Lecture 8

Approximate Inference
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Highly Dependent Data

Approach 1: Model all the dependencies:

Data
Distribution

ar bz c di :
as by ¢ do
as by ¢ ds
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Highly Dependent Data

Approach 1: Model all the dependencies:

Data
Distribution

ar by c di
as by ¢y dy
as by ¢ ds
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Highly Dependent Data

Approach 1: Model all the dependencies:

Data
Distribution

(05] b3 Co d1
as by ¢4 da
as by ¢ ds

(A)
- &>

(D)

Propagating probabilities is difficult or infeasible!
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Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data
Distribution

ar by c di
as by ¢y dy
as by ¢ ds

=
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Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data
Distribution @

a) b3 Co d1 ':> @ @
az by ¢ dy
as bl C1 d3 @
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Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data
Distribution @
a) b3 Co d1 » @ @
as by ¢4 da
as bl C1 d3 @

Loops are not allowed
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Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data
Distribution

(05] b3 Co d1 ':>

as by ¢y dy
as by ¢ ds
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Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data
Distribution

(05] b3 Co d1 »

as by ¢y dy
as by ¢ ds

Now the network does not model the dependencies
accurately

Data Analysis and Probabilistic Inference Lecture 8 Slide 9



Exact and Approximate Inference

e If we include all dependencies then computation is
exact, but can be computationally infeasible for large
sized networks and large data sets. We will look at
exact computation algorithms later in the course.

¢ If we choose a spanning tree then message passing
terminates in one pass and is very fast, but the
inference is only approximate.
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Problems with Loops in Networks

Issue 1: Looping Messages.
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Problems with Loops in Networks

Issue 1: Looping Messages.

When only Node F is instantiated
there is no condition that stops the
messages travelling round the loop B
CDE.
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Problems with Loops in Networks

Issue 1: Looping Messages.

When only Node F is instantiated
there is no condition that stops the
messages travelling round the loop B
CDE.

Exact propagation can still be carried
out if one of nodes B C or D is
instantiated
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Problems with Loops in Networks

)

Issue 2: Independence of Multiple
Parents

Data Analysis and Probabilistic Inference Lecture 8 Slide 14



Problems with Loops in Networks

)

Issue 2: Independence of Multiple
Parents

When only Node A is instantiated
propagation terminates. However
C and D are not independent and Q
so the m evidence at E and F is not

correct. @
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Problems with Loops in Networks

)

Issue 2: Independence of Multiple
Parents

When only Node A is instantiated

propagation terminates. However C

and D are not independent and so the @ @
n evidence at E and F is not correct. @

Exact propagation can still be carried
out if one of nodes B C or D is
instantiated. This will make C and D
independent.
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Approximate Inference Methods

Spanning trees and Naive Bayesian networks can be
considered approximate inference methods They model
the most important dependencies, though not all.

Their performance can be improved by a number of
techniques including:

1. Node Deletion
2. Allowing Loopy belief Propagation
3. Hidden (or Latent) Node Placement
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Node Deletion

e Given a pair of highly dependent nodes it has been
found that deleting one sometimes improves a
networks predictive performance.

e This is a surprising result from which it is difficult to
infer any general rule.

e Node deletion is something that can be tested
experimentally.
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Selective Bayesian Network
The idea here is to use only a subset of the variables.

This can be done by starting with all the variables then
deleting any suspect variable and testing for
improvement in performance. Deletion continues until
no further improvement can be found.

° Accept if and only if
- performance improves

We can find suspect variables by testing pairs of children

for high conditional dependence.
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Selective Bayesian Networks

Equivalently we can add variables incrementally (in
dependency order) and test the performance of each
network.

5=l
) )
O °° ONONO

Choose Best Performing Network
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Why can removing variables improve the
performance

e Consider a Bayesian network
where the same variable

appears twice. e
¢ Clearly conditional
independence doesn’t hold

e The network will be biased in
favour of C @ Q

¢ Deleting C will improve
performance

The improvement will depend on the quantity of
unaccounted dependency between variables.
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Loopy Belief Propagation

Another approximate method is to include all arcs
expressing significant dependency, and allow
propagation to continue until:

e The probability distributions reach a stable state, or

e A limiting number of iterations has occurred (there
may be no termination)

Loopy belief propagation has been shown to be
equivalent to a multivariate optimisation problem. It will
most likely find a local optimum. We cannot say anything
about its accuracy.
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Hidden Nodes (or Latent Variables)

If any two children of a parent node are not conditionally
independent, they can be separated by a hidden node:

The new node
° represents a common
:> cause that relates B

@ 6 and C. It is called

hidden because we

@ have no corresponding

measured variable.

Now we look at how to obtain it statistically.
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Switch Nodes

Adding hidden nodes which act as switches can simplify
complex networks.

Example from Neopolitan:

O O © 06
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Advantages of Adding Hidden Nodes

A network can always perform as well with a hidden
node as it can without:
P(BJA) P(C|A)
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Advantages of Adding Hidden Nodes

A network can always perform as well with a hidden
node as it can without:
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Advantages of Adding Hidden Nodes

A network can always perform as well with a hidden
node as it can without:

P(BJA) P(C|A)

@ P(BJH) e P(C|H)
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Using Hidden Nodes

In order to create a hidden node we need to:
1. decide how many states the hidden node is to have;

2. identify values for the three new link matrices
introduced.

It may be possible to obtain hidden node information
from an expert (eg the eyes example from lecture 2). For
example an expert may:

1. identify a variable corresponding to the hidden node;

2. provide data for training (ie calculating the link
matrices).

In general however this is not often possible.
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How Many States?

e We expect that the number of states of a hidden node
will be comparable to the number of states of the
nodes its is separating.

e From the previous slides we would expect the hidden
node to have at least the same number of states as
its parent.

e Link matrices with too many states will have very low
probabilities for some states, so a possible approach
is to sart with a large number of states and reduce
the number depending on how many low probability
states we have.
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Calculating the Conditional Probabilities

1. Given estimates of:
P(H|A),P(B|H),P(C|H) and a
set of data points [a;, bj, ¢i]

2. Use each bj, ¢ to compute
P'(A) from the network,
calculate and accumulate an
error:

E=(P'(A) - P(a))?
3. Minimise E over the data set

by adjusting the elements of
P(H|A),P(B|H), P(C|H)

P(HIA)
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Calculating the Conditional Probabilities

For each conditional probability
P(cj|hi) we need to find a value
for:

P(H|A) .

IP (¢ )

Then in each epoch we update
the conditional probabilities
using:

P(¢j|hy) = P(cj|hy) —ﬂ%

Gradients may be calculated analytically or numerically.
A closed form equation for the gradients was developed
by Chee Keong Kwoh.
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Gradient Descent and Probabilities

Gradient descent has problems when applied to
probability distributions. After one cycle of updating:

¢ Distributions will no longer sum to 1

¢ Individual probability values may be greater than 1
or less than O

The conditional probability matrices must be normalised
so that the columns sum to 1. This may compromise
finding an optimal solution.
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Propagation Strategies for calculating errors

. Instantiated Node
Node where error
is calculated
s

Back propagation  Forward Propagation ~ Mixed Propagation

Strategies may be alternated during the optimisation and
this produces annealing behaviour:
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Training Cycle
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Hidden Nodes for Removing Loops

Suppose we build a network including all the
dependencies, we can then use hidden nodes to remove
any loops that were formed. In the case of the simple
triple we have seen that:

@)
= )
©

The process is to remove the least dependent link of a
multiple parent.

(&)
(B)—0)
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Reducing bigger loops

We can apply the same process to bigger loops. Modelling
the dependency between C and D we get:

(D)

The training methods still work since for any
instantiation of A or B the probability propagation will
finish.
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Reducing bigger loops

We can continue by modelling the dependency between B
and H;:

® ©

This results in a singly connected network but with two
hidden nodes.
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Reducing bigger loops

We can always reduce any network a singly connected
form by this method. One possible form of the Asia
network is:

®)

However, the large
number of hidden nodes

makes the method look @
less attractive. e @
The performance will @ 0

become increasingly

dependent on the @ @ 6
training data and @
Y o

training process.
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Reducing bigger loops

Could we simplify things by combining our two hidden
nodes into one?:

(A) &)

3 © 7

The answer to this is very much data dependent. Clearly
the hidden node now has to model the dependency
between B and C that comes through both the common

parent A and the common child D.
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Limitations of the Hidden Node Method

There is clearly going to be a limit to the degree to which
we can model dependencies through hidden nodes. As
the dependencies become more complex, either:

1. We will need many hidden nodes, or
2. The number of states in the hidden node will become
very large

In either case we may not have enough data to train the
new network.
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Criteria for Introducing Hidden Nodes

Given a network we can measure the conditional
dependency of each pair of children given the parents.

If this is high we expect that benefits will occur from
introducing a hidden node.

However below a certain threshold we are unlikely to
benefit from a hidden node and may choose to ignore the
dependency.
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Other Hidden Node Methodologies

Other more heuristic methods have been suggested for
employing hidden nodes.

Starting with a naive network:

(D)
8) & ©® 69
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Other Hidden Node Methodologies

Other more heuristic methods have been suggested for
employing hidden nodes.

Find all significant conditional dependencies:

(D)
s1—82 69 64—89
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Other Hidden Node Methodologies

Other more heuristic methods have been suggested for
employing hidden nodes.

Model them with hidden nodes:
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Other Hidden Node Methodologies

A similar idea can be applied starting with a spanning
tree;
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