
the airway and the lack of oxygen cause brain damage or even a fatality. For these 
reasons there is a considerable interest among anaesthetists in what is called “the 
difficult airway”. 
 Working with, Andreia Rodrigues, we began an investigation into whether we 
could simulate how the tongue would be deformed during laryngoscopy. The method 
we used was a very well established technique in mechanical engineering called finite 
element analysis. If the shape of an object is too complex to solve directly for its 
mechanical behaviour it can be broken up into small simple elements, and the 
deformations of those parts can be computed individually. There is an inherent danger 
in taking an engineering technique and applying it to a biological system since the 
biological system is always much ore complex than one can possibly imagine. 
Engineering materials can be made to be uniform and to conform to well known laws, 
such as Hooke’s law of elastic deformation. Biological tissue isn’t uniform and 
behaves in a complex, non-linear time dependent way. Moreover, very little relevant 
data on the mechanical properties of living tissue is available. So we are left to make a 
well-informed guess as to how the deformation will occur, and then validate the 
results experimentally. By taking this approach we were able to build a plausible 
simulation, and to set the parameters of the simulation so that it replicates a real 
procedure. However, the results are preliminary and require much more validation 
before we can confidently make a prediction. 



 
Figure 10 
 The process of simulating a single patient’s airway is very difficult and time 
consuming. It is illustrated in figure 10, which was extracted from Andreia Rodrigues’ 
PhD thesis. The patient must be scanned first. Then the individual 2D image slices 
must be manually segmented to find the shape of the tongue and the mandible, which 
limits the deformation, the position of the incisor teeth, which occlude the view, and 
the position of the larynx whose visibility we are trying to determine. Once all that 
data is assembled we need to create the finite element model, decide the procedure for 
applying force from the laryngoscope blade and the element properties, and only then 
can we do a simulation. A skilled technician might be able to achieve all this in two or 
three weeks. So unless we can devise a way of automating the process the technique 
will be too expensive to apply in practice. Our approach was to try to create a generic 
model of the upper airway. 
 The idea of a generic model is to encode the shape of the airway in a computer 
model such that by setting a small number of parameters we can generate a model that 
matches any specific patient. When we wish to simulate a particular patient we make 
a small number of critical measurements and adjust the parameters of the generic 
model accordingly. Once the generic model matches the specific patient we carry out 
the simulation to determine whether he or she will be difficult to anaesthetise. This is 
a simple idea, but a difficult task. Working with Krista Lam we were able to create a 
generic model of the mandible bone. Interestingly most of the shape variation can be 
described in just four modes. The biggest variation comes from size changes, and 
after that shape differences between male and female. We found that we could 
reconstruct an unseen mandible with sufficient accuracy using just seven 
measurements which can be made with simple callipers. The next stage of the project 
is to determine whether we can similarly reconstruct the tongue and put together these 
two components into an evolving upper airway model.  
 This is a good point to reflect on how the role of the computer in the world of 
medicine has been evolving. The earlier projects that I have described are reductionist 
in nature. They make small but useful contributions to medical practice such as 
steering an endoscope or making a simulation of the observed behaviour during 
colonoscopy. In trying to create a generic airway we are now aiming at simulating a 
whole system. It has several quite different structures that interact - the tongue, the 
mandible the incisor teeth, the hyoid bone, the epiglottis, the soft palate and divers 



muscles and ligaments. Several modelling methods are needed including shape and 
geometric models, finite elements and kinematics. All of this cannot be done without 
the computer, and we know that we will not be able to predict difficult laryngoscopy 
without the computer model, because the difficulty is a result of many complex 
interacting factors. Equally well there are doubts about the underlying computer 
modelling that we cannot easily resolve without considering the behaviour of the 
whole system and comparing it to the real procedure. The role of the computer is 
changing from reductionist to holistic. 
 
Analysis 
 We come now to a current topic that I’m working on in conjunction with 
Georgia Chan, Alok Mishra and Dave Thornley. One of the most researched subjects 
of modern medicine is genetics, and the work in this field now cannot be undertaken 
without the computer.  

 
Figure 11 
Figure 11 shows a picture of a micro-array. This is a glass slide on which there is an 
array of dots, each dot measuring the activity of a particular gene. Genetic material is 
extracted from a sample of interest and washed over the array. The genes that are 
active in the sample react with one particular spot. This example is from a differential 
experiment in which two different samples are colour coded, one red and one green. 
Spots that show up as red correspond to genes that are active only in one sample, 
those that show as green correspond to genes that are active only the other sample and 
those that show as yellow indicate genes that are active in both samples. The 
technique could be used, for example, to compare cancerous and normal cells. On the 
right hand side is a dependency diagram extracted from a set of micro-array 
experiments. Each circle represents one gene and each arc represents some 
dependency. The dependency diagram is one way of expressing our understanding of 
how the genes interact. It is a starting point from which higher level descriptions of 
gene behaviour could be discovered. 
 Micro-array analysis is a classic example of what is referred to as the small 
sample size problem. We have a very large number of variables, the genes, whose 
behaviour we wish to study, but only a small number of micro-array experiments to 
use as data. Typically we may have fifty micro-array experiments and several 
thousand genes in each. Worse than that, the experiments are full of variance due to 



experimental error, and the dependency diagram is complex, as can be seen in the 
example of figure 11, where the number of genes considered is only a small subset of 
the active genes in the experiment.  One standard statistical approach to this sort of 
problem is to increase the sample size, but unfortunately this does not work well. The 
experiments are difficult to carry out and expensive, and mixing the results of 
different micro-array experiments destroys significant information. 
 Between the micro-array and the diagram is an involved set of computer 
processes. It is necessary to find the dots, and measure their optical density, 
compensate for flaws in the slides and variations in the reaction conditions and finally 
come up with a number for each gene activity. Only then can statisticians begin to 
build the dependency diagram. There are many ways of expressing the dependency 
and the classic one using the covariance matrix in which the diagonal elements 
represent the degree to which each gene varies in its activity, and the off diagonal 
elements indicate how each gene pair vary together. In the case of small sample size 
problems the co-variance matrix is poorly estimated. If we blindly extract a 
dependency diagram from it then it will not be a robust result. Perturbing the data to 
the degree we expect to happen through error in an experiment will change the 
diagram dramatically. This means that we must stabilise the result by trying to reduce 
the effect of the less certain data. A standard statistical means of doing this is the 
technique known as shrinkage. For example, we may believe that, in the co-variance 
matrix, the diagonal data is better estimated than the off diagonal data. This would not 
be an unreasonable assumption for micro-arrays, since the diagonal elements of the 
covariance matrix simply tell us how much each individual gene varies. Co-variance 
estimates, in contrast, may be confused by time and rate factors in the underlying 
biological behaviour. We can therefore make our estimate more reliable by shrinking 
the matrix towards the diagonal. We do this by reducing the off diagonal elements and 
increasing the on diagonal elements until we obtain a robust result. 
 Shrinking towards the diagonal is a crude way of solving the problem. What 
we would prefer to do it to invoke the aid of Thomas Bayes again, and shrink our 
experimental observations towards some expression of prior knowledge. Although 
this has not been possible until recently there are now emerging “curated” data bases 
which store information on known gene interactions.  Information in these data bases 
is obtained from specific experiments targeting hypotheses about gene activity rather 
than the broad unfocussed approach of the micro-array. An approach of this kind 
creates many problems for the computer scientist such as how to resolve conflicting 
data and how to characterise the context within which a dependency can be assumed 
to hold. Finding and encoding the prior knowledge will be the first step in a new 
approach to describing gene dependency. I recently worked with Carlos Thomaz on 
small sample size problems. Carlos made the astute observation that shrinkage 
methods, even those that use prior information will always destroy some vital 
information about a process. Significant parts of the data from an experiment will be 
diluted to the same degree as the unreliable data whose influence we seek to reduce. 
Instead of shrinking Carlos developed a technique in which we maximise the 
information content, or entropy, of the co-variance matrix. This works by changing 
the representation of the data such that we can identify the strongest dependencies 
expressed in an experiment and also those expressed in the prior knowledge. We then 
simply select the strongest patterns of dependency from each to form our co-variance 
estimate. In his thesis Carlos demonstrated that, for biometric recognition, the 
maximum entropy method was considerably faster to compute than all previous 
methods of estimating co-variance, and in almost all cases was more accurate. If we 



can find a way of characterising the prior knowledge then this idea offers real 
potential for extracting robust and accurate dependency structures from micro-array 
data. 
 
Prognosis 
 In summing up I would like to draw 
attention to one of the most important 
pieces of research in the history of 
medicine. The gentleman in uniform is 
Ronald Ross an army doctor who served 
his queen and country in India. While there 
he discovered the mechanism by which 
malaria was spread. He did this by 
dissecting mosquitoes that had been fed on 
the blood of malaria patients using his own 
dissection kit and a microscope with a 
cracked lens.  He found the conclusive 
evidence that the malaria parasite lodged 
itself and grew in the stomach of the 
mosquito and was able to transmit from 
human to human through the feeding of the 
insect. It took him nearly two years of 
failure before he finally found the conclusive evidence. Ronald Ross was able to 
achieve his results largely by himself and through his own tenacity. His work in many 
respects should be looked on as scientific, rather than medical. The idea that insects 
might transmit malaria was not originally his. He reviewed the research literature, 
chose a hypothesis and set out experiments to test it.  He provided one major link in a 
holistic solution to the problem. Things in the modern world have changed. No 
amount of staring down a microscope at a micro-array slide will reveal a jot of 
information. Progress can only be made through the collaboration of different experts 
drawn from medicine, science, statistics and computing. Nowadays the volume and 
complexity of the data we analyse is beyond the understanding of a single individual, 
and we must rely far more on the work of each other on different components of the 
same problem. Thus more than ever we need to follow the example of Ronald Ross 
and look at the whole system behaviour to enable us to assess the validity of each 
part. The ability of the computer to store and retrieve information is vital in creating 
the common framework in which this can be achieved. 
 In the last forty years the beast of business has changed from being an adjunct 
to medicine to being an essential component, and its ever expanding role has brought 
to light many difficult and challenging research problems. Now in addition to its 
reductionist prowess it is providing the means whereby we can take an holistic 
approach to medical research and follow in the footsteps of Hippocrates.  
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