
Lecture 4

Probability Propagation in

Singly Connected Networks
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Probability Propagation

We will now develop a general
probability propagation method
based on just five operating
equations which can be applied
independently at any node to
process incoming evidence and
dispatch messages to neighbours.

We will first need to introduce
the idea of multiple parents. To
keep the notation simple we will
restrict the treatment to nodes
with at most two parents.
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Singly Connected Networks

The equations are also limited to singly connected
networks. which have at most one path between any two
nodes.

Singly Connected
Network

Multiply Connected
Network
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Multiple Parents

• Up until now our networks have been trees, but in
general they need not be. In particular, we need to
cope with the possibility of multiple parents.

• Multiple parents can be thought of as representing
different possible causes of an outcome.

• In our cat example, the eyes in a picture could be
caused by other image features:

• Pictures showing other animals (owls dogs etc),
• Pictures that have features sharing the same

geometric model (bicycles).
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How to tell an owl from a cat
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How to tell an owl from a cat

Data Analysis and Probabilistic Inference Lecture 4 Slide 6



How to tell an owl from a cat

Owl
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How to tell an owl from a cat

Owl Cat
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How to tell an owl from a cat
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The Owl and the Pussycat

The two causes for the E variable (owl and cat) form
multiple parents.

Where W is the “owl” variable.
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Conditional Probabilities with Multiple Parents

Conditional probabilities, with multiple parents must
include all the joint states of the parents. Thus for the E
node we have:

P(E|C&W )

Notice that the conditional probability table is associated
with the child node and not with the arcs of the
networks.
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Example Link Matrix

Given that node W has states w1 and w2, and similarly
C, the conditional probability matrix takes the form:

P (E|W&C) =

 P(e1|w1&c1) P(e1|w1&c2) P(e1|w2&c1) P(e1|w2&c2)
P(e2|w1&c1) P(e2|w1&c2) P(e2|w2&c1) P(e2|w2&c2)
P(e3|w1&c1) P(e3|w1&c2) P(e3|w2&c1) P(e3|w2&c2)


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π messages with multiple parents

If we wish to calculate the π evidence for eyes, we first
calculate the evidence for C, taking into account only the
evidence that does not come from E. This is called the π

message from C to E.

In this case it includes the prior probability of C and the
λ evidence from F .
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λ and π messages with multiple parents

Next we calculate the π message from W to E. In this
example there is only the prior evidence for W .
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Notation for π messages

We write:

• πE(C) for the π message from C to E. It means all the
evidence for C excluding the evidence from E.

• πE(W ) for the π message from W to E. It means all
the evidence for W excluding the evidence from E.

We can also define the π messages using the posterior
probability of a node, for example P ′(C), as follows:

P ′(C) = αP(C)λE(C)λF (C)
πE(C) = P ′(C)/λE(C)

Remember that it is not necessary to normalise evidence.
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Finding a joint distribution over the parents

Having calculated a π message from each parent, we
calculate a joint distribution of π messages over all
parents. To do this we assume that πE(C) and πE(W ) are
independent:

πE(W&C) = πE(W )×πE(C)

Remember that this is a scalar equation with variables C
and W , for individual states:

πE(ci&wj) = πE(ci)×πE(wj)

In vector form the joint evidence is:

πE(W&C) = [πE(w1&c1),πE(w1&c2),πE(w2&c1),πE(w2&c2)]
= [πE(w1)πE(c1),πE(w1)πE(c2),πE(w2)πE(c1),πE(w2)πE(c2)]
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The independence of πE(C) and πE(W )

• In this simple example C and W have no other path
linking them, and hence if we do not consider the
evidence from E then πE(C) and πE(W ) must be
independent.

• If they had, for example, a common parent, then our
assumption about the independence of πE(C) and
πE(W ) would no longer hold.

• We have therefore made an implicit assumption that
there are no loops in our network.
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Calculating the π evidence for E

We can now compute the π evidence for E using the link
matrix:

[π(e1) π(e2) π(e3)] = P(e1|w1&c1) P(e1|w1&c2) P(e1|w2&c1) P(e1|w2&c2)
P(e2|w1&c1) P(e2|w1&c2) P(e2|w2&c1) P(e2|w2&c2)
P(e3|w1&c1) P(e3|w1&c2) P(e3|w2&c1) P(e3|w2&c2)




πE(w1&c1)
πE(w1&c2)
πE(w2&c1)
πE(w2&c2)


or in vector form:

π(E) = P (E|W&C)πE(W&C)
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Posterior probability of E

We now can finally compute a probability distribution
over the states of E. As before all we do is multiply the λ

and π evidence together and normalise.

P ′(ei) = αλ (ei)π(ei)

α is the normalising constant.
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λ messages with multiple parents

A node with multiple parents will send an individual λ

messages to each.

We must compute each one from the joint conditional
probability table P(E|C&W )
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Revision on λ messages

The λ message from E to C (before introducing the node
W ) was written as:

λE(c1) = λ (e1)P(e1|c1)+λ (e2)P(e2|c1)+λ (e3)P(e3|c1)
λE(c2) = λ (e1)P(e1|c2)+λ (e2)P(e2|c2)+λ (e3)P(e3|c1)

or more generally:

λE(ci) = ∑j P(ej|ci)λ (ej)

or in vector form:

λE(C)= λ(E)P (E|C)
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λ messages with joint link matrices

We can calculate a joint λ message using the vector
formulation:

λE(W&C)= λ(E)P (E|W&C)

but this gives us a joint message to the parents:

λE(W&C)= [λ (w1&c1),λ (w1&c2),λ (w2&c1),λ (w2&c2)]

We use the evidence for W to separate out the evidence
for C from the joint λ message:

λE(ci) = ∑j πE(wj)λ (wj&ci)
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Scalar equation for the λ message

For any specific πE(W ) we can estimate the link matrix
P(E|C), from P(E|W&C). Each element is computed
using the scalar equation:

P(ei |cj) = P(ei |cj&w1)πE(w1)+P(ei |cj&w2)πE(w2)

or more generally:

P(ei |cj) = ∑k P(ei |cj&wk)πE(wk)

where k ranges over the states of W .

The λ message can be written directly as a single scalar
equation:

λE(cj) = ∑k πE(wk)∑i P(ei |cj&wk)λ (ei)
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Probability Propagation

Each node in a Bayesian Network
has six different data items being:

1. The posterior probability

2. The link matrix

3. The λ evidence

4. The π evidence

5. The λ messages

6. The π messages
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Operating Equation 1: the λ message

The λ message from C to A in scalar form is given by:

λC(ai) =
m

∑
j=1

πC(bj)
n

∑
k=1

P(ck |ai&bj)λ (ck)

For the case of a single parent this simplifies to:

λC(ai) =
n

∑
k=1

P(ck |ai)λ (ck)
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Operating Equation 1: the λ message

For the case of the single parent A we have a very simple
matrix form:

λC(A) = λ (C)P(C|A)

The matrix form for multiple parents relates to the joint
states of the parents.

λC(A&B) = λ (C)P(C|A&B)

It is necessary to separate the λ evidence for the
individual parents with a scalar equation of the form:

λC(ai) = ΣjπC(bj)λC(ai&bj)
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Operating Equation 2: the π message

If C is a child of A, the π message from A to C is given by:

πC(ai)=


1 if A is instantiated for ai
0 if A is instantiated but not for ai
P ′(ai)/λC(ai) if A is not instantiated

The π message to a child contains all the evidence for the
parent except that from the child.
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Operating Equation 3: the λ evidence

If C is a node with n children D1,D2, ..Dn, then the λ

evidence for C is:

λ (ck) =


1 if C is instantiated for ck
0 if C is instantiated but not for ck

∏i λDi (ck) if C is not instantiated
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Operating Equation 4: the π evidence

If C is a child of two parents A and B the π evidence for C
is given by:

π(ck) =
l

∑
i=1

m

∑
j=1

P(ck |ai&bj)πC(ai)πC(bj)

This can be written in matrix form as follows:

π(C) = P(C|A&B)πC(A&B)

where
πC(ai&bj) = πC(ai)πC(bj)

The single parent matrix equation is:

π(C) = P(C|A)πC(A)
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Operating Equation 5: the posterior probability

If C is a variable the (posterior) probability of C based on
the evidence received is written as:

P ′(ck) = αλ (ck)π(ck)

where α is chosen to make ∑k P ′(ck) = 1
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Belief Propagation

Probability propagation is a form of belief propagation
and is achieved by message passing.

• New evidence enters a network when a variable is
instantiated, ie when it receives a new value from the
input.

• When this happens the posterior probabilities of
each node in the whole network may need to be
re-calculated.
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Belief Propagation

• When the π or λ evidence for a node changes it must
inform some of its parents and its children as
follows:

• For each parent to be updated:
• Update the parent’s λ message array.
• Set a flag to indicate that the parent must be

re-calculated
• For each child to be updated

• Update the π message held for each child.
• Set a flag to indicate that the child must be

re-calculated
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Termination

• The network reaches a steady state when there are
no more nodes to be re-calculated.

• This condition will always be reached in singly
connected networks. This is because λ messages will
terminate at root nodes and π messages will
terminate at leaf nodes.

• Multiply connected networks will not necessarily
reach a steady state. This is referred to as loopy
belief propagation

We will discuss termination conditons later in the
lecture.
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Initialisation

When a network is initialised no nodes have been
instantiated and the only evidence comes from the prior
probabilities of the roots:

1. All λ message and evidence values are set to 1

2. All π messages are set to 1

3. For all root nodes the π evidence values are set to the
prior probabilities, eg, for all states of R : π(ri) = P(ri)

4. Post and propagate the π messages from the root
nodes down to the leaf nodes (see downward
propagation).
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Upward Propagation

if node C receives λ message from a child
if C is not instantiated
1. Compute the new λ (C) value (Op. Eq. 3)
2. Compute the new posterior probability P ′(C) (Eq. 5)
3. Post a λ message to all C’s parents
4. Post a π message to C’s other children
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Downward Propagation

if a variable C receives a π message from one parent:
if C is not instantiated
1. Compute a new value for evidence π(C) (Eq.4)
2. Compute a new value for P ′(C) (Eq. 5)
3. Post a π message to each child

if (there is λ evidence for C)
1. Post a λ message to the other parents
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Instantiation

if variable C is instantiated in state ci

1. Compute λ (C) (Eq. 3)

2. Compute P ′(C) (=λ (C)) (Eq. 5)

3. Post a π message (=λ (C)) to each child of C (Eq. 2)

4. Post a λ message to each parent of C
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Blocked Paths

If a node is instantiated it will block some message
passing. Instantiating the centre node below prevents
any messages passing through it.
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Converging Paths

However, converging paths are blocked when there is no
λ evidence for the child node, but unblocked if the child
has λ evidence or is instantiated.
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Converging Paths

To understand the behaviour of converging paths we look
at operating equaion 1.

λC(ai) =
m

∑
j=1

πC(bj)
n

∑
k=1

P(ck |ai&bj)λ (ck)

Given that node C has no λ evidence we can write
λ (C) = {1,1,1, . 1} and substituting this into operating
equation 1 we get:

λC(ai) =
m

∑
j=1

πC(bj)
n

∑
k=1

P(ck |ai&bj)
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Converging Paths

λC(ai) =
m

∑
j=1

πC(bj)
n

∑
k=1

P(ck |ai&bj)

The second summation now evalutes to 1 for any value of
i and j, since we are summing a probability distribution.
Thus:

λC(ai) =
m

∑
j=1

πC(bj)

The sum is independent of i and hence the value of λc(ai)
is the same for all values of i, that is to say there is no λ

evidence sent to A.
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Example: the Owl and the Pussy Cat

Initialisation:

The only evidence in
the network is the
prior probabilities of
the root nodes.
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Example: the Owl and the Pussy Cat

Initialisation:

The priors become π

messages and
propagate
downwards.
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Example: the Owl and the Pussy Cat

Initialisation:

E has no λ evidence
so it just sends a π

message to its
children and the
network reaches a
steady state.
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Example: the Owl and the Pussy Cat

Instantiation of S:

A new measurement
is made and we
instantiate S. A λ

message propagates
upwards.
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Example: the Owl and the Pussy Cat

Instantiation of S:

E calculates its
evidence and sends
messages
everywhere but to S.
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Example: the Owl and the Pussy Cat

Instantiation of S:

W and C recalculate
their evidence. W
has no messages to
send but C will send
a π message to F .
The network reaches
a steady state.
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Example: the Owl and the Pussy Cat

Instantiation of C:

C is now instantiated
and sends π

messages to its
children.
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Example: the Owl and the Pussy Cat

Instantiation of C:

There is λ evidence
for E so it will send a
λ message to W . The
π message sent to S
has no effect. It is
blocked since S is
already instantiated.
The network reaches
a steady state.
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