
LECTURE NOTES

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Mathematics for Inference and
Machine Learning

Instructors:
Marc Deisenroth, Stefanos Zafeiriou

Version: January 13, 2017

Contents

1 Linear Regression 3
1.1 Problem Formulation . 4
1.2 Probabilities . 5

1.2.1 Means and Covariances . 6
1.2.1.1 Sum of Random Variables 7
1.2.1.2 Affine Transformation 7

1.2.2 Statistical Independence . 8
1.2.3 Basic Probability Distributions 8

1.2.3.1 Uniform Distribution 9
1.2.3.2 Bernoulli Distribution 9
1.2.3.3 Binomial Distribution 10
1.2.3.4 Beta Distribution . 10
1.2.3.5 Gaussian Distribution 12
1.2.3.6 Gamma Distribution 16
1.2.3.7 Wishart Distribution 16

1.2.4 Conjugacy . 17
1.3 Probabilistic Graphical Models . 18

1.3.1 From Joint Distributions to Graphs 19
1.3.2 From Graphs to Joint Distributions 19
1.3.3 Further Reading . 21

1.4 Vector Calculus . 22
1.4.1 Partial Differentiation and Gradients 24

1.4.1.1 Jacobian . 26
1.4.1.2 Linearization and Taylor Series 27

1.4.2 Basic Rules of Partial Differentiation 29
1.4.3 Useful Identities for Computing Gradients 29
1.4.4 Chain Rule . 30

1.5 Parameter Estimation . 33
1.5.1 Maximum Likelihood Estimation 33

1.5.1.1 Closed-Form Solution 35
1.5.1.2 Iterative Solution 35
1.5.1.3 Maximum Likelihood Estimation with Features . . . 36
1.5.1.4 Properties . 37

1.5.2 Overfitting . 37
1.5.3 Regularization . 40

2

Table of Contents CONTENTS

1.5.4 Maximum-A-Posterior (MAP) Estimation 41
1.5.4.1 MAP Estimation for Linear Regression 42

1.6 Gradient Descent . 44
1.6.1 Stepsize . 44
1.6.2 Gradient Descent with Momentum 45
1.6.3 Stochastic Gradient Descent 46
1.6.4 Further Reading . 47

1.7 Model Selection and Cross Validation 47
1.7.1 Cross-Validation to Assess the Generalization Performance . . 48
1.7.2 Bayesian Model Selection . 49
1.7.3 Bayes Factors for Model Comparison 50
1.7.4 Fully Bayesian Treatment . 51
1.7.5 Computing the Marginal Likelihood 52
1.7.6 Further Reading . 53

1.8 Bayesian Linear Regression . 54
1.8.1 Model . 54
1.8.2 Parameter Posterior . 55

1.8.2.1 Linear Transformation of Gaussian Random Variables 56
1.8.2.2 Completing the Squares 56

1.8.3 Prediction and Inference . 58
1.8.3.1 Derivation . 59

2 Feature Extraction 62
2.1 Decompositions . 62

2.1.1 Eigen-decomposition . 62
2.1.1.1 Symmetric Matrices 63

2.1.2 QR decomposition . 63
2.1.2.1 Gram-Schmidt Process 65

2.1.3 Singular Value Decomposition 67
2.1.3.1 Thin SVD . 68
2.1.3.2 Dimensionality Reduction and SVD 68

2.1.4 Principal Component Analysis 69
2.1.4.1 Statistical Perspective 70
2.1.4.2 Reconstruction Perspective 72
2.1.4.3 Computing PCA . 73
2.1.4.4 Link between SVD and PCA 74

2.1.5 Linear Discriminant Analysis 75
2.1.5.1 The two class case 75
2.1.5.2 Multi-class Case . 78

2.2 Computing Linear Discriminant Analysis 78
2.2.1 Kernel PCA and Kernel LDA 81

2.2.1.1 Maximum Likelihood for Probabilistic PCA 84

3

CONTENTS Table of Contents

3 Support Vector Machines 90
3.1 Support Vector Classification . 90

3.1.1 Linear Separating Hyperplane with Maximal Margin 90
3.1.1.1 Lagrangian Duality 92
3.1.1.2 Conditions for Optimality (Karush-Kuhn-Tucker Con-

ditions) . 94
3.1.1.3 SVM dual problem 94

3.1.2 Mapping Data to Higher Dimensional Spaces 96
3.1.3 The Dual Problem . 98

3.2 Support Vector Regression . 99
3.2.1 Linear Regression . 99
3.2.2 Support Vector Regression . 100

A 103
A.1 Preliminaries on Vectors and Matrices 103

A.1.1 Vectors and Vector Operators 103
A.1.2 Matrices and Matrix Operators 104

A.1.2.1 Matrix Norms . 105
A.1.2.2 Matrix Multiplications 105
A.1.2.3 Matrix Transposition 106
A.1.2.4 Trace Operator . 107
A.1.2.5 Matrix Determinant 109
A.1.2.6 Matrix Inverse . 110
A.1.2.7 Matrix Pseudo-Inverse 111
A.1.2.8 Range, Null Space and Rank of a matrix 111
A.1.2.9 Eigenvalues and Eigenvectors 112
A.1.2.10 Positive and Negative Definite Matrices 113
A.1.2.11 Triangular Matrices 114
A.1.2.12 QR decomposition 114

A.2 Scalar Products . 115
A.2.1 Lengths, Distances, Orthogonality 115
A.2.2 Applications . 117

A.3 Useful Matrix Identities . 117

4

Introduction

These lecture notes support the course “Mathematics for Inference and Machine
Learning” in the Department of Computing at Imperial College London. The aim
of the course is to provide students the basic mathematical background and skills
necessary to understand, design and implement modern statistical machine learning
methodologies as well as inference mechanisms. The course will focus on examples
regarding the use of mathematical tools for the design of basic machine learning
and inference methodologies, such as Principal Component Analysis (PCA), Linear
Discriminant Analysis, Bayesian Regression and Support Vector Machines (SVMs).
This course is a hard pre-requisite for the following courses:

• CO-424H: Learning in Autonomous Systems

• CO-433: Advanced Robotics

• CO-493: Data Analysis and Probabilistic Inference1

• CO-495: Advanced Statistical Machine Learning and Pattern Recognition

and a soft pre-requisite for CO-477.
Relevant for the exam are

• The lecture notes

• The following chapters from the book by Bishop (2006):

– Chapter 1

– Chapter 2.2–2.3

– Chapter 3

– Chapter 8.1

– Chapter 12.1–12.2

• The following chapters from the book by Golub and Van Loan (2012):

– Chapter 1: Matrix Multiplication (without 1.5 and 1.6)

– Chapter 2: Matrix Analysis (without 2.6 and 2.7)

1MSc Computing Science students are exempt from this hard constraint, but they are required to
know the material of this course.

1

Contents CONTENTS

– Chapter 5: 5.2 The QR Factorisation using only the Gram-Schmidt process

• The papers by Turk and Pentland (1991); Belhumeur et al. (1997)

• The following tutorials:

– Tutorial by Burges (1998) until Section 4.4

– From the tutorial by Lin (2006) only the basic topics.

For part two and three the relevant literature is also the lecture notes, as well as the
following chapters from the book by Golub and Van Loan (2012):

• Chapter 1: Matrix Multiplication (without 1.5 and 1.6)

• Chapter 2: Matrix Analysis (without 2.6 and 2.7)

• Chapter 5: 5.2 The QR Factorisation using only the Gram-Schmidt process

As well as, the following papers Turk and Pentland (1991); Belhumeur et al. (1997)
and tutorials Burges (1998); Lin (2006):

• Tutorial Burges (1998) until Section 4.4

• From Tutorial Lin (2006) only the basic topics.

2

Chapter 1

Linear Regression

In this part of the course, we will be looking at regression problems, where we
want to find a function f that maps inputs x ∈ RD to corresponding function values
f (x) ∈R based on noisy observations y = f (x) + ε, where ε is a random variable.
An example is given in Fig. 1.1. A typical regression problem is given in Fig. 1.1(a):
For some values x we observe (noisy) function values y = f (x)+ε. The task is to infer
the function f that generated the data. A possible solution is given in Fig. 1.1(b).
Regression is a fundamental problem, and regression problems appear in a diverse
range of research areas and applications, including time-series analysis (e.g., sys-
tem identification), control and robotics (e.g., reinforcement learning, forward/in-
verse model learning), optimization (e.g., line searches, global optimization), deep-
learning applications (e.g., computer games, speech-to-text translation, image recog-
nition, automatic video annotation).
Finding a regression function requires solving a variety of problems, including

• Choice of the parametrization of the regression function. Given a data set,
what function classes (e.g., polynomials) are good candidates for modeling
the data, and what particular parametrization (e.g., degree of the polynomial)
should we choose?

• Finding good parameters. Having chosen a parametrization of the regression
function, how do we find the parameter values? Here, we will need to look at
different loss functions (they determine what a “good” fit is) and optimization
algorithms that allow us to minimize this loss function.

• Probabilistic models. Loss functions are often motivated by probabilistic mod-
els. We will derive a set of useful models and discuss the corresponding under-
lying assumptions.

• Overfitting and model selection. Overfitting is a problem when the regres-
sion function fits the training data “too well” but does not generalize to the test
data. Overfitting typically occurs if the underlying model (or its parametriza-
tion) is overly flexible and expressive. Model selection allows us to compare
various models to find the simplest model that explains the training data rea-
sonably well.

3

1.1. Problem Formulation Chapter 1. Linear Regression

(a) Regression problem: Observed noisy func-
tion values from which we wish to infer the un-
derlying function that generated the data.

(b) Regression solution: Possible function that
could have generated the data.

Figure 1.1: (a) Regression problem and (b) possible solution.

• Uncertainty modeling. In any practical setting, we have access to only a
finite, potentially large, amount of (training) data for selecting the model class
and the corresponding parameters. Given that this finite amount of training
data does not cover all possible scenarios, we need to model the remaining
uncertainty to obtain a measure of confidence of the model’s prediction at test
time. The smaller the training set the more important uncertainty modeling.
Consistent modeling of uncertainty equips model predictions with confidence
bounds.

In this chapter, we will be reviewing the necessary mathematical background for
solving regression problems. This includes a brief introduction to probabilities and
graphical models, which are useful to visualize relationships between random vari-
ables. Furthermore, we will go through some vector calculus, which is required for
gradient-based optimization in the context of parameter learning. Once we know
how to learn regression functions, we will discuss the problem of overfitting and
model selection: Assuming we have a set of “realistic” models, are there some mod-
els that are better than others? Toward the end of this chapter, we will then discuss
Bayesian linear regression, which allows us to reason about parameters at a higher
level, thereby removing some of the problems encountered in maximum likelihood
and MAP estimation.

1.1 Problem Formulation

We consider the regression problem

y = f (x) + ε , (1.1)

where x ∈RD are inputs and y ∈R are observed targets. Furthermore, ε ∼N
(
0, σ2

)
is independent, identically distributed (i.i.d.) measurement noise. In this particular

4

Chapter 1. Linear Regression 1.2. Probabilities

case, ε is Gaussian distributed with mean 0 and variance σ2. The objective is to find
a function f that is close to the unknown function that generated the data.
In this course, we focus on parametric models, i.e., we choose a parametrization of f
and find parameters that “work well”. In the most simple case, the parametrization
of linear regression is

y = f (x) + ε = x>θ + ε (1.2)

where θ ∈RD are the parameters we seek and ε ∼N
(
0, σ2

)
.1

In this course, we will discuss in more detail how to

• Find good parameters θ

• Evaluate whether a parameter set “works well”

We will start by introducing some background material that is necessary and useful:
concepts in probability theory, standard probability distributions, and probabilistic
graphical models.

1.2 Probabilities

Probability theory is a mathematical foundation of statistics and a consistent way of
expressing uncertainty. Jaynes (2003) provides a great introduction to probability
theory.

Definition 1 (Probability Density Function)
A function p : RD → R is called a probability density function if (1) its integral
exists, (2) ∀x ∈RD : p(x) ≥ 0 and (3)∫

RD
p(x)dx = 1 . (1.3)

Here, x ∈ RD is a (continuous) random variable.2 For discrete random variables, the
integral in (1.3) is replaced with a sum.

Remark 1
We will be using the expression “probability distribution” not only for discrete distribu-
tions but also for continuous probability density functions, although this is technically
incorrect.

There are two fundamental rules in probability theory that appear everywhere in
machine learning and Bayesian statistics:

p(x) =
∫
p(x,y)dy Sum rule/Marginalization property (1.4)

1It would be more precise to call this model “linear in the parameters”. We will see later that
Φ>(x)θ for nonlinear transformations Φ is also a linear regression model.

2We omit the definition of a random variable as this will become too technical for the purpose of
this course.

5

1.2. Probabilities Chapter 1. Linear Regression

p(x,y) = p(y|x)p(x) Product rule (1.5)

Here, p(x,y) is the joint distribution of the two random variables x,y, p(x),p(y) are
the corresponding marginal distributions, and p(y|x) is the conditional distribu-
tion of y given x. If we consider discrete random variables x,y, the integral in (1.4)
is replaced by a sum. This is where the name comes from.
In machine learning and Bayesian statistics, we are often interested in making infer-
ences of random variables given that we have observed other random variables. Let
us assume, we have some prior knowledge p(x) about a random variable x and some
relationship p(y|x) between x and a second random variable y. If we now observe y,
we can use Bayes’ theorem3 to draw some conclusions about x given the observed
values of y. Bayes’ theorem follows immediately from the sum and product rules
in (1.4)–(1.5) as

p(x|y) =
p(y|x)p(x)
p(y)

. (1.6)

Here, p(x) is the prior, which encapsulates our prior knowledge of x, p(y|x) is
the likelihood4 that describes how y and x are related. The quantity p(y) is the
marginal likelihood or evidence and is a normalizing constant (independent of x),
which is obtained as the integral

∫
p(y|x)p(x)dx of the numerator with respect to x

and ensures that the fraction is normalized. The posterior p(x|y) expresses exactly
what we are interested in, i.e., what we know about x if we observe y.

Remark 2 (Marginal Likelihood)
Thus far, we looked at the marginal likelihood simply as a normalizing constant that
ensures that the posterior probability distribution integrates to 1. In Section 1.7 we will
see that the marginal likelihood also plays an important role in model selection.

1.2.1 Means and Covariances

Mean and (co)variance are often useful to describe properties of probability distri-
butions (expected values and spread).

Definition 2 (Mean and Covariance)
The mean of a random variable x ∈RD is defined as

Ex[x] =
∫
xp(x)dx =


E[x1]
...

E[xD]

 ∈RD , (1.7)

where the subscript indicates the corresponding dimension of x.
The expected value of a function of a random variable x ∼ p(x), say g(x), is given by

E[g(x)] =
∫
g(x)p(x)dx . (1.8)

3Also called the “probabilistic inverse”
4Also called the “measurement model”

6

Chapter 1. Linear Regression 1.2. Probabilities

If we consider two random variables x ∈ RD ,y ∈ RE, the covariance between x and y
is defined as

Cov[x,y] = Ex,y[xy
>]−Ex[x]Ey[y]> = Cov[y,x]> ∈RD×E . (1.9)

Here, the subscript makes it explicit with respect to which variable we need to average.
The variance of a random variable x ∈RD with mean vector µ is defined as

Vx[x] = Ex[(x −µ)(x −µ)>] = Ex[xx>]−Ex[x]Ex[x]> (1.10)

=


Cov[x1,x1] Cov[x1,x2] . . . Cov[x1,xD]
Cov[x2,x1] Cov[x2,x2] . . . Cov[x2,xD]

...
...

. . .
...

Cov[xD ,x1] Cov[xD ,xD]

 ∈RD×D . (1.11)

This matrix is called the covariance matrix of the random variable x. The covariance
matrix is symmetric and positive definite and tells us something about the spread of the
data.
The covariance matrix contains the variances of the marginals p(xi) =

∫
p(x1, . . . ,xD)dx\i

on its diagonal, where “\i” denotes “all variables but i”. The off-diagonal terms contain
the cross-covariance terms Cov[xi ,xj] for i, j = 1, . . . ,D, i , j.

It generally holds that

Vx[x] = Covx[x,x] . (1.12)

1.2.1.1 Sum of Random Variables

Consider two random variables x,y ∈RD . It holds that

E[x+y] = E[x]+E[y] (1.13)
E[x−y] = E[x]−E[y] (1.14)
V[x+y] =V[x] +V[y]+Cov[x,y]+Cov[y,x] (1.15)
V[x−y] =V[x] +V[y]−Cov[x,y]−Cov[y,x] (1.16)

1.2.1.2 Affine Transformation

Mean and (co)variance exhibit some useful properties when it comes to affine trans-
formation of random variables5. Consider a random variable x with mean µ and
covariance matrix Σ and a (deterministic) affine transformation y = Ax + b of x.
Then, y is itself a random variable whose mean vector and covariance matrix are
given by

Ey[y] = Ex[Ax+b] = AEx[x] +b = Aµ+b , (1.17)

Vy[y] =Vx[Ax+b] =Vx[Ax] = AVx[x]A
> = AΣA> , (1.18)

5The proof is left as an exercise.

7

1.2. Probabilities Chapter 1. Linear Regression

respectively.6 Furthermore,

Cov[x,y] =
∫
x(Ax+b)>p(x)dx −E[x]E[Ax+b]> (1.19)

=
∫
xp(x)dxb> +

∫
xx>p(x)dxA> −µb> −µµ>A> (1.20)

= µb> −µb> +
(∫

xx>p(x)dx −µµ>
)
A> (1.21)

(1.10)
= ΣA> (1.22)

1.2.2 Statistical Independence

Definition 3 (Independence)
Two random variables x,y are statistically independent if and only if

p(x,y) = p(x)p(y) . (1.23)

Intuitively, two random variables x and y are independent if the value of y (once
known) does not add any additional information about x (and vice versa).
If x,y are (statistically) independent then

• p(y|x) = p(y)

• p(x|y) = p(x)

• V[x+ y] =V[x] +V[y]

• Cov[x,y] = 0

Another concept that is important in machine learning is conditional independence.

Definition 4 (Conditional Independence)
Formally, x and y are conditionally independent given z if and only if

p(x,y|z) = p(x|z)p(y|z) . (1.24)

We write x ⊥⊥ y|z.

Independence can be cast as a special case of conditional independence if we write
x ⊥⊥ y|∅.

1.2.3 Basic Probability Distributions

In the following, we will briefly introduce basic probability distributions.

8

Chapter 1. Linear Regression 1.2. Probabilities

1

1

U [0.5, 1]

U [0, 2]

1

Figure 1.2: Examples of uniform distributions. Left: Continuous uniform distribu-
tion that distributes probability mass equally everywhere in a (compact) region. Right:
Discrete uniform distribution that assigns equal probability to four possible (discrete)
events.

Figure 1.3: The Bernoulli distribution can be used to model the binary outcome proba-
bility of a coin flip experiment.

1.2.3.1 Uniform Distribution

The uniform distribution is a distribution that assigns equal probability mass in a
region. For a,b ∈R and a < b, the uniform distribution is defined as

U [a,b] =
{

1
b−a , a ≤ x ≤ b
0 otherwise

(1.25)

Mean and variance of the uniform distribution U [a,b] are 1
2(a + b) and 1

12(b − a)
2,

respectively.

1.2.3.2 Bernoulli Distribution

The Bernoulli distribution is a distribution for a single binary variable x ∈ {0,1} and is
governed by a single continuous parameter µ ∈ [0,1] that represents the probability
of x = 1. The Bernoulli distribution is defined as

p(x|µ) = µx(1−µ)1−x , x ∈ {0,1} , (1.26)

6This can be shown directly by using the definition of the mean and covariance.

9

1.2. Probabilities Chapter 1. Linear Regression

0 2 4 6 8 10 12 14

Number m of observations x= 1 in N= 15 experiments

0.00

0.05

0.10

0.15

0.20

0.25

0.30
p
(m

)

µ= 0. 1

µ= 0. 4

µ= 0. 75

Figure 1.4: Examples of the Binomial distribution for µ ∈ {0.1,0.4,0.75} and N = 15.

E[x] = µ, (1.27)
V[x] = µ(1−µ) , (1.28)

where E[x] and V[x] are the mean and variance of the binary random variable x.
An example where the Bernoulli distribution can be used is when we are interested
in modeling the probability of “head” when flipping a coin.

1.2.3.3 Binomial Distribution

The Binomial distribution is a generalization of the Bernoulli distribution to a distri-
bution over integers. In particular, the Binomial can be used to describe the prob-
ability of observing m occurrences of x = 1 in a set of N samples from a Bernoulli
distribution where p(x = 1) = µ ∈ [0,1]. The Binomial distribution is defined as

p(m|N,µ) =
(
N
m

)
µm(1−µ)N−m , (1.29)

E[m] =Nµ, (1.30)
V[m] =Nµ(1−µ) (1.31)

where E[m] and V[m] are the mean and variance of m, respectively.
An example where the Binomial could be used is if we want to describe the probabil-
ity of observing m “heads” in N coin-flip experiments if the probability for observing
head in a single experiment is µ?

1.2.3.4 Beta Distribution

The Beta distribution is a distribution over a continuous variable µ ∈ [0,1], which is
often used to represent the probability for some binary event (e.g., the parameter

10

Chapter 1. Linear Regression 1.2. Probabilities

0.0 0.2 0.4 0.6 0.8 1.0
µ

0

1

2

3

4

5

p
(µ
|a
,b

)

a= 0. 5 = b

a= 1 = b

a= 2 = b

a= 4, b= 10

a= 5, b= 1

Figure 1.5: Examples of the Beta distribution for different values of α and β.

governing the Bernoulli distribution). The Beta distribution itself is governed by two
parameters α > 0, β > 0 and is defined as

p(µ|α,β) =
Γ (α + β)
Γ (α)Γ (β)

µα−1(1−µ)β−1 (1.32)

E[µ] =
α

α + β
, V[µ] =

αβ

(α + β)2(α + β +1)
(1.33)

where Γ (·) is the Gamma function defined as

Γ (t) :=
∫ ∞
0
xt−1 exp(−x)dx, t > 0 . (1.34)

Γ (t +1) = tΓ (t) . (1.35)

Note that the fraction of Gamma functions in (1.32) normalizes the Beta distribution.
Intuitively, α moves probability mass toward 1, whereas β moves probability mass
toward 0. There are some special cases (Murphy, 2012):

• For α = 1 = β we obtain the uniform distribution U [0,1].

• For α,β < 1, we get a bimodal distribution with spikes at 0 and 1.

• For α,β > 1, the distribution is unimodal.

• For α,β > 1 and α = β, the distribution is unimodal, symmetric and centered in
the interval [0,1], i.e., the mode/mean is at 1

2 .

11

1.2. Probabilities Chapter 1. Linear Regression

x

8
6

4
2

0

y

4
2

0
2

4
6

8

p
(x
, y

)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Figure 1.6: Gaussian distribution of two random variables x,y.

1.2.3.5 Gaussian Distribution

The multivariate Gaussian distribution7 is fully characterized by a mean vector µ
and a covariance matrix Σ and defined as

p(x|µ,Σ) = (2π)−
D
2 |Σ|−

1
2 exp

(
− 1

2(x −µ)
>Σ−1(x −µ)

)
, (1.36)

where x ∈ RD is a random variable. We write x ∼ N
(
x |µ, Σ

)
or x ∼ N

(
µ, Σ

)
. Fig-

ure 1.6 shows a bi-variate Gaussian (mesh), with the corresponding contour plot.
The Gaussian distribution is the most important probability distribution8 for continuous-
valued random variables. Its importance originates from the fact that it has many
computationally convenient properties, which we will be discussing in the following.
Application areas in which the Gaussian plays a central role range from signal pro-
cessing (e.g., Kalman filter) to control (e.g., linear quadratic regulator) and ma-
chine learning (e.g., Gaussian processes, principal component analysis, clustering
with Gaussian mixture models and k-means, linear regression, deep learning with
squared errors, variational inference, reinforcement learning).

Conditional and Marginal Consider the joint Gaussian distribution

p(x,y) =N
µxµy

 , Σxx Σxy

Σyx Σyy

 (1.37)

of two random variables x,y, where Σxx = Cov[x,x] and Σyy = Cov[y,y] are the
marginal covariance matrices of x and y, respectively, and Σxy = Cov[x,y] is the
cross-covariance matrix between x and y.

7Also: multivariate normal distribution
8We will be adopting a common, but mathematically slightly sloppy, language and call the “prob-

ability density function” a “distribution”.

12

Chapter 1. Linear Regression 1.2. Probabilities

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

x

p
(x

)

p(x)

Mean

95% confidence bound

−5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x1

x 2

95% confidence bound
Mean

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

x

p
(x

)

Data

p(x)

Mean

95% confidence interval

−5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x1

x 2

Data
95% confidence bound
Mean

Figure 1.7: Gaussian distributions. Left: Univariate (1-dimensional) Gaussians; Right:
Multivariate (2-dimensional) Gaussians, viewed from top. Crosses show the mean of
the distribution, the red solid (contour) lines represent the 95% confident bounds. The
bottom row shows the Gaussians overlaid with 100 samples. We expect that on aver-
age 95/100 samples are within the red contour lines/intervals that indicate the 95%
confidence bounds.

The conditional distribution p(x|y) is also Gaussian and given by

p(x|y) =N
(
µx|y , Σx|y

)
(1.38)

µx|y = µx + Σxy Σ−1yy (y − µy) (1.39)

Σx|y = Σxx − Σxy Σ−1yy Σyx . (1.40)

Note that in the computation of the mean in (1.39) the y-value is an observation and
no longer random.

Remark 3
The conditional Gaussian distribution shows up in many places, where we are interested
in posterior distributions:

• The Kalman filter (Kalman, 1960), one of the most central algorithms for state es-
timation in signal processing, does nothing but computing Gaussian conditionals
of joint distributions (Deisenroth and Ohlsson, 2011).

13

1.2. Probabilities Chapter 1. Linear Regression

x
-6 -4 -2 0 2 4

y
-5

-4

-3

-2

-1

0

1

2

3
Joint p(x,y)
Observation y
Conditional p(x|y)

Figure 1.8: The conditional distribution of a Gaussian is also Gaussian

x
-6 -4 -2 0 2 4

y

-5

-4

-3

-2

-1

0

1

2

3
Joint p(x,y)
Marginal p(x)

Figure 1.9: Marginal of a joint Gaussian distribution is Gaussian.

• Gaussian processes (Rasmussen and Williams, 2006), which are a practical im-
plementation of a distribution over functions. In a Gaussian process, we make
assumptions of joint Gaussianity of random variables. By (Gaussian) condition-
ing on observed data, we can determine a posterior distribution over functions.

• Latent linear Gaussian models (Roweis and Ghahramani, 1999; Murphy, 2012),
which include probabilistic PCA (Tipping and Bishop, 1999).

The marginal distribution p(x)9 of a joint Gaussian distribution p(x,y), see (1.37), is
itself Gaussian and computed by applying the sum-rule in (1.4) and given by

p(x) =
∫
p(x,y)dy =N

(
x |µx, Σxx

)
. (1.41)

Intuitively, looking at the joint distribution in (1.37), we ignore (i.e., integrate out)
everything we are not interested in.

Product of Gaussians The product of two Gaussians N
(
x |a, A

)
N

(
x |b, B

)
is an

unnormalized Gaussian distribution cN
(
x |c, C

)
with

C = (A−1 +B−1)−1 (1.42)

9The same holds for p(y).

14

Chapter 1. Linear Regression 1.2. Probabilities

c = C(A−1a+B−1b) (1.43)

c = (2π)−
D
2 |A+B|−

1
2 exp

(
− 1

2(a−b)
>(A+B)−1(a−b)

)
. (1.44)

Note that the normalizing constant c itself is a Gaussian either in a or in b with an
“inflated” covariance matrix A+B, i.e., c =N

(
a |b, A+B

)
=N

(
b |a, A+B

)
.

Linear Transformation of Gaussian Random Variables A linear (or affine) trans-
formation of a Gaussian random variable is Gaussian distributed.

• If p(x) =N
(
x |µ, Σ

)
and y = Ax then p(y) =N

(
y |Aµ, AΣA>

)
.

• If p(y) =N
(
y |Ax, Σ

)
then we can re-write this as a probability distribution in

x: If A was invertible, we could write x = A−1y. However, A is not generally
invertible. Therefore, we perform a transformation with A>:

y = Ax⇔ A>y = A>Ax . (1.45)

A>A is symmetric and positive definite10, i.e., it can be inverted. Then,

y = Ax⇔ (A>A)−1A>y = x . (1.46)

Hence, x is a linear transformation of y, and we obtain

p(x) =N
(
x | (A>A)−1A>y, (A>A)−1A>ΣA(A>A)−1

)
. (1.47)

Sampling from Multivariate Gaussian Distributions Assume we are interested
in generating samples xi , i = 1, . . . ,n, from a multivariate Gaussian distribution with
mean µ and covariance matrix Σ. However, we only have access to a sampler that
allows us to generate samples from the standard normal N

(
0, I

)
.

To obtain samples from a multivariate normal N
(
µ, Σ

)
, we can use the properties

of a linear transformation of a Gaussian random variable: If x ∼ N
(
0, I

)
then y =

Ax+µ, where AA> = Σ, is Gaussian distributed with mean µ and covariance matrix
Σ. We call Σ = AA> the Cholesky factorization of Σ.11

Sum of Independent Gaussian Random Variables If x,y are independent Gaus-
sian random variables (i.e., the joint is given as p(x,y) = p(x)p(y)) with p(x) =
N

(
x |µx, Σx

)
and p(y) = N

(
y |µy , Σy

)
, then x + y is also Gaussian distributed and

given by

p(x+ y) =N
(
µx +µy , Σx +Σy

)
. (1.48)

Knowing that p(x+y) is Gaussian, the mean and covariance matrix can be determined
immediately using the results from (1.13)–(1.16). This property will be important
when we consider i.i.d. Gaussian noise acting on random variables.

10Actually, only positive semi-definite, but with mild assumptions we arrive at positive definite.
11To compute the Cholesky factorization of a matrix, it is required that the matrix is symmetric and

positive definite. Covariance matrices possess this property.

15

1.2. Probabilities Chapter 1. Linear Regression

0 5 10 15 20

τ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
(τ
|a
,b

)

a= 0. 5, b= 0. 5

a= 2. 0, b= 1. 0

a= 3. 0, b= 1. 0

a= 3. 0, b= 3. 0

a= 9. 0, b= 0. 5

Figure 1.10: Gamma distribution for different values of a,b.

1.2.3.6 Gamma Distribution

The Gamma distribution is a distribution over positive real numbers τ > 0. The
Gamma distribution is itself governed by two parameters a,b > 0, where a is a shape
parameter and b a scale parameter of the corresponding density.
The Gamma distribution is defined as

p(τ |a,b) = 1
Γ (a)

baτa−1 exp(−bτ) , (1.49)

E[τ] =
a
b
, (1.50)

V[τ] =
a

b2
. (1.51)

The Gamma distribution is often used as a prior on the precision (inverse variance)
of a univariate Gaussian distribution.
Remark 4
Other distributions are special cases of the Gamma distribution (Murphy, 2012): The
Exponential distribution with parameter λ is obtained for (a,b) = (1,λ). The expo-
nential distribution describes the time between events in a Poisson process. The Erlang
distribution is a Gamma distribution with a ∈N. In the Chi-Squared distribution, which
is the distribution of the sum of Gaussian random variables, the scale parameter b is
fixed to b = 1

2 .

1.2.3.7 Wishart Distribution

The Wishart distribution is the multivariate generalization of the Gamma distribu-
tion: It is a family of probability distributions defined over symmetric, nonnegative-
definite matrix-valued random variables (“random matrices”).
For D ×D matrices the Wishart distribution is defined as

W (Σ|W ,ν) = B|Σ|
ν−D−1

2 exp
(
− 1

2tr(W −1Σ)
)

(1.52)

16

Chapter 1. Linear Regression 1.2. Probabilities

where ν is called the number of degrees of freedom of the distribution, and W is a
d×D scale matrix. B is a normalization constant (Bishop, 2006, p. 102) that ensures
that the distribution is normalized.
These distributions are of great importance in the estimation of covariance matrices
in multivariate statistics: The Wishart distribution is the conjugate prior for the pre-
cision matrix (inverse covariance matrix) of a Gaussian-distributed random variable
x ∼N

(
µ, Σ

)
.

1.2.4 Conjugacy

According to Bayes’ theorem (1.6), the posterior is proportional to the product of the
prior and the likelihood. The specification of the prior can be tricky for two reasons:
First, the prior should encapsulate our knowledge about the problem before we see
some data. This is often difficult to describe. Second, it is often not possible to
compute the posterior distribution analytically. However, there are some priors that
are computationally convenient: conjugate priors.

Definition 5 (Conjugate Prior)
A prior is conjugate for the likelihood function if the posterior is of the same form/type
as the prior.

Example (Beta-Binomial Conjugacy)
Consider a Binomial random variable x ∼ Bin(m|N,µ) where

p(x|µ,N) =
(
N
m

)
µm(1−µ)N−m ∝ µa(1−µ)b (1.53)

for some constants a,b. We place a Beta prior on the parameter µ:

Beta(µ|α,β) =
Γ (α + β)
Γ (α)Γ (β)

µα−1(1−µ)β−1 ∝ µα−1(1−µ)β−1 (1.54)

If we now observe some outcomes x = (x1, . . . ,xN) of a repeated coin-flip experiment
with h heads and t tails, we compute the posterior distribution on µ as

p(µ|x = h) ∝ p(x|µ)p(µ|α,β) = µh(1−µ)tµα−1(1−µ)β−1 (1.55)

= µh+α−1(1−µ)t+β−1 ∝ Beta(h+α,t + β) (1.56)

i.e., the posterior distribution is a Beta distribution as the prior, i.e., the Beta prior is
conjugate for the parameter µ in the Binomial likelihood function.

Table 1.1 lists examples for conjugate priors for the parameters of some of the stan-
dard distributions that we discussed in this section.
The Beta distribution is the conjugate prior for the parameter µ in both the Bino-
mial and the Bernoulli likelihood. For a Gaussian likelihood function, we can place

17

1.3. Probabilistic Graphical Models Chapter 1. Linear Regression

Table 1.1: Standard examples of conjugate priors.

Conjugate prior Likelihood Posterior
Beta Bernoulli Beta
Beta Binomial Beta
Gaussian/inverse Gamma Gaussian Gaussian/inverse Gamma
Gaussian/inverse Wishart Gaussian Gaussian/inverse Wishart
Dirichlet Multinomial Dirichlet

a b

c

(a) Directed graphical model

a b

c

(b) Undirected graphical
model

a b

c

(c) Factor graph

Figure 1.11: Three types of graphical models: (a) Directed graphical models (Bayesian
network); (b) Undirected graphical models (Markov random field); (c) Factor graphs.

a conjugate Gaussian prior on the mean. The reason why the Gaussian likelihood
appears twice in the table is that we need distinguish the univariate from the mul-
tivariate case. In the univariate (scalar) case, the inverse Gamma is the conjugate
prior for the variance12. In the multivariate case, we use a conjugate inverse Wishart
distribution as a prior on the covariance matrix13. The Dirichlet distribution is the
conjugate prior for the multinomial likelihood function. For further details, we refer
to Bishop (2006).

1.3 Probabilistic Graphical Models

A graphical model captures the way in which the joint distribution over all random
variables can be decomposed into a product of factors depending only on a subset of
these variables.
There are three main types of graphical models:

• Directed graphical models (Bayesian networks)

• Undirected graphical models (Markov random fields)

• Factor graphs

12Alternatively, the Gamma prior is conjugate for the precision (inverse variance) in the Gaussian
likelihood.

13Alternatively, the Wishart prior is conjugate for the precision matrix (inverse covariance matrix)
in the Gaussian likelihood.

18

Chapter 1. Linear Regression 1.3. Probabilistic Graphical Models

Nodes are (random) variables, edges represent probabilistic relations between vari-
ables. In this course, we will focus on directed graphical models.14

Probabilistic graphical models have some convenient properties:

• They are a simple way to visualize the structure of a probabilistic model

• They can be used to design or motivate new kind of statistical models

• Inspection of the graph alone gives us insight into properties, e.g., conditional
independence

• Complex computations for inference and learning in statistical models can be
expressed in terms of graphical manipulations.

1.3.1 From Joint Distributions to Graphs

Consider the joint distribution

p(a,b,c) = p(c|a,b)p(b|a)p(a) (1.57)

of three random variables a,b,c. The factorization of the joint in (1.57) tell us some-
thing about the relationship between the random variables:

• c depends directly on a and b

• b depends directly on a

• a depends neither on b nor on c

We can build the corresponding directed graphical model as follows:

1. Create a node for all random variables

2. For each conditional distribution, we add a directed link (arrow) to the graph
from the nodes corresponding to the variables on which the distribution is
conditioned on

Note that the graph layout depends on the choice of factorization. For the factoriza-
tion in (1.57), we obtain the directed graphical model in Fig. 1.12.

1.3.2 From Graphs to Joint Distributions

In the following, we will discuss how to extract the joint distribution of a set of
random variables from a given graphical model. We will immediately look at the
graphical model in Fig. 1.13, and exploit two observations:

14“Data Analysis and Probabilistic Inference” (CO-493) will discuss all three types of graphical
models.

19

1.3. Probabilistic Graphical Models Chapter 1. Linear Regression

a b

c

Figure 1.12: Directed graphical model for the factorization of the joint distribution
in (1.57).

x1 x2

x3 x4

x5

Figure 1.13: Directed graphical model for which we seek the corresponding joint distri-
bution and its factorization.

• The joint distribution p(x1, . . . ,x5) we seek is the product of a set of conditionals,
one for each node in the graph. In this particular example, we will need five
conditionals.

• Each conditional depends only on the parents of the corresponding node in the
graph. For example, x4 will be conditioned on x2.

Using these two properties, we arrive at the desired factorization of the joint distri-
bution

p(x1,x2,x3,x4,x5) = p(x1)p(x5)p(x2|x5)p(x3|x1,x2)p(x4|x2) . (1.58)

In general, the joint distribution p(x) = p(x1, . . . ,xK) is given as

p(x) =
K∏
k=1

p(xk |pak) (1.59)

where pak means “the parent nodes of xk”.

Example (Linear Regression)
We seek the graphical model representation for the linear regression setting

yn = x
>
nθ + ε , ε ∼N

(
0, σ2

)
, (1.60)

for n = 1, . . . ,N , where yn are observed variables.
In this example, we have three different types of “variables”:

20

Chapter 1. Linear Regression 1.3. Probabilistic Graphical Models

• Unknown random variables θ

• Observed random variables yn

• Deterministic parameters xn,σ , which are fixed

To make the distinction between these three types easier, we introduce additional
nodes for graphical models:

• Shaded nodes represent observed random variables

• Dots represent deterministic parameters

To find the directed graphical model, for all (observed and unobserved) random
variables we write down all probability distributions with explicit conditioning on
the parameters/variables they depend on. In our case, we end up with:

• p(yn|xn,θ,σ)

• p(θ)

This gives us the joint distribution of all random variables

p(y1, . . . , yN ,θ|x1, . . . ,xN ,σ) = p(θ)
N∏
n=1

p(yn|xn,θ,σ) . (1.61)

Now, we follow the steps Section 1.3.1 and find the graphical model in Fig. 1.14(a).
Observed random variables are shaded, deterministic parameters are dots, unob-
served random variables are “hollow”. The graphical model is somewhat repetitive
because, and we can write it in a more compact form using the plate notation in
Fig. 1.14(b). The plate essentially can be read as “for n = 1, . . . ,N locally copy/repeat
everything inside the plate”. Therefore, the plate replaces the dots in Fig. 1.14(a).
Note that the parameter σ for the noise and the random variable θ are “global” and,
therefore, outside the plate.

1.3.3 Further Reading

A good and extensive introduction to probabilistic graphical models can be found in
the book by Koller and Friedman (2009).
Directed graphical models allow us to find conditional independence relationship
properties of the joint distribution only by looking at the graph. A concept called
d-separation (Pearl, 1988) is key to this. D-separation will be discussed in more
detail in “Data Analysis and Probabilistic Inference” (CO-493).
Graphical models allow for graph-based algorithms for inference and learning, e.g.,
via local message passing. Applications range from ranking in online games (Her-
brich et al., 2007) and computer vision (e.g., image segmentation, semantic labeling,

21

1.4. Vector Calculus Chapter 1. Linear Regression

x1

y1

σ θ

x2

y2

xN

yN

(a) Version 1

θ

yn
N

xn σ

(b) Version 2 using the plate notation.

Figure 1.14: Two graphical models for linear regression. Observed random variables are
shaded, deterministic parameters are dots. (a) Graphical model without plate notation;
(b) Graphical model with plate notation, which allows for a more compact representa-
tion than (a).

(a) Online ranking with the TrueSkill sys-
tem.

(b) Image restoration

Figure 1.15: Examples of message passing using graphical models: (a) Microsoft’s
TrueSkill system (Herbrich et al., 2007) is used for ranking in online video games. (b)
Image restoration (Kittler and Föglein, 1984) is used to remove noise from images.

image de-noising, image restoration (Sucar and Gillies, 1994; Shotton et al., 2006;
Szeliski et al., 2008; Kittler and Föglein, 1984)) to coding theory (McEliece et al.,
1998), solving linear equation systems (Shental et al., 2008) and iterative Bayesian
state estimation in signal processing (Bickson et al., 2007; Deisenroth and Mohamed,
2012).

1.4 Vector Calculus

Now, we return to the linear regression setting outlined in Section 1.1: We are in-
terested in finding “good” parameters for the linear regression model. Finding good
parameters can be phrased as an optimization problem15. We will use gradient-
based approaches for solving this optimization problem. Hence, in this section, we
will be looking at differentiation of multi-variate functions with respect to parameter
vectors.

15We will do this in Section 1.5.

22

Chapter 1. Linear Regression 1.4. Vector Calculus

δy

δx

f(x)

x

y

f(x0)

f(x0 + δx)

Figure 1.16: The average incline of a function f between x0 and x0+δx is the incline of
the secant (blue) through f (x0) and f (x0 + δx) and given by δy/δx.

We start with the difference quotient of a univariate function y = f (x), x,y ∈ R.
Here, tangent on a curve f (x) is approximately given by

δy

δx
=
f (x+ δx)− f (x)

δx
. (1.62)

The difference quotient computes the incline of a curve at x by linearizing the func-
tion at x: It is the incline of the secant through f (x) and f (x + δx) and the average
incline of f between x and x+ δx.
In the limit for δx→ 0, we obtain the derivative of f at x, if f is differentiable.

Definition 6 (Derivative)
More formally, the derivative of f at x is defined as

df
dx

= lim
δx→0

f (x+ δx)− f (x)
δx

, (1.63)

and the secant in Fig. A.1 becomes a tangent.

Example
We want to compute the derivative of f (x) = xn,n ∈N. By using (1.63), we obtain

df
dx

= lim
δx→0

f (x+ δx)− f (x)
δx

(1.64)

= lim
δx→0

(x+ δx)n − xn

δx
(1.65)

= lim
δx→0

∑n
i=0

(n
i

)
xn−iδxi − xn

δx
(1.66)

= lim
δx→0

∑n
i=1

(n
i

)
xn−iδxi

δx
(1.67)

23

1.4. Vector Calculus Chapter 1. Linear Regression

= lim
δx→0

n∑
i=1

(
n
i

)
xn−iδxi−1 (1.68)

= lim
δx→0

(
n
1

)
xn−1 +

n∑
i=2

(
n
i

)
xn−iδxi−1

︸ ︷︷ ︸
→0 as δx→0

(1.69)

=
n!

1!(n− 1)!
xn−1 = nxn−1 (1.70)

1.4.1 Partial Differentiation and Gradients

Ordinary differentiation df
dx applies to functions f of a scalar variable x ∈ R. In the

following, we consider the case where the function f depends on one or more vari-
ables x ∈ Rn, e.g., f (x) = f (x1,x2). The generalization of the derivative to functions
of several variables is the gradient.
We find the gradient of the function f with respect to x by varying one variable at
a time and keeping the others constant. The gradient is then the vector of these
partial derivatives.

Definition 7 (Partial Derivative)
For a function f : Rn → R, x 7→ f (x), x ∈ Rn of n variables x1, . . . ,xn we define the
partial derivatives as

∂f

∂x1
= lim
h→0

f (x1 + h,x2, . . . ,xn)− f (x)
h

(1.71)

...

∂f

∂xn
= lim
h→0

f (x1, . . . ,xn−1,xn + h)− f (x)
h

(1.72)

and collect them in the row vector

∇xf =
[
∂f (x)
∂x1

∂f (x)
∂x2

· · · ∂f (x)
∂xn

]
∈R1×n . (1.73)

Here, we used the compact vector notation x = [x1, . . . ,xn]>.

Remark 5
The definition of the gradient as the limit of the difference quotient can be exploited
when checking gradients in computer programs: When we compute gradients and im-
plement them, we often use finite differences to numerically test our computation and
implementation: We choose the value h to be small (e.g., h = 10−4) and compare the
finite-difference approximation from Definition 7 with our (analytic) implementation
of the gradient.

24

Chapter 1. Linear Regression 1.4. Vector Calculus

Figure 1.17: f (x,y) = x2 + y2

Example
For f (x1,x2) = x21x2+x1x

3
2 ∈R, the partial derivatives (i.e., the derivatives of f with

respect to x1 and x2) are

∂f (x1,x2)
∂x1

= 2x1x2 + x
3
2 (1.74)

∂f (x1,x2)
∂x2

= x21 +3x1x
2
2 (1.75)

where ∂ indicates that it is a partial derivative, and the gradient is then

df
dx

=
[
∂f (x1,x2)
∂x1

∂f (x1,x2)
∂x2

]
=

[
2x1x2 + x

3
2 x21 +3x1x

2
2

]
∈R1×2 . (1.76)

Example
Consider the function f (x,y) = x2+y2 (see Fig. 1.17). We obtain the partial derivative
∂f /∂x by treating y as a constant and computing the derivative of f with respect to
x. We then obtain

∂f (x,y)
∂x

= 2x . (1.77)

Similarly, we obtain the partial derivative of f with respect to y as

∂f (x,y)
∂y

= 2y . (1.78)

25

1.4. Vector Calculus Chapter 1. Linear Regression

Example
For f (x,y) = (x+2y3)2, we get

∂f (x,y)
∂x

= 2(x+2y3)
∂
∂x

(x+2y3) = 2(x+2y3) . (1.79)

1.4.1.1 Jacobian

The matrix (or vector) of all first-order partial derivatives of a vector-valued function
f : Rn → Rm is called the Jacobian. The Jacobian J is an m × n matrix, which is
usually defined and arranged as follows:

J = ∇xf =
df (x)
dx

=
[
∂f (x)
∂x1

· · · ∂f (x)
∂xn

]
=


∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xn

 , x =


x1
...
xn

 , (1.80)

J(i, j) =
∂fi
∂xj

. (1.81)

In particular, a function f : Rn→ R, which maps a vector x = [x1, . . . ,xn]> ∈ Rn onto
a scalar y ∈ R (e.g., y =

∑
i xi), possesses a Jacobian that is a row vector (matrix of

dimension 1×n), see (1.73).

Remark 6
We sometimes see gradients defined as column vectors (and not as row vectors as we do
here) and Jacobians defined as the transpose of the definition we use. The disadvantage
with these definitions is that we need to pay attention to transposes when we perform
matrix multiplications, which appear when we apply the chain rule in the multivariate
case. With the standard definition we use here, this extra attention is not required.

Remark 7 (Gradients of Matrices)
Matrices represent (linear) mappings. We will encounter situations where we need to
take gradients of matrices with respect to vectors (or other matrices), which results in a
multi-dimensional tensor. For example, if we compute the gradient of an m× n matrix
with respect to a p × q matrix, the resulting Jacobian would be (p × q) × (m × n), i.e.,
a four-dimensional tensor (or array). However, we can exploit the fact that there is
an isomorphism between the space Rm×n of m × n matrices and the space Rmn of mn
vectors. Therefore, we can re-shape16 our matrices into vectors of lengths mn and pq,
respectively, which results in a Jacobian of size pq ×mn.

16e.g., by stacking the columns of the matrix

26

Chapter 1. Linear Regression 1.4. Vector Calculus

Notation Consider a function f : R2 → R of two variables x,y. Multiple partial
derivatives (as for ordinary derivatives) are expressed as

• ∂2f
∂x2

is the second partial derivative of f with respect to x

• ∂nf
∂xn is the nth partial derivative of f with respect to x

• ∂2f
∂x∂y is the partial derivative obtained by first partial differentiating by y and
then x

• ∂2f
∂y∂x is the partial derivative obtained by first partial differentiating by x and
then y

If f (x,y) is a twice (continuously) differentiable function then

∂2f

∂x∂y
=
∂2f

∂y∂x
, (1.82)

i.e., the order of differentiation does not matter and the corresponding Hessian
matrix (the matrix of second partial derivatives) is symmetric.17

1.4.1.2 Linearization and Taylor Series

The gradient ∇f of a function f is often used for a locally linear approximation of f
around x0:

f (x) ≈ f (x0) + (∇xf)(x0)(x − x0) . (1.83)

Here (∇xf)(x0) is the gradient of f with respect to x, evaluated at x0. Note that (1.83)
is equivalent to the first two terms in the multi-variate Taylor-series expansion of
f at x0.

Definition 8 (Taylor Series)
For a function f : R→ R, the Taylor series of a smooth18 function f ∈ C∞ at x0 is
defined as

f (x) =
∞∑
k=0

f (k)(x0)
k!

(x − x0)k (1.84)

where f (k)(x0) is the kth derivative of f at x0.19

For the multivariate Taylor series, we consider a function

f :RD →R (1.85)

x 7→ f (x) , x ∈RD , (1.86)

17The Hessian measures the local geometry of curvature.
18i.e., f ∈ C∞ (infinitely often continuously differentiable)
19If x0 = 0, we obtain the Maclaurin series.

27

1.4. Vector Calculus Chapter 1. Linear Regression

that is smooth at x0. The Taylor series of f at (x0) is defined as

f (x) =
∞∑
k=0

Dkxf (x0)
k!

(x − x0)k , (1.87)

where Dk is the k-th (total) derivative of f with respect to x.
The Taylor polynomial of degree n of f at x0 contains the first n+ 1 components of
the series in (1.87) and is defined as

Tn =
n∑
k=0

Dkxf (x0)
k!

(x − x0)k . (1.88)

Example
Consider the function

f (x,y) = x2 +2xy + y3 . (1.89)

Compute the Taylor series at (x0, y0) = (1,2).

f (1,2) = 13 (1.90)
∂f

∂x
= 2x+2y⇒

∂f

∂x
(1,2) = 6 (1.91)

∂f

∂y
= 2x+3y2⇒

∂f

∂y
(1,2) = 14 (1.92)

∂2f

∂x2
= 2⇒

∂2f

∂x2
(1,2) = 2 (1.93)

∂2f

∂y2
= 6y⇒

∂2f

∂y2
(1,2) = 12 (1.94)

∂f 2

∂x∂y
= 2⇒

∂f 2

∂x∂y
(1,2) = 2 (1.95)

∂f 2

∂y∂x
= 2⇒

∂f 2

∂y∂x
(1,2) = 2 (1.96)

∂3f

∂x3
= 0⇒

∂3f

∂x3
(1,2) = 0 (1.97)

∂3f

∂y3
= 4⇒

∂3f

∂y3
(1,2) = 6 (1.98)

Higher-order derivatives and the mixed derivatives of degree 3 (e.g., ∂f 3

∂x2∂y
) vanish.

Therefore, the Taylor series of f at (1,2) is

f (x) =f (1,2) (1.99)

+
∂f (1,2)
∂x

(x − 1) +
∂f (1,2)
∂y

(y − 2) (1.100)

28

Chapter 1. Linear Regression 1.4. Vector Calculus

+
1
2!

(
∂2f (1,2)
∂x2

(x − 1)2 +
∂2f (1,2)
∂y2

(y − 2)2 +2
∂2f (1,2)
∂x∂y

(x − 1)(y − 2)
)

(1.101)

+
1
3!
∂3f (1,2)
∂y3

(y − 2)3 (1.102)

= 13+6(x − 1) + 14(y − 2) + (x − 1)2 +6(y − 2)2 +2(x − 1)(x − 2) + (y − 3)3
(1.103)

Remark 8 (Application)
In machine learning (and other disciplines), we often need to compute expectations, i.e.,
we need to solve integrals of the form

Ex[f (x)] =
∫
f (x)p(x)dx . (1.104)

Even if p(x) is in a convenient form (e.g., Gaussian), this integral cannot be solved in
general. The Taylor series expansion is one way of finding an approximate solution: As-
suming p(x) =N

(
µ, Σ

)
is Gaussian, then the first-order Taylor series expansion around

µ locally linearizes the nonlinear function f . For linear functions, we can compute the
mean (and the covariance) exactly if p(x) is Gaussian distributed (see Section 1.2.3.5).
This property is heavily exploited by the Extended Kalman Filter (Maybeck, 1979) for
online state estimation in nonlinear dynamical systems20.

1.4.2 Basic Rules of Partial Differentiation

In the multivariate case, where x ∈ Rn, the basic differentiation rules that we know
from school (e.g., sum rule, product rule, chain rule) still apply. However, we need
to pay attention because now we have to deal with matrices where multiplication is
no longer commutative, i.e., the order matters.

Product Rule:
∂
∂x

(
f (x)g(x)

)
=
∂f

∂x
g(x) + f (x)

∂g

∂x
(1.105)

Sum Rule:
∂
∂x

(
f (x) + g(x)

)
=
∂f

∂x
+
∂g

∂x
(1.106)

Chain Rule:
∂
∂x

(g ◦ f)(x) = ∂
∂x

(
g(f (x))

)
=
∂g

∂f

∂f

∂x
(1.107)

1.4.3 Useful Identities for Computing Gradients

In the following, we list some useful gradients that are frequently required in a
machine learning context (Petersen and Pedersen, 2012):

∂f (X)>

∂X
=

(
∂f (X)
∂X

)>
(1.108)

20also called “state-space models”

29

1.4. Vector Calculus Chapter 1. Linear Regression

∂tr(f (X))
∂X

= tr
(
∂f (X)
∂X

)
(1.109)

∂det(f (X))
∂X

= det(X)tr
(
X−1

∂f (X)
∂X

)
(1.110)

∂f −1(X)
∂X

= −f −1(X)
∂f (X)
∂X

f −1(X) (1.111)

∂a>X−1b
∂X

= −(X−1)>ab>(X−1)> (1.112)

∂x>a
∂x

= a> (1.113)

∂a>x
∂x

= a> (1.114)

∂a>Xb
∂X

= ab> (1.115)

∂x>Bx
∂x

= x>(B +B>) (1.116)

∂
∂s

(x −As)>W (x −As) = −2(x −As)>WA for symmetric W (1.117)

1.4.4 Chain Rule

Let us have a closer look at the chain rule. Consider a function f : R2 → R of two
variables x1,x2. Furthermore, x1 and x2 are themselves functions of t. To compute
the gradient of f with respect to t, we need to apply the chain rule (1.107) for
multivariate functions as

df (x1(t),x2(t))
dt

=
∂f (x1,x2)
∂x1

dx1
dt

+
∂f (x1,x2)
∂x2

dx2
dt

(1.118)

where d denotes the total derivative.

Example
Consider f (x1,x2) = x21 +2x2, where x1 = sin t and x2 = cos t, then

df
dt

=
∂f

∂x1

dx1
dt

+
∂f

∂x2

dx2
dt

(1.119)

= 2sin t
dsin t
dt

+2
dcos t
dt

(1.120)

= 2sin t cos t − 2sin t = 2sin t(cos t − 1) (1.121)

If f (x1,x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are themselves func-
tions of two variables s and t, the chain rule yields

df
ds

=
∂f

∂x1

∂x1
∂s

+
∂f

∂x2

∂x2
∂s

, (1.122)

30

Chapter 1. Linear Regression 1.4. Vector Calculus

df
dt

=
∂f

∂x1

∂x1
∂t

+
∂f

∂x2

∂x2
∂t

, (1.123)

which can be expressed as a matrix equation

df
d(s, t)

=
∂f

∂x
dx

d(s, t)
=

[
∂f
∂x1

∂f
∂x2

]
︸ ︷︷ ︸

=∂f∂x

∂x1∂s ∂x1
∂t

∂x2
∂s

∂x2
∂t

︸ ︷︷ ︸
= dx

d(s,t)

(1.124)

Example
Consider the function h :R→R, h(t) = (f ◦ g)(t) with

f :R2→R (1.125)

g :R→R2 (1.126)

f (x) = exp(x1x
2
2) , (1.127)

x = g(t) =
[
t cos t
t sin t

]
(1.128)

and compute the gradient of h with respect to t.
Since f :R2→R and g :R→R2 we note that

∂f

∂x
∈R1×2 , (1.129)

∂g

∂t
∈R2×1 . (1.130)

The desired gradient is computed by applying the chain-rule:

dh
dt

=
∂f

∂x
dx
dt

(1.131)

=
[
∂f
∂x1

∂f
∂x2

][dx1
dt
dx2
dt

]
(1.132)

=
[
exp(x1x

2
2)x

2
2 2exp(x1x

2
2)x1x2

][cos t − t sin t
sin t + t cos t

]
(1.133)

= exp(x1x
2
2)
(
x22(cos t − t sin t) + 2x1x2(sin t + t cos t)

)
(1.134)

Example (Linear Regression)
Let us consider the linear regression model

y =Φθ , y ∈RN , θ ∈RD . (1.135)

31

1.4. Vector Calculus Chapter 1. Linear Regression

We define the following functions:

L(e) := ‖e‖2 (1.136)
e(θ) := y −Φθ . (1.137)

We seek ∂L
∂θ , and we will use the chain rule for this purpose.

Before we start any calculation, we determine the dimensionality of the gradient:

∂L
∂θ
∈R1×D . (1.138)

The chain rule allows us to compute the gradient as

∂L
∂θ

=
∂L
∂e

∂e
∂θ

. (1.139)

We know that ‖e‖2 = e>e (see Appendix A.2 for a brief revision) and determine

∂L
∂e

= 2e> ∈R1×N . (1.140)

Furthermore, we obtain

∂e
∂θ

= −Φ ∈RN×D , (1.141)

such that our desired derivative is

∂L
∂θ

= −2e>Φ = −2(y> −θ>Φ>)︸ ︷︷ ︸
1×N

Φ︸︷︷︸
N×D

∈R1×D . (1.142)

Remark 9
We would have obtained the same result without using the chain rule by immediately
looking at the function

L2(θ) := ‖y −Φθ‖2 = (y −Φθ)>(y −Φθ) . (1.143)

This approach is still practical for simple functions like L2. However, when we look
at deeply nested functions fK ◦ fK−1 ◦ · · · ◦ f1, writing out the full function is tedious.
Furthermore, for programming purposes the chain rule is extremely useful: When we
write functions21 for ever fi that returns the partial derivative of its outputs with respect
to its inputs, the total derivative is just the product of the partial derivatives returned by
the individual functions. If we then decide modify fi into f̃i , we simply have to write a
function that computes the partial derivative of f̃i and use this in the product of partial
derivatives (instead of re-deriving the total derivative from scratch).

21apologies for overloading this word

32

Chapter 1. Linear Regression 1.5. Parameter Estimation

θ

yn
N

xn σ

Figure 1.18: Probabilistic graphical model for linear regression.

Remark 10 (Application of the Chain Rule in Machine Learning)
In machine learning, the chain rule plays an important role when optimizing parame-
ters of a hierarchical model (e.g., for maximum likelihood estimation). An area where
the chain rule is used to an extreme is Deep Learning where the function value y is
computed as a nested/layered function

y = fK (fK−1(· · · (f1(x)) · · ·)) , (1.144)

where x are the inputs (e.g., images), y are the observations (e.g., class labels) and
every function fi , i = 1, . . . ,K possesses its own parameters. In neural networks with
multiple layers, we have functions fi(x) = σ (Aixi−1 + bi) in the ith layer, where xi−1
is the output of layer i − 1 and σ an activation function, e.g., the logistic sigmoid

1
1+e−x , tanh or a rectified linear unit (ReLU). In order to train these models, we have to
compute the gradient of a loss function with respect to the inputs of each layer (e.g.,
xi−1) to obtain the partial derivative with respect to the parameters of the previous layer
(e.g., Ai−1,bi−1). There are efficient ways of implementing this repeated application of
the chain-rule using backpropagation (Kelley, 1960; Bryson, 1961; Dreyfus, 1962;
Rumelhart et al., 1986).

1.5 Parameter Estimation

Assume we are given a training set D consisting of N inputs xi ∈ RD and corre-
sponding observations yi ∈ R, i = 1, . . . ,N , where yi and yj are conditionally inde-
pendent given xi ,xj . Our objective is to find optimal parameters θ∗ ∈ RD for the
linear regression model (1.2).22 Once the parameters are found, we can predict
function values by using the estimate θ∗ in the model (1.2).

1.5.1 Maximum Likelihood Estimation

A widely used approach to finding the desired parameters θ∗ is maximum likelihood
estimation where

θ∗ = argmax
θ
p(y|X ,θ) , X := [x1| · · · |xN]> ∈RN×D , y := [y1, . . . , yN]

> ∈RN

(1.145)

22The corresponding graphical model is given in Fig. 1.18.

33

1.5. Parameter Estimation Chapter 1. Linear Regression

maximizes the likelihood function p(y|X ,θ).

Remark 11
Note that the likelihood is not a probability distribution in θ: It is simply a function but
does usually not integrate to 1 (i.e., it is unnormalized), and may not even be integrable
with respect to θ. However, the likelihood in (1.145) is a probability distribution in y.

To find the desired parameters θ∗ that maximize the likelihood, we typically do
gradient ascent (or gradient descent on the negative likelihood). For numerical rea-
sons, we apply the log-transformation to the problem23 and minimize the negative
log-likelihood

θ∗ ∈ argmin
θ

(
− logp(y|X ,θ)

)
(1.146)

= argmin
θ

− log N∏
i=1

p(yi |xi ,θ)

 (1.147)

= argmin
θ

N∑
i=1

− logp(yi |xi ,θ) , (1.148)

where we exploited that the likelihood factorizes over the number of data points due
to our independence assumption on the training set.
In the linear regression model (1.2) the likelihood is Gaussian (due to the Gaussian
additive noise term), such that we arrive at

− logp(yi |xi ,θ) =
1

2σ2 (yi − x
>
i θ)

2 + const (1.149)

where the constant includes all terms independent of θ. Using (1.149) in the nega-
tive log-likelihood (1.148) we obtain (ignoring the constant terms)

L(θ) := − logp(y|X ,θ) = 1
2σ2

N∑
i=1

(yi − x>i θ)
2 (1.150)

=
1

2σ2 (y −Xθ)
>(y −Xθ) = 1

2σ2 ‖y −Xθ‖
2 , (1.151)

X :=


x>1
...
x>N

 ∈RN×D , (1.152)

where X is called the design matrix.24 In (1.151) we replaced the sum of squared
with the squared norm25 of the difference term y −Xθ.

23Note that the logarithm is a (strictly) monotonically increasing function.
24Note that there is some notation overloading: We summarize the set of training inputs in X ,

whereas in the design matrix we additionally assume a specific “shape”.
25Remember that ‖x‖2 := 〈x,x〉 where 〈·, ·〉 is a scalar product (inner product).

34

Chapter 1. Linear Regression 1.5. Parameter Estimation

Remark 12
In machine learning, the negative log likelihood function is also called an error func-
tion.

Now that we have a concrete form of the negative log-likelihood function we need
to optimize. We will discuss two approaches, both of which are based on gradients.

1.5.1.1 Closed-Form Solution

We immediately see that (1.151) is quadratic in θ. This means that we can find a
unique global solution θ∗ for minimizing the negative log-likelihood. We can find
the global optimum by computing the gradient of L, setting it to 0 and solving for
θ.26

We compute the gradient of L with respect to the parameters as

∂L
∂θ

=
∂
∂θ

(1
2σ2 (y −Xθ)

>(y −Xθ)
)

(1.153)

=
1

2σ2
∂
∂θ

(
y>y − 2y>Xθ +θ>X>Xθ

)
(1.154)

=
1
σ2 (−y

>X +θ>X>X) ∈R1×D . (1.155)

A necessary condition for θ being optimal we set this gradient to 0 and obtain

∂L
∂θ

= 0
(1.155)
⇔ (θ∗)>X>X = y>X (1.156)

⇔ (θ∗)> = y>X(X>X)−1 (1.157)

⇔ θ∗ = (X>X)−1X>y (1.158)

We could right-multiply the first equation by (X>X)−1 because X>X is positive def-
inite (if we do not have two identical inputs xi ,xj for i , j). Note that we actually
do obtain a global minimum since the Hessian ∇2θL(θ) = X

>X ∈ RD×D is positive
definite.

1.5.1.2 Iterative Solution

We may be interested in finding parameters on which the log-likelihood depends
in a more complicated way. Then, a closed-form solution is often not available.
However, we can use an iterative procedure to find a local optimum. The most
straightforward procedure for this is gradient descent, which we will discuss in more
detail in Section 1.6.

26In this case, setting the gradient to 0 is a necessary and sufficient condition. As an exercise,
compute the Hessian (matrix of second derivatives) and show that it is positive definite.

35

1.5. Parameter Estimation Chapter 1. Linear Regression

1.5.1.3 Maximum Likelihood Estimation with Features

When we consider the linear regression model

y = φ>(x)θ + ε (1.159)

where φ :RD →RK is a (nonlinear) transformation of the inputs x.

Example (Polynomial Regression)
We are concerned with a regression problems y = φ>(x)θ + ε, where x ∈ R. A trans-
formation that is often used in this context is

φ(x) =


φ0(x)
φ1(x)
...

φK (x)

 =


1
x
x2

x3
...
xK


∈RK+1 . (1.160)

This means, we “lift” the original 1D input space into a K + 1-dimensional feature
space consisting of monomials. With these features, we can model polynomials of
degree ≤ K within the framework of linear regression: A polynomial of degree K is
given by

f (x) =
K∑
i=0

θix
i = φ>(x)θ (1.161)

where φ is defined in (1.160) and θ = [θ0, . . . ,θK]> contains the parameters θi .

When we consider the training data xi , yi , i = 1, . . . ,N and define the feature (design)
matrix

Φ =


φ>0 (x1) φ>1 (x1) · · · φ>K (x1)
φ>0 (x2) φ>1 (x2) · · · φ>K (x2)
...

...
...

φ>0 (xN) · · · · · · φ>K (xN)

 , Φij = φ
>
j (xi) (1.162)

the negative log-likelihood can be written as

− logp(y|X ,θ) = 1
2σ2 (y −Φθ)>(y −Φθ) + const . (1.163)

Comparing (1.163) with (1.151) we immediately see that X is replaced by Φ . Since
both X and Φ are independent of the parameters θ that we wish to optimize, we
therefore also arrive immediately at the maximum likelihood estimate

θ∗ = (Φ>Φ)−1Φ>y (1.164)

36

Chapter 1. Linear Regression 1.5. Parameter Estimation

for the linear regression problem with nonlinear features defined in (1.159).

Example (Feature Matrix for Polynomials)
For a second-order polynomial and N training points xi ∈ R, i = 1, . . . ,N , the feature
matrix is

Φ =


0 x1 x21
0 x2 x22
...

...
...

0 xN x2N

 . (1.165)

1.5.1.4 Properties

The maximum likelihood estimate θ∗ possesses the following properties:

• Asymptotic consistency: The MLE converges to the true value in the limit of in-
finitely many observations, plus a random error that is approximately normal.

• The size of the samples necessary to achieve these properties can be quite large.

• The error’s variance decays in 1/N where N is the number of data points.

• Especially, in the “small” data regime, maximum likelihood estimation can lead
to overfitting.

Example (Maximum Likelihood Polynomial Fit)

Let us consider the data set in Fig. 1.19(a). The data set consists of N = 20 pairs
(xi , yi), where xi ∼ U [−5,5] and yi = −sin(xi/5) + cos(xi) + ε, where ε ∼N

(
0, 0.22

)
.

We fit a polynomial of degree M = 4 using maximum likelihood estimation (i.e., the
parameters are given in (1.164)). The maximum likelihood estimate yields an ex-
pected function value φ(x∗)>θML at a new test location x∗. The result is shown in
Fig. 1.19(b).

1.5.2 Overfitting

We have seen that we can use maximum likelihood estimation to fit linear models
(e.g., polynomials) to data. We can evaluate the quality of the model by comput-
ing the error/loss incurred. One way of doing this is to compute the negative log-
likelihood (1.148), which we minimized to determine the MLE. Alternatively, given
that the noise parameter σ2 is not a free parameter, we can ignore the scaling by

37

1.5. Parameter Estimation Chapter 1. Linear Regression

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3

Data

(a) Regression data set.

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 4

Data
Maximum likelihood estimate

(b) Polynomial of degree 4 determined by maxi-
mum likelihood estimation.

Figure 1.19: Polynomial regression. (a) Data set consisting of (xi , yi) pairs, i = 1, . . . ,20.
(b) Maximum likelihood polynomial of degree 4.

1/σ2, so that we end up with a squared-error-loss function ‖y −Φθ‖2. Instead of
using this squared loss, we often use the root mean squared error (RMSE)

√
‖y −Φθ‖2/N =

√√√
1
N

N∑
n=1

(yn −φ>(xn)θ)2 , (1.166)

which (a) allows us to compare errors of data sets with different sizes27 and (b) has
the same scale and the same units as the observed function values yi .28 Note that
the division by σ2 makes the log-likelihood “unit-free”.
We can use the RMSE (or the log-likelihood) to determine the best degree of the
polynomial by finding the value M, such that the error is minimized. Given that
the polynomial degree is a natural number, we can perform a brute-force search and
enumerate all (reasonable) values of M.29

Fig. 1.20 shows a number of polynomial fits determined by maximum likelihood. We
notice that polynomials of low degree (e.g., constants (M = 0) or linear (M = 1) fit
the data poorly and, hence, are poor representations of the true underlying function.
For degrees M = 4, . . . ,9 the fits look plausible and smoothly interpolate the data.
When we go to higher-degree polynomials, we notice that they fit the data better
and better—in the extreme case of M = N − 1 = 19, the function passes through
every single data point. However, these high-degree polynomials oscillate wildly
and are a poor representation of the underlying function that generated the data.30

The property of the polynomials fitting the noise structure is called overfitting.
Remember that the goal is to achieve good generalization by making accurate pre-
dictions for new (unseen) data. We obtain some quantitative insight into the de-

27The RMSE is normalized.
28Assume, we fit a model that maps post-codes (x is given in latitude,longitude) to house prices

(y-values are GBP). Then, the RMSE is also measured in GBP, whereas the squared error is given in

38

Chapter 1. Linear Regression 1.5. Parameter Estimation

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 0

Data
Maximum likelihood estimate

(a) M = 0

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 1

Data
Maximum likelihood estimate

(b) M = 1

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 4

Data
Maximum likelihood estimate

(c) M = 4

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 6

Data
Maximum likelihood estimate

(d) M = 6

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 9

Data
Maximum likelihood estimate

(e) M = 9

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 12

Data
Maximum likelihood estimate

(f) M = 12

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 14

Data
Maximum likelihood estimate

(g) M = 14

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 16

Data
Maximum likelihood estimate

(h) M = 16
x

-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 19

Data
Maximum likelihood estimate

(i) M = 19

Figure 1.20: Polynomial fits for different degrees M

pendence of the generalization performance on the polynomial of degree M by con-
sidering a separate test set comprising 100 data points generated using exactly the
same procedure used to generate the training set, but with new choices for the ran-
dom noise values included in the target values. As test inputs, we chose a linear
grid of 100 points in the interval of [−5,5]. For each choice of M, we evaluate the
RMSE (1.166) for both the training data and the test data.
Looking now at the test error, which is a qualitive measure of the generalization
properties of the corresponding polynomial, we notice that initially the test error
decreases, see Fig. 1.21 (red). For fourth-order polynomials the test error is rela-

GBP2.
29For a training set of size N it is sufficient to test 0 ≤M ≤N − 1.
30Note that the noise variance σ2 > 0.

39

1.5. Parameter Estimation Chapter 1. Linear Regression

Degree of polynomial
0 5 10 15 20

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Training error
Test error

Figure 1.21: Training and test error.

tively low and stays relatively constant up to degree 11. However, from degree 12
onward the test error increases significantly, and high-order polynomials have very
bad generalization properties. In this particular example, this also is evident from
the corresponding maximum likelihood fits in Fig. 1.20. Note that the training error
(blue curve in Fig. 1.21) never increases as a function of M. In our example, the
best generalization (the point of the smallest test error) is achieved for a polynomial
of degree M = 6.
It is a bit counter-intuitive that a polynomial of degree M = 19 is a worse approxi-
mation than a polynomial of degree M = 4, which is a special case of a 19th-order
polynomial (by setting all higher coefficients to 0). However, a 19th-order polyno-
mial can also describe many more functions, i.e., it is a much more flexible model.
In the data set we considered, the observations yn were noisy (i.i.d. Gaussian). A
polynomial of a high degree will use its flexibility to model random disturbances as
systematic/structural properties of the underlying function. Overfitting can be seen
as a general problem of maximum likelihood estimation (Bishop, 2006). Assuming
we had noise-free data, overfitting does not occur, which is also revealed by the test
error, see Fig. 1.22.

1.5.3 Regularization

In Section 1.5.1, we saw that maximum likelihood estimation is prone to overfitting.
It often happens that the parameter values become relatively big if we run into over-
fitting (Bishop, 2006). One way to control overfitting is to penalize big parameter
values. A technique that is often used to control overfitting is regularization. In
regularization, we add a term to the log-likelihood that penalizes the amplitude of
the parameters θ. A typical example is a “loss function” of the form

− logp(y|X ,θ) +λ‖θ‖22 , (1.167)

40

Chapter 1. Linear Regression 1.5. Parameter Estimation

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 19

Data
Maximum likelihood estimate

(a) Maximum likelihood fit.

Degree of polynomial
0 5 10 15 20

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Training error
Test error

(b) Training and test error

Figure 1.22: Noise-free maximum likelihood estimation with a 19th-degree polynomial.
(a) Overfitting no longer occurs; (b) the test error declines to 0.

where the second term is the regularizer, and λ ≥ 0 controls the “strictness” of the
regularization.31

1.5.4 Maximum-A-Posterior (MAP) Estimation

From a probabilistic perspective, adding a regularizer is identical to using a prior
distribution p(θ) on the parameters and then selecting the parameters that maxi-
mize the posterior distribution p(θ|X ,y), i.e., we choose the parameters θ that are
“most probable” given the training data: In a Bayesian setting, the posterior over the
parameters θ given the training data X ,y is obtained by applying Bayes’ theorem as

p(θ|X ,y) =
p(y|X ,θ)p(θ)

p(y|X)
. (1.168)

The parameter vector θMAP that maximizes the posterior (1.168) is called the maxi-
mum a-posteriori (MAP) estimate.
To find the MAP estimate, we follow steps that are similar in flavor to maximum
likelihood estimation. We start with the log-transform and compute the log-posterior
as

logp(θ|X ,y) = logp(y|X ,θ) + logp(θ) + const , (1.169)

where the constant includes the terms independent of θ. We see that the log-
posterior in (1.169) consists of the log-likelihood p(y|X ,θ) and the log-prior logp(θ).

31Instead of the 2-norm, we can choose and p-norm ‖ · ‖p. In practice, smaller values for p lead to
sparser solutions. Here, “sparse” means that many parameter values θi = 0, which is also useful for
variable selection. For p = 1, the regularizer is called LASSO (least absolute shrinkage and selection
operator) and was proposed by Tibshirani (1996).

41

1.5. Parameter Estimation Chapter 1. Linear Regression

Remark 13 (Relation to Regularization)
Choosing a Gaussian parameter prior p(θ) = N

(
0, b2I

)
, b2 = 1

2λ , the (negative) log-
prior term will be

− logp(θ) = λθ>θ︸︷︷︸
=λ‖θ‖22

+const , (1.170)

and we recover exactly the regularization term in (1.167). This means that for a
quadratic regularization, the regularization parameter λ in (1.167) corresponds to
twice the precision (inverse variance) of the Gaussian (isotropic) prior p(θ). The log-
prior in (1.169) plays the role of a regularizer that penalizes implausible values, i.e.,
values that are unlikely under the prior.

To find the MAP estimate θMAP, we minimize the negative log-posterior with respect
to θ, i.e., we solve

θMAP ∈ argmin
θ
− logp(y|X ,θ)− logp(θ) . (1.171)

We compute the gradient with respect to θ as

−
∂ logp(θ|X ,y)

∂θ
= −

∂ logp(y|X ,θ)
∂θ

−
∂ logp(θ)

∂θ
, (1.172)

where we identify the first term on the right-hand-side as the gradient of the negative
log-likelihood given in (1.155).

1.5.4.1 MAP Estimation for Linear Regression

We consider the linear regression problem where

y = φ>(x)θ + ε , ε ∼N
(
0, σ2

)
, (1.173)

with a Gaussian prior p(θ) =N
(
0, b2I

)
on the parameters θ.

The negative log-posterior for this model is

− logp(θ|X ,y) = 1
2σ2 (y −Φθ)>(y −Φθ) +

1
2b2

θ>θ + const . (1.174)

Here, the blue term corresponds to the contribution from the log-likelihood, and the
red term originates from the log-prior.
The gradient of the log-posterior with respect to the parameters θ is

−
∂ logp(θ|X ,y)

∂θ
=

1
σ2 (θ

>Φ>Φ − y>Φ) +
1
b2
θ> . (1.175)

We will find the MAP estimate θMAP by setting this gradient to 0:

1
σ2 (θ

>Φ>Φ − y>Φ) +
1
b2
θ> = 0 (1.176)

42

Chapter 1. Linear Regression 1.5. Parameter Estimation

⇔θ>
(1
σ2Φ

>Φ +
1
b2
I
)
− 1
σ2y

>Φ = 0 (1.177)

⇔θ>
(
Φ>Φ +

σ2

b2
I

)
= y>Φ (1.178)

⇔θ> = y>Φ
(
Φ>Φ +

σ2

b2
I

)−1
(1.179)

⇔θMAP =
(
Φ>Φ +

σ2

b2
I

)−1
Φ>y . (1.180)

Comparing the MAP estimate in (1.180) with the maximum likelihood estimate in
(1.164) we see that the only difference between both solutions is the additional red
term σ2

b2
I in the inverse matrix.32 This term ensures that the inverse exists and serves

as a regularizer.

Example (MAP Estimation for Polynomial Regression)

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 6

Data
Maximum likelihood estimate
MAP estimate

x
-5 0 5

f(
x)

-3

-2

-1

0

1

2

3
Polynomial of degree 14

Data
Maximum likelihood estimate
MAP estimate

Figure 1.23: Polynomial regression: Maximum likelihood and MAP estimates.

In the polynomial regression example from Section 1.5.1, we place a Gaussian prior
p(θ) = N

(
0, 0.12I

)
on the parameters θ and determine the MAP estimates accord-

ing to (1.180). In Fig. 1.23, we show both the maximum likelihood and the MAP
estimates for polynomials of degree 6 (left) and degree 14 (right). The prior (regu-
larizer) does not play a significant role for the low-degree polynomial, but keeps the
function relatively smooth for higher-degree polynomials. However, the MAP esti-
mate is only able to push the boundaries of overfitting—it is not a general solution
to this problem.

32Φ>Φ is positive semidefinite and the additional term is strictly positive definite, such that all
eigenvalues of the matrix to be inverted are positive.

43

1.6. Gradient Descent Chapter 1. Linear Regression

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f(
x
)

Figure 1.24: Gradient descent can lead to zigzagging and slow convergence.

1.6 Gradient Descent

Gradient descent is a first-order optimization algorithm. To find a local minimum
of a function using gradient descent, one takes steps proportional to the negative of
the gradient (or of the approximate gradient) of the function at the current point.
Remember that the gradient points in the direction of the steepest ascent and it is
orthogonal to the contour lines of the function we wish to optimize.
Gradient descent exploits the fact that if a multivariate function f (x) is differentiable
in a neighborhood of a point x0 then f (x0) decreases fastest if one moves from x0 in
the direction of the negative gradient −(∇f)(x0) of f at x0. Then, if

x1 = x0 −γ(∇f)(x0) (1.181)

for a small step size γ ≥ 0 then f (x1) ≤ f (x0).
This observation allows us to define a simple gradient-descent algorithm: If we want
to find a local optimum f (x∗) of a function f :Rn→Rm, x 7→ f (x), we start with an
initial guess x0 of the parameters we wish to optimize and then iterate according to

xi+1 = xi −γi(∇f)(xi) . (1.182)

For suitable γi , the sequence f (x0) ≥ f (x1) ≥ . . . converges to a local minimum.

Remark 14
Gradient descent can be relatively slow close to the minimum: Its asymptotic rate of
convergence is inferior to many other methods. For poorly conditioned convex problems,
gradient descent increasingly ‘zigzags’ as the gradients point nearly orthogonally to the
shortest direction to a minimum point, see Fig. 1.24.

1.6.1 Stepsize

Choosing a good stepsize is important in gradient descent: If the stepsize (also called
the learning rate) is too small, gradient descent can be slow. If the stepsize is chosen
too large, gradient descent can overshoot, fail to converge, or even diverge.

44

Chapter 1. Linear Regression 1.6. Gradient Descent

Robust gradient methods permanently rescale the stepsize empirically depending on
local properties of the function. There are two simple heuristics (Toussaint, 2012):

• When the function value increases after a gradient step, the step size was too
large. Undo the step and decrease the stepsize.

• When the function value decreases the step could have been larger. Try to
increase the stepsize.

Although the “undo” step seems to be a waste of resources, using this heuristic guar-
antees monotonic convergence.

Example (Solving a Linear Equation System)
When we solve linear equations of the form Ax = b, in practice we solve Ax − b = 0
approximately by finding x∗ that minimizes the the squared error

‖Ax −b‖2 = (Ax −b)>(Ax −b) (1.183)

if we use the Euclidean norm. The gradient of (1.183) with respect to x is

∇x = 2(Ax −b)>A . (1.184)

Remark 15
Gradient descent is rarely used for solving linear equation systems Ax = b. Instead
other algorithms with better convergence properties, e.g., conjugate gradient descent,
are used. The speed of convergence of gradient descent depends on the maximal and
minimal eigenvalues of A, while the speed of convergence of conjugate gradients has
a more complex dependence on the eigenvalues, and can benefit from preconditioning.
Gradient descent also benefits from preconditioning, but this is not done as commonly.
For further information on gradient descent, pre-conditioning and convergence we refer
to CO-477.

1.6.2 Gradient Descent with Momentum

Gradient descent with momentum (Rumelhart et al., 1986) is a method that smoothes
out erratic behavior of gradient updates and dampens oscillations.
The idea is to have a gradient update with a memory to implement a moving average.
The momentum-based method remembers the update ∆xi at each iteration i and
determines the next update as a linear combination of the current and previous
gradients

xi+1 = xi −γi(∇f)(xi) +α∆xi (1.185)
∆xi = xi − xi−1 = −γi−1(∇f)(xi−1) , (1.186)

where α ∈ [0,1]. Due to the moving average of the gradient, momentum-based
methods are particularly useful when the gradient itself is only a (noisy) estimate.
We will discuss stochastic approximations to the gradient in the following.

45

1.6. Gradient Descent Chapter 1. Linear Regression

1.6.3 Stochastic Gradient Descent

Computing the gradient can be very time consuming. However, often it is possible
to find a “cheap” approximation of the gradient. Approximating the gradient is still
useful as long as it points in roughly the same direction as the true gradient.
Stochastic gradient descent (often shortened in SGD) is a stochastic approximation
of the gradient descent method for minimizing an objective function that is written
as a sum of differentiable functions.
In machine learning, we often consider objective functions of the form

L(θ) =
∑
k

Lk(θ) (1.187)

where θ is the parameter vector of interest, i.e., we want to find θ that minimizes L.
An example is the negative log-likelihood

L(θ) = −
∑
k

logp(yk |xk ,θ) (1.188)

in a regression setting, where xk ∈ RD are the training inputs, yk are the training
targets and θ are the parameters of the regression model.
Standard gradient descent, as introduced previously, is a “batch” optimization method,
i.e., optimization is performed using the full training set by updating the parameters
according to

θi+1 = θi −γi∇L(θi) = θi −γi
∑
k

∇Lk(θi) (1.189)

for a suitable stepsize parameter γi . Evaluating the sum-gradient may require ex-
pensive evaluations of the gradients from all summand functions. When the training
set is enormous (commonly the case in Deep Learning) and/or no simple formu-
las exist, evaluating the sums of gradients becomes very expensive: Evaluating the
gradient requires evaluating the gradients of all summands. To economize on the
computational cost at every iteration, stochastic gradient descent samples a sub-
set of summand functions (“mini-batch”) at every step. In an extreme case, the
sum in (1.187) is approximated by a single summand (randomly chosen), and the
parameters are updated according to

θi+1 = θi −γ∇Lk(θi) . (1.190)

In practice, it is good to keep the size of the mini-batch as large as possible to (a)
reduce the variance in the parameter update33 and (b) allow for the computation
to take advantage of highly optimized matrix operations that should be used in a
well-vectorized computation of the cost and gradient.

Remark 16
When the learning rate decreases at an appropriate rate, and subject to relatively
mild assumptions, stochastic gradient descent converges almost surely to local mini-
mum (Bottou, 1998).

33This often leads to more stable convergence.

46

Chapter 1. Linear Regression 1.7. Model Selection and Cross Validation

1.6.4 Further Reading

For non-differentiable functions, gradient methods are ill-defined. In these cases,
subgradient methods can be used (Shor, 1985). For further information and algo-
rithms for optimizing non-differentiable functions, we refer to the book by Bertsekas
(1999).
Stochastic gradient descent is very effective in large-scale machine learning prob-
lems, such as training deep neural networks on millions of images (Dean et al.,
2012), topic models (Hoffman et al., 2013), reinforcement learning (Mnih et al.,
2015) or training large-scale Gaussian process models (Hensman et al., 2013; Gal
et al., 2014). Extensions of stochastic gradient descent methods include RMSProp,
AdaGrad (Duchi et al., 2011), momentum-based methods, and Adam (Kingma and
Ba, 2014).

1.7 Model Selection and Cross Validation

Sometimes, we need to make high-level decisions about the model we want to use
in order to increase the performance. Examples include:

• The degree of a polynomial in a regression setting

• The number of components in a mixture model

• The network architecture of a (deep) neural network

• The type of kernel in a support vector machine

The choices we make (e.g., the degree of the polynomial) influence the number of
free parameters in the model and thereby also the model complexity. More com-
plex models are more flexible in the sense that they can be used to describe more
data sets. For instance, a polynomial of degree 1 (a line a0 + a1x) can only be used
to describe linear relations between inputs x and observations y. A polynomial of
degree 2 can additionally describe quadratic relationships between inputs and ob-
servations.34 Higher-order polynomials are very flexible models as we have seen
already in Section 1.5 in the context of polynomial regression.
A general problem is that at training time we can only use the training set to evaluate
the performance of the model. However, the performance on the training set is
not really what we are interested in: In Section 1.5, we have seen that maximum
likelihood estimation can lead to overfitting, especially when the training data set is
small. Ideally, our model (also) works well on the test set (which is not available
at training time). Therefore, we need some mechanisms for assessing how a model
generalizes to unseen test data. Model selection is concerned with exactly this
problem.

34A polynomial a0 + a1x+ a2x2 can also describe linear functions by setting a2 = 0.

47

1.7. Model Selection and Cross Validation Chapter 1. Linear Regression

Training Validation

Figure 1.25: K-fold cross-validation. The data set is divided into K = 5 chunks, K − 1
of which serve as the training set (blue) and one as the validation set (yellow). This
procedure is repeated for all K choices for the validation set, and the performance of the
model from the K runs is averaged.

1.7.1 Cross-Validation to Assess the Generalization Performance

One way to assess the generalization performance of a model M is to use a valida-
tion set. The validation set a small subset of the available training set that we keep
aside. A practical issue with this approach is that the amount of data is limited, and
ideally we would use as much of the data available to train the model. This would
require to keep our validation set V small, which then would lead to a noisy estimate
(with high variance) of the predictive performance. One solution to these contradic-
tive objectives (large training set, large validation set) is to use cross-validation.
K-fold cross-validation effectively partitions the data into K chunks, K − 1 of which
form the training set D̃, and the last chunk serves as the validation set V (similar
to the idea outlined above). Cross-validation iterates through (ideally) all combina-
tions of assignments of chunks to D̃ and V , see Fig. 1.25.
We partition our training set D = D̃∪V , D̃∩V = ∅, where V is the validation set, and
train our model on D̃. After training, we assess the performance of the model M on
the validation set V (e.g., by computing RMSE values of the trained model on the
validation set). We cycle through all possible partitionings of validation and training
sets and compute the average generalization error of the model. Cross-validation
effectively computes the expected generalization error

EV [G(V)|M] ≈ 1
K

K∑
k=1

G(V (k)|M) , (1.191)

where G(V) is the generalization error (e.g., RMSE) on the validation set V for model
M. We repeat this procedure for all models and choose the model that performs best.
Note that cross-validation does not only give us the expected generalization error,
but we can also obtain high-order statistics, e.g., the standard error35, an estimate
of how uncertain the mean estimate is.

35The standard error is defined as σ√
K

, where K is the number of experiments and σ the standard
deviation.

48

Chapter 1. Linear Regression 1.7. Model Selection and Cross Validation

Once the model is chosen we can evaluate the final performance on the test set.
A potential disadvantage of K-fold cross-validation is the computational cost of train-
ing the model K times, which can be burdensome if the training cost is computation-
ally expensive. In practice, it is often not sufficient to look at the direct parameters
alone. For example, we need to explore multiple complexity parameters (e.g., mul-
tiple regularization parameters), which may not be direct parameters of the model.
Evaluating the quality of the model, depending on these hyper-parameters may re-
sult in a number of training runs that is exponential in the number of model param-
eters.
However, cross-validation is an embarrassingly parallel problem, i.e., little effort
is needed to separate the problem into a number of parallel tasks. Given sufficient
computing resources (e.g., cloud computing, server farms), cross-validation does not
require longer than a single performance assessment.

1.7.2 Bayesian Model Selection

There are many approaches to model selection, some of which are covered in this
section. Generally, they all attempt to trade off model complexity and data fit:36

The objective is to find the simplest model that explains the data reasonably well.37

This concept is also known as Occam’s Razor. One may consider placing a prior on
models that favors simpler models. However, it is not necessary to do this: An “auto-
matic Occam’s Razor” is quantitatively embodied in the application of Bayesian prob-
ability (Spiegelhalter and Smith, 1980; MacKay, 1992; Jefferys and Berger, 1992).
Fig. 1.26 from MacKay (2003) illustrates this property.
Now, let us phrase model selection as a hierarchical inference problem. Generally,
we assume a finite number of models that we can choose from. A more efficient
way than cross validation, where we have to fit each model K times (where K is
the number of cross-validation folds), is to compute the posterior distribution over
models.
Let us consider a finite number of models M = {M1, . . . ,MK }, where each model Mk
is parametrized by θk. In Bayesian model selection, we place a prior p(M) on the
set of models. The corresponding generative process is

Mk ∼ p(M) (1.192)
θk |Mk ∼ p(θk) (1.193)
D|θk ∼ p(D|θk) (1.194)

and illustrated in Fig. 1.27. Given a training set D, we compute the posterior over
models as

p(Mk |D) ∝ p(Mk)p(D|Mk) . (1.195)

Note that this posterior no longer depends on the model parameters θk because they
have been integrated out in the Bayesian setting.

36We assume that simpler models are less prone to overfitting than complex models.
37If we treat model selection as a hypothesis testing problem, we are looking for the simplest

hypothesis that is consistent with the data (Murphy, 2012).

49

1.7. Model Selection and Cross Validation Chapter 1. Linear Regression

p(D|M2)

p(D|M1)

C1

Evidence

D

Figure 1.26: “Why Bayesian inference embodies Occam’s razor. This figure gives the
basic intuition for why complex models can turn out to be less probable. The horizontal
axis represents the space of possible data sets D. Bayes’ theorem rewards models in
proportion to how much they predicted the data that occurred. These predictions are
quantified by a normalized probability distribution on D. This probability of the data
given model Mi , p(D|Mi), is called the evidence for Mi . A simple model M1 makes
only a limited range of predictions, shown by p(D|M1); a more powerful model M2 that
has, for example, more free parameters than M1, is able to predict a greater variety of
data sets. This means, however, that M2 does not predict the data sets in region C1 as
strongly as M1. Suppose that equal prior probabilities have been assigned to the two
models. Then, if the data set falls in region C1, the less powerful model M1 will be the
more probable model.” (MacKay, 2003)

From the posterior in (1.195), we determine the MAP estimate as

M∗ = argmax
Mk

p(Mk |D) . (1.196)

With a uniform (uninformative) prior p(Mk) =
1
K , determining the MAP estimate

amounts to picking the model that maximizes the model evidence (marginal like-
lihood)

p(D|Mk) =
∫
p(D|θk)p(θk |Mk)dθk , (1.197)

where p(θk |Mk) is the prior distribution of the model parameters θk of model Mk.

Remark 17
There are some important differences between a likelihood and a marginal likelihood:
While the likelihood is prone to overfitting, the marginal likelihood is typically not as
the model parameters have been marginalized out (i.e., we no longer have to fit the
parameters). Furthermore, the marginal likelihood automatically embodies a trade-off
between model complexity and data fit.

1.7.3 Bayes Factors for Model Comparison

Consider the problem of comparing two probabilistic models M1,M2, given a data
set D. If we compute the posteriors p(M1|D) and p(M2|D), we can compute the ratio

50

Chapter 1. Linear Regression 1.7. Model Selection and Cross Validation

θk

Mk

D

Figure 1.27: Illustration of the hierarchical generative process in Bayesian model se-
lection. We place a prior p(M) on the set of models. For each model, there is a prior
p(θk |Mk) on the corresponding model parameters, which are then used to generate the
data D.

of the posteriors (posterior odds)

p(M1|D)
p(M2|D)︸ ︷︷ ︸

posterior odds

=

p(D|M1)p(M1)
p(D)

p(D|M2)p(M2)
p(D)

=
p(M1)
p(M2)︸ ︷︷ ︸

prior odds

p(D|M1)
p(D|M2)︸ ︷︷ ︸
Bayes factor

(1.198)

The first fraction on the right-hand-side (prior odds) measures how much our prior
(initial) beliefs favor M1 over M2. The ratio of the marginal likelihoods (second
fraction on the right-hand-side) is called the Bayes factor and measures how well
the data D is predicted by M1 compared to M2.
Remark 18
The Jeffreys-Lindley paradox states that the “Bayes factor always favors the simpler
model since the probability of the data under a complex model with a diffuse prior will
be very small” (Murphy, 2012).

If we choose a uniform prior over models, the prior odds term in (1.198) is 1, i.e.,
the posterior odds is the ratio of the marginal likelihoods (Bayes factor)

p(D|M1)
p(D|M2)

. (1.199)

If the Bayes factor is greater than 1, we choose model M1, otherwise model M2.

1.7.4 Fully Bayesian Treatment

Instead of selecting a single “best” model, in a fully Bayesian treatment, we integrate
out the corresponding model parameters θk and average over all models Mk , k =
1, . . . ,K

p(D) =
K∑
K=1

p(MK)
∫
p(D|θk)p(θk |Mk)dθk︸ ︷︷ ︸

=p(D|Mk)

(1.200)

51

1.7. Model Selection and Cross Validation Chapter 1. Linear Regression

where p(D|Mk) is the marginal likelihood of model Mk.

1.7.5 Computing the Marginal Likelihood

The marginal likelihood plays an important role in model selection: We need to
compute it for Bayes factors (1.198) and in the fully Bayesian setting where we
additionally integrate out the model itself (1.200).
Unfortunately, computing the marginal likelihood requires us to solve an integral.
This integration is generally analytically intractable, and we will have to resort to
approximation techniques, e.g., numerical integration (Stoer and Burlirsch, 2002),
stochastic approximations using Monte Carlo (Murphy, 2012) or Bayesian Monte
Carlo techniques (O’Hagan, 1991; Rasmussen and Ghahramani, 2003).
However, there are special cases in which we can solve it. In Section 1.2.4, we
discussed conjugate models. If we choose a conjugate parameter prior p(θ), we can
compute the marginal likelihood in closed form.

Example (Marginal Likelihood Computation)
We consider the linear-Gaussian model with the following generative process (the

yi

xi

i = 1, ..., N

θ

m0,S0

σ

Figure 1.28: Graphical model for Bayesian linear regression.

corresponding graphical model is shown in Fig. 1.28):

θ ∼N
(
m0, S0

)
(1.201)

yi |xi ,θ ∼N
(
x>i θ, σ

2
)
, (1.202)

i = 1, . . . ,N . We see the marginal likelihood

p(y|X) =
∫
p(y|X ,θ)p(θ)dθ (1.203)

=
∫
N

(
y |Xθ, σ2I

)
N

(
θ |m0, S0

)
dθ . (1.204)

We compute the marginal likelihood in two steps: First, we show that the marginal
likelihood is Gaussian (as a distribution in y); Second, we compute the mean and
covariance of this Gaussian.

52

Chapter 1. Linear Regression 1.7. Model Selection and Cross Validation

1. The marginal likelihood is Gaussian: From Section 1.2.3.5 we know that (i)
the product of two Gaussian random variables is an (unnormalized) Gaus-
sian distribution, (ii) a linear transformation of a Gaussian random variable is
Gaussian distributed. In (1.204), we require a linear transformation to bring
N

(
y |Xθ, σ2I

)
into the form N

(
θ |µ, Σ

)
for some µ,Σ. Once this is done, the

integral can be solved in closed form. The result is the normalizing constant of
the product of the two Gaussians. The normalizing constant itself has Gaussian
shape, see (1.44).

2. Mean and covariance. We compute the mean and covariance matrix of the
marginal likelihood by exploiting the standard results for means and covari-
ances of affine transformations of random variables, see Section 1.2.1.2. The
mean of the marginal likelihood is computed as

Eθ[y|X] = Eθ[Xθ + ε] = XEθ[θ] = Xm0 . (1.205)

Note that ε ∼N
(
0, σ2I

)
is a vector of random variables. The covariance matrix

is given as

Covθ[y] = Cov[Xθ] + σ2I = XCovθ[θ]X
> + σ2I = XS0X

> + σ2I (1.206)

Hence, the marginal likelihood is

p(y|x) = (2π)−
N
2 |XS0X> + σ2I |−

1
2 exp

(
− 1

2(y −Xm0)
>(XS0X

> + σ2I)−1(y −Xm0)
)
.

(1.207)

1.7.6 Further Reading

Rasmussen and Ghahramani (2001) showed that the automatic Occam’s razor does
not necessarily penalize the number of parameters in a model38 but it is active in
terms of the complexity of functions. They also showed that the automatic Occam’s
razor also holds for Bayesian non-parametric models with many parameters, e.g.,
Gaussian processes.
If we focus on the maximum likelihood estimate, there exist a number of heuristics
for model selection that discourage overfitting. The Akaike Information Criterion
(AIC) (Akaike, 1974)

logp(x|θ)−M (1.208)

corrects for the bias of the maximum likelihood estimator by addition of a penalty
term to compensate for the overfitting of more complex models (with lots of param-
eters). Here, M is the number of model parameters.

38In parametric models, the number of parameters is often related to the complexity of the model
class.

53

1.8. Bayesian Linear Regression Chapter 1. Linear Regression

yi

xi

i = 1, ..., N

θ

m0,S0

σ

Figure 1.29: Graphical model for Bayesian linear regression.

The Bayesian Information Criterion (BIC) (Schwarz, 1978)

lnp(x) = log
∫
p(x|θ)p(θ)dθ ≈ logp(x|θ)− 1

2
M lnN (1.209)

can be used for exponential family distributions. Here, N is the number of data
points and M is the number of parameters. BIC penalizes model complexity more
heavily than AIC.

1.8 Bayesian Linear Regression

Thus far, we looked at linear regression models where we estimated the parameters
θ, e.g., by means of maximum likelihood or MAP estimation. We discovered that
MLE can lead to severe overfitting, in particular, in the small-data regime. MAP
addresses this issue by placing a prior on the parameters that plays the role of a
regularizer.
Bayesian linear regression pushes the idea of the parameter prior a step further and
does not even attempt to compute a point estimate of the parameters, but instead
the full posterior over the parameters is taken into account when making predictions.
This means that the parameters themselves remain uncertain.

1.8.1 Model

In Bayesian linear regression, we consider the following model

y = φ>(x)θ + ε

ε ∼N
(
0, σ2

)
θ ∼N

(
m0, S0

)
,

(1.210)

54

Chapter 1. Linear Regression 1.8. Bayesian Linear Regression

where we now explicitly place a Gaussian prior p(θ) =N
(
m0, S0

)
on the parameter

vector θ.39 The graphical corresponding graphical model is shown in Fig. 1.29.

1.8.2 Parameter Posterior

Given a training set of inputs xi ∈ RD and corresponding observations yi ∈ R, i =
1, . . . ,N , compute the posterior over the parameters using Bayes’ theorem as

p(θ|X ,y) =
p(y|X ,θ)p(θ)

p(y|X)
, (1.211)

where X is the collection of training inputs and y the collection of training targets.
Furthermore, p(y|X ,θ) is the likelihood, p(θ) the parameter prior, and

p(y|X) =
∫
p(y|X ,θ)p(θ)dθ (1.212)

the marginal likelihood/evidence, which is independent of the parameters θ and
normalizes the posterior. The marginal likelihood is the likelihood averaged over all
possible parameter settings (with respect to the prior distribution p(θ)).
In our specific model (1.210), the posterior (1.211) can be computed in closed form
as

p(θ|X ,y) =N
(
θ |mN , SN

)
, (1.213)

SN = (S−10 + σ−2Φ>Φ)−1 , (1.214)

mN = SN (S
−1
0 m0 + σ

−2Φ>y) , (1.215)

where the subscript N indicates the size of the training set. In the following, we will
detail how we arrive at this posterior.
Bayes’ theorem tells us that the posterior p(θ|X ,y) is proportional to the product of
the likelihood p(y|X ,θ) and the prior p(θ):

p(θ|X ,y) =
p(y|X ,θ)p(θ)

p(y|X)
, (1.216)

p(y|X ,θ) =N
(
y |Φθ, σ2I

)
, (1.217)

p(θ) =N
(
θ |m0, S0

)
. (1.218)

Looking at the numerator of the posterior in (1.216), we know that the Gaussian
prior times the Gaussian likelihood (where the parameters on which we place the
Gaussian appears linearly in the mean) is an (unnormalized) Gaussian (see Sec-
tion 1.2.3.5). If necessary, we can find the normalizing constant if we know the
covariance matrix of this unnormalized Gaussian.
Before we can compute this product, e.g., by applying the results from 1.2.3.5, we
need to ensure the product has the “right” form

N
(
y |Φθ, σ2I

)
N

(
θ |m0, S0

)
=N

(
θ |µ, Σ

)
N

(
θ |m0, S0

)
(1.219)

39Why is a Gaussian prior a convenient choice?

55

1.8. Bayesian Linear Regression Chapter 1. Linear Regression

for some µ,Σ. With this form we determine the desired product immediately as

N
(
θ |µ, Σ

)
N

(
θ |m0, S0

)
∝N

(
θ |mN , SN

)
(1.220)

SN = (S−10 +Σ−1)−1 (1.221)

mN = SN (S
−1
0 m0 +Σ−1µ) . (1.222)

In the following, we discuss two ways of finding µ and Σ.

1.8.2.1 Linear Transformation of Gaussian Random Variables

To find µ and Σ, we use some basic identities for linearly transforming Gaussian
random variables (see Section 1.2.3.5), such that we transform y = Φθ into By =
θ for a suitable B. In the following, we will perform these steps directly on the
Gaussian distribution40 and obtain

N
(
y |Φθ, σ2I

) scale by Φ>
; N

(
Φy |Φ>Φθ, σ2Φ>Φ

)
(1.223)

scale by (Φ>Φ)−1
; N

(
(Φ>Φ)−1Φ>y |θ, σ2(Φ>Φ)−1Φ>Φ(Φ>Φ)−1

)
(1.224)

=N
(
θ | (Φ>Φ)−1Φ>y, σ2(Φ>Φ)−1

)
. (1.225)

If we now use the re-arranged likelihood (1.225) and define its mean as µ and
covariance matrix as Σ in (1.222) and (1.221), respectively, we obtain

N
(
θ |µ, Σ

)
N

(
θ |m0, S0

)
∝N

(
θ |mN , SN

)
(1.226)

SN = (S−10 + σ−2Φ>Φ)−1 (1.227)

mN = SN (S
−1
0 m0 + σ

−2(Φ>Φ)︸ ︷︷ ︸
Σ−1

(Φ>Φ)−1Φ>y︸ ︷︷ ︸
µ

) = SN (S
−1
0 m0 + σ

−2Φ>y) . (1.228)

1.8.2.2 Completing the Squares

Instead of looking at the product of the prior and the likelihood, we can transform
the problem into log-space and solve for µ,Σ by completing the squares.

logN
(
y |Φθ, σ2I

)
+ logN

(
θ |m0, S0

)
(1.229)

= −1
2

(
σ−2(y −Φθ)>(y −Φθ) + (θ −m0)

>S−10 (θ −m0

)
+ const (1.230)

where the constant contains terms independent of θ. We will ignore the constant in
the following. We now factorize (1.230), which yields

− 1
2

(
σ−2y>y − 2σ−2y>Φθ +θ>σ−2Φ>Φθ +θ>S−10 θ − 2m

>
0 S
−1
0 θ +m>0 S

−1
0 m0

)
(1.231)

40Pay attention to the transformation of the mean and covariance.

56

Chapter 1. Linear Regression 1.8. Bayesian Linear Regression

= −1
2

(
θ>(σ−2Φ>Φ + S−10)θ − 2(σ−2Φ>y + S−10 m0)

>θ
)
+ const , (1.232)

where the constant contains the black terms in (1.231), which are independent of θ.
By inspecting (1.232), we find that this equation is quadratic in θ. The fact that the
unnormalized log-posterior distribution is a (negative) quadratic form implies that
the posterior is Gaussian, i.e.,

p(θ|X ,y) = exp(logp(θ|X ,y)) ∝ exp(logp(y|X ,θ) + logp(θ)) (1.233)

∝ exp
(
− 1
2

(
θ>(σ−2Φ>Φ + S−10)θ − 2(σ−2Φ>y + S−10 m0)

>θ
))

(1.234)

where we just used (1.232) in the last transformation.
The remaining task is it to bring this (unnormalized) Gaussian into the form that is
proportional to N

(
θ |mN , SN

)
for a scaling factor, i.e., we need to identify the mean

mN and the covariance matrix SN .
Here, we use the idea of completing the squares. The desired log-posterior is

logN
(
θ |mN , SN

)
= −1

2

(
(θ −mN)

>S−1N (θ −mN)
)
+ const (1.235)

= −1
2

(
θ>S−1N θ − 2m

>
NS
−1
N θ +mNS

−1
N mN

)
. (1.236)

Here, we factorized the quadratic form (θ −mN)>S
−1
N (θ −mN) into a term that is

quadratic in θ alone (blue), a term that is linear in θ (red), and a constant term
(black). This allows us now to find SN and mN by matching the colored expressions
in (1.232) and (1.236), which yields

S−1N =Φ>σ−2IΦ + S−10 ⇔ SN = (σ−2Φ>Φ + S−10)−1 , (1.237)

m>NS
−1
N = (σ−2Φ>y + S−10 m0)

>⇔mN = SN (σ
−2Φ>y + S−10 m0) . (1.238)

This is identical to the solution in (1.227)–(1.228), which we obtained by repeated
linear transformation of Gaussian random variables.

Remark 19 (Completing the Squares—General Approach)
If we are given an equation

x>Ax − 2a>x+ const1 , (1.239)

where A is symmetric and positive definite, which we wish to bring into the form

(x −µ)>Σ(x −µ) + const2 , (1.240)

we can do this by setting

Σ = A (1.241)

µ = Σ−1a (1.242)

and const2 = const1 −µ>Σµ.

57

1.8. Bayesian Linear Regression Chapter 1. Linear Regression

We can see that the terms inside the exponential in (1.234) are of the form (1.239)
with

A = σ−2Φ>Φ + S−10 , (1.243)

a = σ−2Φ>y + S−10 m0 . (1.244)

Since A,a can be difficult to identify in equations like (1.231), it is often helpful to
bring these equations into the form (1.239) that decouples quadratic term, linear
terms and constants, which simplifies finding the desired solution.

Remark 20
The posterior precision (inverse covariance) of the parameters (see (1.237), for exam-
ple)

S−1N = S−10 +
1
σ2Φ

TΦ , (1.245)

contains two terms: S−10 is the prior precision and 1
σ2Φ

TΦ is a data-dependent (pre-
cision) term. Both terms (matrices) are symmetric and positive definite. The data-
dependent term 1

σ2Φ
TΦ grows as more data is taken into account.41 This means (at

least) two things:

• The posterior precision grows as more and more data is taken into account (there-
fore, the covariance shrinks).

• The (relative) influence of the parameter prior vanishes for large N .

1.8.3 Prediction and Inference

In practice, we are usually not so much interested in the parameter values θ. Instead,
our focus often lies in the predictions we make with those parameter values. In
a fully Bayesian setting, we take the full posterior distribution and average over
all plausible parameter settings when we make predictions, instead of finding the
maximum a-posteriori (point) estimate of the parameters (the setting θMAP at which
the posterior attains its maximum value). To predict the distribution of

y∗ = φ
>(x∗)θ + ε , ε ∼N

(
0, σ2

)
, (1.246)

at a test location x∗, we compute

p(y∗|X ,y,x∗) =
∫
p(y∗|x∗,θ)p(θ|X ,y)dθ (1.247)

=
∫
N

(
y∗ |φ>(x∗)θ, σ2

)
N

(
θ |mN , SN

)
dθ (1.248)

=N
(
y∗ |m>Nφ(x∗), φ

>(x∗)SNφ(x∗) + σ
2
)

(1.249)

The term φ>(x∗)SNφ(x∗) reflects the uncertainty associated with the parameters θ,
whereas σ2 is the noise variance. Note that SN depends on the training inputs X ,
see (1.227). The predictive mean coincides with the MAP estimate.

41ΦTΦ is accumulating contributions from the data, not averaging.

58

Chapter 1. Linear Regression 1.8. Bayesian Linear Regression

Remark 21 (Mean and Variance of Noise-Free Function Values)
In many cases, we are not interested in the predictive distribution p(y∗|X ,y,x∗) of a
(noisy) observation. Instead, we would like to obtain the distribution of the (noise-free)
latent function values f (x∗) = φ

>(x∗)θ. We determine the corresponding moments by
exploiting the properties of means and variances, which yields

E[f (x∗)|X ,y] = Eθ[φ>(x∗)θ|X ,y] = φ>(x∗)Eθ[θ|X ,y] =m>Nφ(x∗) , (1.250)
Vθ[f (x∗)|X ,y] =Vθ[φ>(x∗)θ|X ,y] = φ>(x∗)Vθ[θ|X ,y]φ(x∗) = φ>(x∗)SNφ(x∗)

(1.251)

Remark 22 (Distribution over Functions)
The fact that we integrate out the parameters θ induces a distribution over functions:
If we sample θi ∼ p(θ|X ,y) from the parameter posterior, we obtain a single function
realization θ>i φ(·). The mean function, i.e., the set of all expected function values
Eθ[f (·)|θ,X ,y], of this distribution over functions ism>Nφ(·). The (marginal) variances,
i.e., the variance of the function f (·), are given by φ>(·)SNφ(·).

1.8.3.1 Derivation

The predictive distribution p(y∗|X ,y,x∗) is Gaussian: In (1.248), we multiply two
Gaussians (in θ), which results in another (unnormalized) Gaussian.42 When in-
tegrating out θ, we are left with the normalization constant, which itself is Gaus-
sian shaped (see Section 1.2.3.5). Therefore, it suffices to determine the mean and
the (co)variance of the predictive distribution, which we will do by applying the
standard rules for computing means and (co)variances (see Section 1.2.1). In the
following, we will use the shorthand notation φ∗ = φ(x∗).
The mean of the posterior predictive distribution p(y∗|X ,y,x∗) is

Eθ,ε[y∗|X ,y,x∗] = Eθ,ε[φ>∗ θ + ε|X ,y] (1.252)
= φ>∗ Eθ[θ|X ,y] + 0 (1.253)
= φ>∗ mN . (1.254)

Here, we exploited that the noise is i.i.d. and that its mean is 0.
The corresponding posterior predictive variance is

Vθ,ε[y∗|X ,y,x∗] =Vθ,ε[φ>∗ θ + ε|X ,y] (1.255)
i.i.d.= Vθ[φ

>
∗ θ|X ,y] +Vε[ε] (1.256)

= φ>∗ Vθ[θ|X ,y]φ∗ + σ
2 (1.257)

= φ>∗ SNφ∗ + σ
2 . (1.258)

The blue terms in the variance expression are the terms that are due to the inherent
(posterior) uncertainty of the parameters, which induces the uncertainty about the
latent function f . The additive green term is the variance of the i.i.d. noise variable.

42To be precise: We multiply the posterior p(θ|X ,y) with a distribution of a linearly transformed
θ. Note that a linear transformation of a Gaussian random variable preserves Gaussianity (see Sec-
tion 1.2.3.5).

59

1.8. Bayesian Linear Regression Chapter 1. Linear Regression

Example

Fig. 1.30 shows some examples of the posterior distribution over functions, induced
by the parameter posterior. The left panels show the maximum likelihood estimate,
the MAP estimate (which is identical to the posterior mean function) and the 95%
predictive confidence bounds, represented by the shaded area. The right panels
show samples from the posterior over functions: Here, we sampled parameters θi
from the parameter posterior and computed the function φ>(x∗)θi , which is a single
realization of a function under the posterior distribution over functions. For low-
order polynomials, the parameter posterior does not allow the parameters to vary
much: The sampled functions are nearly identical. When we make the model more
flexible by adding more parameters (i.e., we end up with a higher-order polyno-
mial), these parameters are not sufficiently constrained by the posterior, and the
sampled functions can be easily visually separated. We also see in the corresponding
panels on the left how the uncertainty increases, especially at the boundaries. Al-
though for a 10th-order polynomial the MAP estimate yields a good fit, the Bayesian
linear regression model additionally tells us that the posterior uncertainty is huge.
This information can be critical, if we use these predictions in a decision-making sys-
tem, where bad decisions can have significant consequences (e.g., in reinforcement
learning or robotics).

Remark 23
Bayesian linear regression naturally equips the estimate with uncertainty induced by the
(posterior) distribution on the parameters. In maximum likelihood (or MAP) estima-
tion, we can obtain an estimate of the uncertainty by looking at the point-wise squared
distances between the observed values yi in the training data and the function values
φ(xi)>θ. The variance estimate would then be itself a maximum likelihood estimate
and given by

σ2
ML =

1
N

N∑
i=1

(yi −φ(xi)>θ)2 , (1.259)

where θ is a point estimate of the parameters (e.g., maximum likelihood or MAP) and
N is the size of the training data set.

60

Chapter 1. Linear Regression 1.8. Bayesian Linear Regression

-5 0 5
x

-3

-2

-1

0

1

2

3

f(
x)

Polynomial of degree 4

95% predictive confidence bound
Data
Maximum likelihood estimate
MAP estimate

-5 0 5
x

-3

-2

-1

0

1

2

3

f(
x)

Polynomial of degree 4

Data
Function samples

-5 0 5
x

-3

-2

-1

0

1

2

3

f(
x)

Polynomial of degree 6

95% predictive confidence bound
Data
Maximum likelihood estimate
MAP estimate

-5 0 5
x

-3

-2

-1

0

1

2

3
f(

x)
Polynomial of degree 6

Data
Function samples

-5 0 5
x

-3

-2

-1

0

1

2

3

f(
x)

Polynomial of degree 10

95% predictive confidence bound
Data
Maximum likelihood estimate
MAP estimate

-5 0 5
x

-3

-2

-1

0

1

2

3

f(
x)

Polynomial of degree 10

Data
Function samples

Figure 1.30: Bayesian linear regression. Left panels: The shaded area indicates the
95% predictive confidence bounds. The mean of the Bayesian linear regression model
coincides with the MAP estimate. The predictive uncertainty is the sum of the noise
term and the posterior parameter uncertainty, which depends on the location of the test
input. Right panels: Sampled functions from the posterior distribution.

61

Chapter 2

Feature Extraction

2.1 Decompositions

In this chapter we will discuss about the use of linear algebra of vectors and matrices
in order to define basic feature extraction and dimensionality reduction methodolo-
gies. In this context, we will study particular linear decompositions, such as eigen-
decomposition and diagonalisations, QR decomposition, Singular Value Decompo-
sitions (SVD), etc. The above algebraic decompositions will be used to formulate
popular linear feature extraction methodologies such as Principal Component Anal-
ysis (PCA) and Linear Discriminant Analysis (LDA). We will show that many of these
decompositions arise naturally by formulating and solving trace optimisation prob-
lems with constraints. We will also study a Maximum Likelihood (ML) solution of a
Probabilistic PCA (PPCA) formulation. Finally, we will study some non-linear feature
extraction methodologies, using kernel methods. In the following we will be using
elements of linear algebra that can be found in Appendix A.1.

2.1.1 Eigen-decomposition

Assume square matrix A ∈ R
n×n with n linearly independent eigenvectors qi , i =

1, . . . ,n and n eigenvalues λ1, . . . ,λn. Then A can be factorised as

A =QΛQ−1 (2.1)

where Q = [q1 . . .qn] and Λ is a diagonal matrix whose diagonal elements are the
corresponding eigenvalues, i.e. Λ = diag{λ1, . . . ,λn}.
Using the eigen-decomposition we can compute various powers of A as

Ak =QΛkQ−1. (2.2)

We can easily verify the above for k = 2 as A2 = QΛQ−1QΛQ−1 = QΛ2Q−1. Then,
we can easily prove the general case using induction.
In case k = −1 we can compute the inverse as

A−1 =QΛ−1Q−1. (2.3)

62

Chapter 2. Feature Extraction 2.1. Decompositions

2.1.1.1 Symmetric Matrices

The eigen-decomposition of symmetric matrices are of particular interest in machine
learning. Symmetric matrices have always real eigendecomposition (i.e., all eigen-
values and eigenvectors are real). Furthermore, Q is an orthogonal matrix (i.e.,
QT =Q−1). Hence, if A is symmetric

A =QΛQT . (2.4)

In case that A is singular (i.e., rank(A) = r < n) then there are n− r eigenvectors that
correspond to zero eigenvalues.

A =Q


λ1 . . . 0 0

0 . . . 0 0
0 . . . λr 0
0 . . . 0 0

QT =Q
[
Λr 0
0 0

]
QT =QrΛrQ

T
r (2.5)

where Qr is an n × r matrix of the eigenvectors that correspond to non-zero eigen-
values and Λr is r × r diagonal matrix of the r non-zero eigenvalues.

2.1.2 QR decomposition

Any real square matrix A ∈Rn×n can be decomposed as

A =QR (2.6)

where Q is an orthogonal matrix (i.e., QTQ =QQT = I) and R is an upper-triangular
matrix.
Some important properties of QR decomposition

• If A is non-singular then its QR decomposition is unique if we require the
diagonal elements of R to be positive.

• If A is singular then QR decomposition still exists but yields a singular upper
triangular R .

• If A has r linearly independent columns, then the first r columns of Q form an
orthonormal basis for the column space of A.

• |det(A)| = |
∏
i rii | (see Appendix A.1.2.12 for a proof).

QR has important applications in solving linear systems, in producing an orthogonal
basis for eigenvalue computations etc. In the following we will see some examples.

Example (Solving Linear System)
Assume the following linear system

r11x1 +r12x2 +r13x3 + · · · +r1(m−1)xm−1 +r1mxm = b1
0x1 +r22x2 +r23x3 + · · · +r2(m−1)xm−1 +r2mxm = b2

...
0x1 +0x2 +0x3 + · · · +r(m−1)(m−1)xm−1 +r(m−1)mxm = bm−1
0x1 +0x2 +0x3 + · · · +0xm−1 +rmmxm = bm

(2.7)

63

2.1. Decompositions Chapter 2. Feature Extraction

The above linear system can be written as

Rx = b (2.8)

where R is an upper triangular matrix, x = [x1, . . . ,xm]T and b = [b1, . . . , bm]T .
The above system can be easily solved using the following set of rules (backward
elimination)

xm =
bm
rmm

xm−1 =
bm−1 − r(m−1)mxm
r(m−1)(m−1)

...

x1 =
b1 −

∑m
i=2 r1ixi
r11

.

(2.9)

The QR decomposition can be used in order to reduce any linear m × m system
Ax = b (with A of full rank) to a system as in (2.8). That is, assume that the QR
decomposition of A is QR then

Ax = b⇔
QRx = b⇔
Rx =QTb.

(2.10)

A very important application of the QR decomposition is the QR algorithm for eigen-
value computation.

Example (The QR algorithm for eigenvalue computation)

Assume matrix A. We create the series Ak by choosing for k = 0,A0 =A and then

Ak =QkRk
Ak+1 = RkQk

(2.11)

As can be seen
Ak+1 = RkQk =QT

kQkRkQk =QT
k AkQk (2.12)

so all Ak are similar and hence they have the same eigenvalues. The matrices Ak
converge to a triangular matrix (Golub and Van Loan (2012)). Hence, the main
diagonal of this matrix contains the eigenvalues of A.
As an exercise, run the above algorithm in Matlab for a symmetric matrix and com-
pare the results with the function eig of Matlab. In particular, try to run the code

64

Chapter 2. Feature Extraction 2.1. Decompositions

1 A = randn(100,100);
2 B = A*A';
3 B = 1/2*(B+B'); %This is for stability (making a truly symmetric ...

matrix)
4 Ao = B;
5 for i=1:100
6 [Q, R] = qr(Ao);
7 Ao = R*Q;
8 end

and compare the eigenvalues computed by eig(B).

2.1.2.1 Gram-Schmidt Process

In the following we will discuss a practical and well-known algorithm for computing
the QR decomposition. The algorithm can also be used in order to compute an
orthogonal base from a matrix. The algorithm is the so-called Gram-Schmidt (GS)
process.
GS process answers the following question: If the columns of A = [a1, . . . ,an] define
a basis (not orthonormal) for an inner product space, is there a way to convert it to
an orthonormal basis?
We start by geometrically describing the process for two vectors a1 and a2. In the
first step we normalize the norm of a1 as q1 =

a1
||a1||2

. Then, we compute the projection
of a2 onto q1 as in (A.6)

projq1a2 =
qT1 a2
||q1||2

q1 = (qT1 a2)q1. (2.13)

Then, we can compute the vector orthogonal to q1 as

q̃2 = a2 − (qT1 a2)q1 (2.14)

and normalize it so that it has norm one as q2 =
q̃2
||q̃2||2

.
The general algorithm for computing the orthogonal basis Q = [q1, . . . ,qn] as

q̃1 = a1, q1 =
q̃1

||q̃1||2
q̃2 = a2 − projq1a2, q2 =

q̃2

||q̃2||2
q̃3 = a3 − projq1a3 − projq2a3, q3 =

q̃3

||q̃3||2

q̃n = an −
n−1∑
i=1

projqian, qn =
q̃n
||q̃n||2

(2.15)

65

2.1. Decompositions Chapter 2. Feature Extraction

The upper triangular matrix R an be computed by observing that

a1 = (qT1 a1)q1

a2 = (qT1 a2)q1 + (qT2 a2)q2

...

an =
n∑
i=1

(qTi an)qi .

(2.16)

Hence, R can be computed as

R =


qT1 a1 qT1 a2 · · · qT1 an
0 qT2 a2 · · · qT2 an
...

...
...

...
0 · · · 0 qTn an

 . (2.17)

Example (The GS procedure)
Let matrix

A =

 1 1 0
1 2 1
-2 -3 1


perform QR decomposition on A.

A = [a1 a2 a3], then a1 =

 1
1
-2

, a2 =
 1

2
-3

, a3 =
 0

1
1


Let Q = [q1 q2 q3], then since ||a1||2 =

√
6, q1 = a1/ ||a1||2 =


1√
6
1√
6

- 2√
6

.
First we compute qT1a2 = 9/

√
6

q2 = a2 −qT1 a2q1 =

 1
2
-3

− 96
 1

1
-2

 =
 -12

1
2
0


and ||q2||2 =

√
1/2. Then, q2 =

q2
||q2||2

=


- 1√

2
1√
2

0


aT3q1 = − 1√

6
and aT3q2 =

1√
2
. Then,

q3 = a3 − (aT3q1)q1 − (aT3q2)q2

66

Chapter 2. Feature Extraction 2.1. Decompositions

=

 0
1
1

+ 1
6

 1
1
-2

− 12
 -1

1
0

 =


2
3
2
3
2
3

 (2.18)

||q3||2 = 2/
√
3 hence q3 =

q3

||q3||2
=


1√
3
1√
3
1√
3

 (2.19)

Hence,

Q =


1√
6

- 1√
2

1√
3

1√
6

1√
2

1√
3

− 2√
6

0 - 1√
3


and

R =


qT1 a1 qT1 a2 qT1 a3

0 qT2 a2 qT2 a3
0 0 qT3 a3

 =

√
6 9√

6
− 1√

6
0 1√

2
1√
2

0 0 2√
3



2.1.3 Singular Value Decomposition

A very useful matrix decomposition is the Singular Value Decomposition (SVD). If
A ∈Rm×n, then there exist orthogonal matrices

U = [u1, . . . ,um] ∈Rm×m and V = [v1, . . . ,vn] ∈Rn×n. (2.20)

such that

UTAV = Σ = diag{σ1, . . . ,σp} ∈Rm×n, p =min{m,n}
A =UΣVT

(2.21)

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. σi are called singular values of A and the vectors ui
and vi are the corresponding i-th left and right singular vectors, respectively.
SVD reveals a lot of information regarding the structure of a matrix. Assume the
SVD of matrix A, then we define r by

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ σr+1 = · · · = σp = 0, (2.22)

then

rank(A) = r
null(A) = span{vr+1, . . . ,vn}
ran(A) = span{u1, . . . ,ur}

(2.23)

67

2.1. Decompositions Chapter 2. Feature Extraction

and the SVD expansion can be written as

A =
r∑
i=1

σiuiv
T
i . (2.24)

Furthermore, regarding the 2-norm and Frobenius norm we have the following,

||A||2F = σ
2
1 + . . .+ σ2

p , p =min{m,n}
||A||2 = σ1.

(2.25)

2.1.3.1 Thin SVD

Assume A =UΣV ∈Rm×n is the SVD of A and m ≥ n, then

A =U1Σ1V (2.26)

where
U1 = [u1, . . . ,un] ∈Rm×n (2.27)

and
Σ1 = diag(σ1, . . . ,σn) ∈Rn×n. (2.28)

The above is the thin SVD of matrix A.
In thin SVD we have UT1U1 = In but U1UT1 , Im. Furthermore, VTV =VVT = Im.

2.1.3.2 Dimensionality Reduction and SVD

A very important application of SVD is the reduction of the rank of a matrix. Rank
reduction can be used for dimensionality reduction on the data (e.g., the smallest
singular values and the corresponding singular vectors may correspond to noise).

Theorem 1
Let the SVD of A =UΣVT . If k < r = rank(A) and

Ak =
k∑
i=1

σiuiv
T
i , (2.29)

then
min

rank(B)=k
||A−B||2 = ||A−Ak ||2 = σk+1. (2.30)

Proof. Since, UTAkV = diag(σ1, . . . ,σk ,0, . . . ,0) then rank(Ak) = k and UT (A−Ak)V =
diag(0, . . . ,0,σk+1, . . . ,σp). Hence, ||A−Ak ||2 = σk+1.
Now suppose rank(B) = k for a B ∈ Rm×n. It follows that there is an orthonormal
basis {q1, . . . ,qn−k} so that null(B) = span{q1, . . . ,qn−k}. It follows that

span{q1, . . . ,qn−k} ∩ span{v1, . . . ,vk+1} , {0}. (2.31)

68

Chapter 2. Feature Extraction 2.1. Decompositions

That is, there exist unit 2-norm vectors so that Bz = 0 and which can be written as a
linear combination z =

∑k+1
i=1 αivi with

∑k+1
i=1 α

2
i = 1 and αi = vTi z. Since Bz = 0 and

Az =
k+1∑
i=1

σi(v
T
i z)ui (2.32)

we have that

||A−B||22 ≥ ||(A−B)z||
2
2 = ||Az||

2
2 =

k+1∑
i=1

σ2
i (v

T
i z)

2 ≥ σk+1
k+1∑
i=1

α2
i = σ

2
k+1 (2.33)

which completes the proof.
The above theorem provides us with a way for dimensionality reduction through
rank-reduction. That is, assume that we have a collection of n data samples x1, . . . ,xn.
We stack the samples as columns of matrix X = [x1, . . . ,xn]. Then, the k low-rank
representation of the data is

Xk =UkΣkV
T
k . (2.34)

keeping the first k singular values and the corresponding singular vectors.

2.1.4 Principal Component Analysis

In the following we describe one the most well-studied and popular methods for
feature extraction and dimensionality reduction. That is, we will describe Principal
Component Analysis (PCA). PCA has a very long history in mathematical statistics
and engineering. It was first invented by Karl Pearson in 1901 and independently
developed by Harold Hotelling. In the following we will introduce PCA under two
perspectives. One is the statistical one and the second is based on reconstruction.
We assume that we are given a collection of n d-dimensional samples stored in the
columns of matrix X = [x1, . . . ,xn]. For convenience we will assume that data are
centered (i.e.,

∑n
i=1xi = 0). We can always center our data by computing and sub-

tracting the mean of the data m = 1
n

∑n
i=1xi . Data centering can be done efficiently

using matrix multiplication (see the example below).

Example (Data Centering using Matrix Multiplication)
In order to compute data centering using matrix multiplication first we need to see
how we can create a matrix that contains in all n columns the same vector a ∈Rd

A = [a, . . . ,a] = a1Tn . (2.35)

where 1n ∈ Rn is a vector.
Using the above, a matrix M that contains in all columns the mean of the data
(m = 1

n

∑n
i=1xi =

1
nX1n) can be computed as

M =m1T = X(
1
n
1n1

T
n). (2.36)

69

2.1. Decompositions Chapter 2. Feature Extraction

Hence, data centering can be computed as

[x1 −m, . . . ,xn −m] = X−M = X(I− 1
n
1n1

T
n). (2.37)

2.1.4.1 Statistical Perspective

We want to find a set of features, via linear projections onto some basis, that max-
imise the variance of the sample data on that basis. We will start by assuming that
we want to find only one vector w so that the variance of the projected features
yi =wT

i xi is maximised. The variance can be defined as

σ2
y =

1
n

n∑
i=1

(yi −µy)2. (2.38)

where µy = 1
n

∑n
i=1 yi . But since we assumed centered data it is easy to verify that

µy = 0. Hence, the optimal features {yo1, . . . , yon}

{yo1, . . . , y
o
n} = argmax

1
2
σ2
y ⇒

wo = argmax
w

1
2n

n∑
i=1

(wT xi)
2 = argmax

w

1
2n

n∑
i=1

wT xix
T
i w

= argmax
w

1
2n

n∑
i=1

wT xix
T
i w = argmax

w
wT 1

2n
XXTw

= argmax
w

1
2
wT Stw

(2.39)

where St = 1
nXX

T 1 is a very important matrix called covariance matrix or total-
scatter matrix.
The above optimisation problem has a trivial solution which is w = ∞. In order to
avoid the trivial solution we incorporate the constraint ||w||2 = 1. Hence optimisation
problem (2.39) is now re-formulated as

wo = argmax
w

1
2
wT Stw

subject to wTw = 1.
(2.40)

In order to solve the above constrained optimisation problem we need to formulate
the Lagrangian as

L(w,λ) =
1
2
wT Stw−λ(wTw− 1). (2.41)

1We will drop the 1
n in the following for convenience.

70

Chapter 2. Feature Extraction 2.1. Decompositions

We can compute the partial derivatives (using the results in Appendix A.33) as

∇wL(w) = Stw−λw (2.42)

forcing ∇wL(w) = 0 we end up to

Stw = λw (2.43)

which means that w is an eigenvector of St and the Lagrangian multiplier λ is the
corresponding eigenvalue. St is a symmetric positive semi-definite matrix, hence all
of its eigenvalues are non-negative.
Now, the question is what pair of eigenvalue and eigenvector, should we choose?
Intuitively, someone would answer the eigenvector that corresponds to the largest
eigenvalue. But let’s see that mathematically, by replacing the solution to the opti-
misation problem (2.39), we get

λo = argmax
λ
λ. (2.44)

Hence, we have to choose λ to be the largest eigenvalue and w to be the eigenvector
that corresponds to the largest eigenvalue. This vector is also called the principal
axis of the data.
Now assume that we want to extract more than one dimension. That is, we want to
find yi ∈Rd so that

yi =


y1i
...
ydi

 =

wT

1 xi
...

wT
d xi

 =WT xi (2.45)

where W = [w1, . . . ,wd]. We also assume that WTW = I.
The optimisation problem is now written as

Wo = argmax
W

1
2n

d∑
k=1

n∑
i=1

y2ki = argmax
W

1
2n

n∑
i=1

d∑
k=1

(wT
k xi)

2

= argmax
W

1
2n

n∑
i=1

d∑
k=1

wT
k xix

T
i wk

= argmax
W

1
2n

d∑
k=1

wT
k (

n∑
i=1

xix
T
i)wk = argmax

W

1
2

d∑
k=1

wT
k Stwk

= argmax
W

tr(WT StW)

subject to WTW = I.

(2.46)

The Lagrangian of the above optimisation problem is

L(W,Λ) = tr(WT StW)− tr(Λ(WTW− I)) (2.47)

where Λ is a matrix with Lagrangian multipliers. Then, we need to estimate ∇WL(W) =
0 which leads to

StW =WΛ. (2.48)

71

2.1. Decompositions Chapter 2. Feature Extraction

which gives
Stwk = λkwk (2.49)

for i = 1, . . . , k. Hence, W contains as columns the eigenvectors of St.
Now, let’s discuss: what d eigenvectors should we keep?
Assume the eigendecomposition of St as

St =UΛUT (2.50)

then W =Ud = [u1, . . . ,ud]. The cost function in (2.46) can written as

tr(WT StW) = tr(WTUΛUTW) = tr(Λd) =
d∑
k=1

λk . (2.51)

Since λk > 0 maximisation of the above cost function boils down to keeping the
eigenvectors that correspond to the k largest eigenvalues.
To conclude, PCA transform looks for d orthogonal direction vectors (known as the
principal axes) such that the projection of input sample vectors onto the principal
directions has the maximal spread, or equivalently that the variance of the output
coordinates is maximal. The principal directions are the first (with respect to de-
scending eigenvalues) k eigenvectors of the covariance matrix XXT .

2.1.4.2 Reconstruction Perspective

We will also have another perspective of PCA using the notion of optimal linear
reconstruction. Assume again the same set of centered data X = [x1, . . . ,xn]. We
assume we want to find an optimal way to reconstruct the data using a small set
of vectors and produce X̃ = [x̃1, . . . , x̃n]. We want to find the optimal vectors by
minimizing the least squares form as

Wo = argmin
W

1
2

n∑
i=1

||xi − x̃i ||22 = argmin
W

1
2
||X− X̃||2F . (2.52)

The reconstruction operator using the vectors stored in the columns of W = [w1, . . . ,wd]
can be written as

xi =Wyi (2.53)

which gives yi = (WTW)−1WT .
Replacing it back we get that the optimal reconstruction is

x̃i =W(WTW)−1WT xi . (2.54)

Imposing that WTW = I we get

Wo = argmin
W

1
2
||X− X̃||2F = argmin

W
||X−WWTX||2F

= argmin
W

tr((X−WWTX)T (X−WWTX))

= argmin
W

tr(XTX)− tr(WTXXTW)

= argmax
W

tr(WTXXTW).

subject to WTW = I

(2.55)

72

Chapter 2. Feature Extraction 2.1. Decompositions

which is equivalent to the optimisation problem (2.46).

2.1.4.3 Computing PCA

In this section we will discuss how to compute PCA in Small Sampled Size (SSS)
problems (i.e., where the original dimensionality of the observations, F, is larger –
and in majority of cases is much larger – than the number of samples.
If we want to keep d principal components, the computational cost of the eigen-
analysis of an F × F matrix in order to find d eigenvalues/eigenvectors is O(dF2). If
F is large, this computation can be quite expensive. We will show how to expedite
this procedure when n� F. We firstly have to introduce the following Lemma.
Lemma 1
Let us assume that B = XXT and C = XTX. It can be proven that B and C have the
same positive eigenvalues Λ and, assuming that n < F, then the eigenvectors U of B
and the eigenvectors V of C are related as U = XVΛ−

1
2 .

Using Lemma 1 we can compute the eigenvectors U of St = XXT in O(n3). The
eigenanalysis of XTX is denoted by

XTX =VΛVT (2.56)

where V is a n×(n−1) matrix with the eigenvectors as columns and Λ is a (n−1)×(n−
1) diagonal matrix with the eigenvalues in the main diagonal. Given that VTV = I
and VVT , I we have

XTX =VΛVT

U = XVΛ−
1
2

}
⇒UTXXTU =Λ−

1
2VTXTXXTXVΛ−

1
2 =

=Λ−
1
2 VTV︸︷︷︸

I

Λ VTV︸︷︷︸
I

Λ VTV︸︷︷︸
I

Λ−
1
2 =

=Λ

(2.57)

The pseudocode for computing PCA in SSS problems is

Algorithm 1 Principal Component Analysis

1: procedure PCA
2: Compute dot product matrix: XTX = [(xi −m)T (xi −m)]
3: Eigenanalysis: XTX =VΛVT

4: Compute eigenvectors: U = XVΛ−
1
2

5: Keep specific number of first components: Ud = [u1, . . . ,ud]
6: Compute d features: Y =Ud

TX

Let’s inspect the covariance matrix of low-dimensional features stored in matrix Y.
The covariance matrix of Y is

YYT =UTXXTU =Λ.

73

2.1. Decompositions Chapter 2. Feature Extraction

Figure 2.1: Example of data whitening using the PCA projection matrix W =UΛ−
1
2 .

From the above it is evident that the features in Y are un-correlated (i.e., the co-
variance matrix YYT is diagonal, with off-diagonal elements being zero) and the
variance in each dimension is equal to the positive eigenvalues of XXT.
Assume further that we want to make the low-dimensional covariance matrix of the
data equal to the identity matrix. This procedure is called whitening (or sphering)
which is an important normalisation of the data.
The whitening tranformation is given by the projection matrix

W =UΛ−
1
2 (2.58)

which normalises the data to have unit variance (Figure 2.1).

2.1.4.4 Link between SVD and PCA

Here we will investigate the relationship between PCA with SVD on a set of cen-
tralised data stored in matrix X. The project basis of PCA is given by the r eigenvec-
tors of the the covariance matrix that do not correspond to zero eigenvectors

XXT =WrΛrW
T
r . (2.59)

Furthermore, assume the SVD decomposition of

X =UrΣrV
T
r . (2.60)

Using the above SVD decomposition we can write the covariance matrix as

XXT =UrΣrV
T
r VrΣrU

T
r =UrΣ

2
rU

T
r . (2.61)

Comparing now the above with the eigen-decomposition in 2.59, we get that (1) the
basis of PCA is given by the left orthogonal space of SVD and (2) the eigenvalues are
the singular values squared.
Furthermore, the low-dimensional features of PCA are given by

Yr =UTr X =UTr UrΣrV
T
r = ΣrV

T
r . (2.62)

Hence, the normalised features stacked in matrix Σ−1r Yr are equal to the right or-
thogonal space of SVD, Vr . That is, the right orthogonal space of SVD is equal to the
whitened features.

74

Chapter 2. Feature Extraction 2.1. Decompositions

2.1.5 Linear Discriminant Analysis

In this section we will try to derive a dimensionality reduction methodology that
exploits the availability of discrete labels. That is we assume the following scenario:
Say we are given a set of data x1, . . . ,xn and a vector l = [l1, . . . , ln] with labels (a label
li per sample xi) with li ∈ 1, . . . ,C where C is the number of classes we have. Some
of the pros and cons of PCA for the above scenario are

• PCA: Unsupervised approach, good for compression of data and data recon-
struction. Good statistical prior.

• PCA: Not explicitly defined for classification problems (i.e., in case that data
come with labels)

• How do we define a latent space it this case? (i.e., that helps in data classifica-
tion).

In order to capitalise on the availability of class labels we need to properly define
relevant statistical properties which may help us in classification. Intuition: We want
to find a space in which:

1. data consisting each class look more like each other, while,

2. data of separate classes look more dissimilar.

The relevant questions we need to answer are:

1. How do I make my data in each class look more similar? (Answer: Minimise
the variability in each class (i.e., minimize the variance)).

2. How do I make the data between classes look dissimilar? (Answer: I move
the data from different classes further away from each other (i.e., increase the
distance between their means)).

2.1.5.1 The two class case

In the following, we will discuss the two-class case. That is, we assume that C = 2
and that we have two means µy(c1),µy(c2) and two variances σ2

y (c1),σ
2
y (c2) (one for

each class). We want a latent space of yi such that:

σ2
y (c1) + σ

2
y (c2) is minimum

(µy(c1)−µy(c2))2 is maximum

How do I combine them together?

minimize

 σ2
y (c1) + σ

2
y (c2)

(µy(c1)−µy(c2))2


75

2.1. Decompositions Chapter 2. Feature Extraction

Or maximize

(µy(c1)−µy(c2))2σ2
y (c1) + σ

2
y (c2)

 .
Assuming again that the low-dimensional features are found through a projection to
a vector w as yi =wT xi , the within-class variance in the first class c1

σ2
y (c1) =

1
Nc1

∑
xi∈c1

(yi −µy(c1))2

=
1
Nc1

∑
xi∈c1

(wT(xi −µ(c1)))2

=
1
Nc1

∑
xi∈c1

wT(xi −µ(c1))(xi −µ(c1))Tw

=wT 1
Nc1

∑
xi∈c1

(xi −µ(c1))(xi −µ(c1))Tw

=wTS1w

where µ(c1) = 1
Nc1

∑
xi∈c1 xi is the mean of the first class.

Similarly, the within-class variance in the second class c2 is given by

σ2
y (c2) =wTS2w

where S2 = 1
Nc2

∑
xi∈c2(xi−µ(c2))(xi−µ(c2))

T and µ(c2) is the mean of the second class.
Now, the sum of the two variances can be written as

σ2
y (c1) + σ

2
y (c2) =wT (S1 +S2)w =wT Sww

where Sw = S1 +S2 is the within class scatter matrix.
The distance between the two means can be written as

(µy(c1)−µy(c2))2 =wT (µ(c1)−µ(c2))(µ(c1)−µ(c2))T︸ ︷︷ ︸
Sb between class scatter matrix

w

The quantity we need to maximise is

(µy(c1)−µy(c2))2

σ2
y (c1) + σ

2
y (c2)

=
wTSbw
wTSww

The equivalent optimisation problem is

maxwTSbw s.t. wTSww = 1

In order to solve the optimisation problem we need to formulate the Lagrangian

Langrangian: L(w,λ) =wTSbw−λ(wTSww− 1)

76

Chapter 2. Feature Extraction 2.1. Decompositions

∂wTSww
∂w

= 2Sww
∂wTStw
∂w

= 2Stw

∂L
∂w

= 0⇒ λSww = Sbw.

Hence the optimal w is given by the eigenvector that corresponds to the eigenvalue
of S−1w Sb (assuming that Sw is invertible).
In this special case (where C = 2) the optimal w is

w ∝ S−1w (µ(c1)−µ(c2)).

In the following we will compute the LDA projection for the following 2D dataset.

c1 = {(4,1), (2,4), (2,3), (3,6), (4,4)}
c2 = {(9,10), (6,8), (9,5), (8,7), (10,8)}

Solution (by hand)
The class statistics are

S1 =
[

0.8 −0.4
−0.4 2.64

]
, S2 =

[
1.84 −0.04
−0.04 2.64

]
The within and between class scatter matrices are

µ1 = [3.0 3.6]T µ2 = [8.4 7.6]T

Sb =
[
29.16 21.6
21.6 16.0

]
, Sw =

[
2.64 −0.44
−0.44 5.28

]
The LDA projection is then obtained as the solution of the generalized eigenvalue
problem

S−1w Sbw = λw→ |S−1w Sb −λI| = 0→∣∣∣∣∣ 11.89−λ 8.81
5.08 3.76−λ

∣∣∣∣∣ = 0→ λ = 15.65

[
11.89 8.81
5.08 3.76

][
w1
w2

]
= 15.65

[
w1
w2

]
→

[
w1
w2

]
=

[
0.91
0.39

]
.

Or directly by

w∗ = S−1w (µ1 −µ2) = [−0.91 − 0.39]T.

77

2.2. Computing Linear Discriminant Analysis Chapter 2. Feature Extraction

2.1.5.2 Multi-class Case

In the general case, where C classes are available, the within-class scatter matrix is
defined as

Sw =
C∑
j=1

Sj =
C∑
j=1

1
Ncj

∑
xi∈cj

(xi −µ(cj))(xi −µ(cj))T

and the between-class scatter matrix as

Sb =
C∑
j=1

(µ(cj)−m)(µ(cj)−m)T

Now, we have to find a matrix W = [w1, . . . ,wd] by solving the following optimisation
problem

max tr[WTSbW] s.t. WTSwW = I

The Lagrangian of the problem is defined as

L(W,Λ) = tr[WTSbW]− tr[Λ(WTSwW− I)]

∂tr[WTSbW]
∂W

= 2SbW
∂tr[Λ(WTSwW− I)]

∂W
= 2SwWΛ

∂L(W,Λ)
∂W

= 0⇒ SbW = SwWΛ.

As a result, the columns of W are the eigenvectors of S−1w Sb (assuming Sw is not
singular) that correspond to its largest eigenvalues (if d are the eigenvectors, then
the following must hold: d ≤ C − 1).

2.2 Computing Linear Discriminant Analysis

In the following we will show how to solve the general LDA optimisation problem in
SSS problems (i.e., without having to assume that Sw is invertible)

W0 =argmax
W

tr(WTSbW)

subject to WTSwW = I
(2.63)

Assume that we have C classes in total. We assume that each class has Nci samples,
stored in matrix ci = [x1, . . . ,xNci

], i = 1, . . . ,Nci , where each xj has F dimensions and
µ(ci) is the mean vector of the class i. Thus, the overall data matrix X = [c1, . . . ,cC]
has size of F×n (n =

∑C
i=1Nci). If m is the overall mean, then the within-class scatter

matrix, Sw, is defined as

Sw =
C∑
j=1

Sj =
C∑
j=1

∑
xi∈cj

(xi −µ(cj))(xi −µ(cj))T (2.64)

78

Chapter 2. Feature Extraction 2.2. Computing Linear Discriminant Analysis

and has rank(Sw) = min(F,n− (C +1)). Moreover, the between-class scatter matrix,
Sb, is defined as

Sb =
C∑
j=1

Ncj (µ(cj)−m)(µ(cj)−m)T (2.65)

and has rank(Sb) = min(F,C − 1).
The solution of Eq. 2.63 is given from the generalised eigenvalue problem

SbW = SwWΛ (2.66)

thus the optimal Wo corresponds to the eigenvectors of S−1w Sb that correspond to
the largest eigenvalues. In order to deal with the singularity of Sw, we can do the
following steps:

1. Perform PCA on our data matrix X to reduce the dimensions to n−(C+1) using
the eigenvectors U

2. Solve LDA on this reduced space (i.e., in the space of Y =UTX) and get optimal
matrix Q that has C − 1 columns.

3. Compute the total transformation as W =UQ.

Unfortunately, if you follow the above procedure it is possible that important infor-
mation is lost. In the following, we show how the components of LDA can be com-
puted by applying a simultaneous diagonalisation procedure. Before we continue,
we need to write some properties regarding the between and within class matrices
Sw and Sb.

Properties
The scatter matrices have some interesting properties. Let us denote

M =


E1 0 · · · 0
0 E2 · · · 0
...

...
. . .

...
0 0 · · · EC

 = diag {E1,E2, . . . ,EC} (2.67)

where

Ei =


1
Nci

· · · 1
Nci

...
. . .

...
1
Nci

· · · 1
Nci


Nci×Nci

(2.68)

Note that M is idempotent, thus MM =M. Given that the data covariance matrix is
St = XXT, the between-class scatter matrix can be written as

Sb = XMMXT = XMXT (2.69)

and the within-class scatter matrix as

Sw = XXT︸︷︷︸
St

−XMXT︸ ︷︷ ︸
Sb

= X(I−M)XT (2.70)

79

2.2. Computing Linear Discriminant Analysis Chapter 2. Feature Extraction

Thus, we have that St = Sw + Sb. Note that since M is idempotent, I −M is also
idempotent.

Given the above properties, the objective function of Eq. 2.63 can be expressed as

Wo =argmax
W

tr(WTXMMXTW)

subject to WTX(I−M)(I−M)XTW = I
(2.71)

The optimisation procedure of this problem involves a procedure called Simultane-
ous Diagonalisation. Let’s assume that the final transformation matrix has the form

W =UQ (2.72)

We aim to find the matrix U that diagonalises Sw = X(I−M)(I−M)XT. This practically
means that, given the constraint of Eq. 2.71, we want

WTX(I−M)(I−M)XTW = I⇒
⇒QTUTX(I−M)(I−M)XTU︸ ︷︷ ︸

I

Q = I (2.73)

Consequently, using Eqs. 2.72 and 2.73, the objective function of Eq. 2.71 can be
further expressed as

Qo =argmax
Q

tr(QTUTXMMXTUQ)

subject to QTQ = I
(2.74)

where the constraint WTX(I−M)(I−M)XTW = I now has the form QTQ = I.
Lemma 2
Assume the matrix X(I −M)(I −M)XT = XwXw

T, where Xw is the F × n matrix
Xw = X(I −M). By performing eigenanalysis on Xw

TXw as Xw
TXw = VwΛVw

T, we
get n− (C +1) positive eigenvalues, thus Vw is a n× (n− (C +1) matrix.

The optimisation problem of Eq. 2.74 can be solved in two steps

1. Find U such that UTX(I −M)(I −M)XTU = I. By applying Lemma 2, we get
U = XwVwΛw

−1. Note that U has size F × (n− (C +1)).

2. Find Q0. By denoting
X̃b =UTXM

the (n− (C +1))×n matrix of projected class means, Eq. 2.74 becomes

Qo =argmax
Q

tr(QTX̃bX̃
T
bQ)

subject to QTQ = I
(2.75)

which is equivalent to applying PCA on the matrix of projected class means.
The final Q0 is a matrix with columns the d eigenvectors of X̃bX̃T

b that corre-
spond to the d largest eigenvalues (d ≤ C − 1).

80

Chapter 2. Feature Extraction 2.2. Computing Linear Discriminant Analysis

The final projection matrix is given by

W0 =UQ0 (2.76)

Based on the above, the pseudocode for computing LDA is

Algorithm 2 Linear Discriminant Analysis

1: procedure LDA
2: Find the eigenvectors of Sw that correspond to the non-zero eigenvalues

(usually n − (C + 1)), i.e. U = [u1, . . . ,un−(C+1)] by performing eigen-analysis to
(I−M)XTX(I−M) =VwΛwVTw and computing U = X(I−M)VwΛw

−1 (performing
whitening on Sw).

3: Project the data as X̃b =UTXM.
4: Perform PCA on X̃b to find Q (i.e., compute the eigenanalysis of X̃bX̃Tb =

QΛbQT).
5: The total transform is W =UQ

2.2.1 Kernel PCA and Kernel LDA

All the above techniques are linear. But in many cases it would be beneficial to
design non-linear feature extraction methods (for examples see the slides). Assume
again that we have a set of observations x1, . . . ,xn. We further assume that we have
a non-linear mapping φ

xi ∈RF → φ(xi) ∈ H

H can be of arbitrary dimensionality space (could be even infinite).
φ(.) may not be explicitly known or is extremely expensive to compute and store.
What is explicitly known is the dot product in H (also known as kernel k)

φ(xi)
Tφ(xj) = k(xi ,xj)

(xi ,xj) ∈RF×F → k(., .) ∈R

All positive (semi)-definite functions can be used as kernels.
Given a training population of n samples [x1, . . . ,xn], we compute the training kernel
matrix (also called Gram matrix)

K = [φ(xi)
Tφ(xj)] = [k(xi ,xj)]

All the computations are performed via the use of the kernel or the centralized kernel
matrix

K̄ = (φ(xi)−mΦ)T(φ(xj)−mΦ), mΦ =
1
n

n∑
i=1

φ(xi)

Some popular kernel functions include: Gaussian Radial Basis Function (RBF) ker-
nel:

k(xi ,xj) = exp−
||xi−xj ||

2
2

r2

81

2.2. Computing Linear Discriminant Analysis Chapter 2. Feature Extraction

Polynomial kernel:
k(xi ,xj) = (xTi xj + b)

n

Hyperbolic Tangent kernel:

k(xi ,xj) = tanh(xTi xj + b)

In kernel literature the original observation space

X = [x1, . . . ,xn]

is called input space.
While the non-linear space

XΦ = [φ(x1), . . . ,φ(xn)]

is called feature space. Using the feature space the kernel matrix is defined as

K = [φ(xi)
Tφ(xj)] = [k(xi ,xj)] = XΦT

XΦ .

We can define the centralised matrix of features as

X̄Φ = [φ(x1)−mΦ , . . . ,φ(xn)−mΦ]

= XΦ(I−E) = XΦM, E =
1
n
11T.

Using the centralised matrix of features the centralised kernel matrix as

K̄ =[(φ(xi)−mΦ)T(φ(xj)−mΦ)] = (I−E)XΦT
XΦ(I−E)

=(I−E)K(I−E) =K−EK−KE+EKE.

We can now define PCA in the features space or, as it is known, Kernel PCA (KPCA)

UΦ
o =argmax

UΦ

tr[UΦT
SΦt U

Φ]

=argmax
UΦ

tr[UΦT
X
ΦT

X
Φ
UΦ]

subject to UΦT
UΦ = I.

The solution is given by the d eigenvectors that correspond to the d largest eigenval-
ues

SΦt U
Φ
o =UΦ

o Λ

Do you see any problem with that? How can we compute the eigenvectors of SΦt .
We do not even know φ!
Remember our Lemma that links the eigenvectors and eigenvalues of matrices of the
form AAT and ATA

K = X
ΦT

X
Φ
=VΛVT then UΦ

o = X
Φ
VΛ−

1
2

82

Chapter 2. Feature Extraction 2.2. Computing Linear Discriminant Analysis

All computations are performed via the use of K (so called kernel trick)
Still UΦ

o = X
Φ
VΛ−

1
2 cannot be analytically computed. But we do not want to com-

pute UΦ
o . What we want is to compute latent features. That is, given a test sample

xi , we want to compute y =UΦT

o φ(xt) (this can be performed via the kernel trick)

y =UΦT

o (φ(xt)−mΦ)

=Λ−
1
2VTX

ΦT

(φ(xt)−mΦ)

=Λ−
1
2VT(I−E)XΦT

(
φ(xt)−

1
n
XΦ1

)
=Λ−

1
2VT(I−E)

(
XΦT

φ(xt)−
1
n
XΦT

XΦ1
)

=Λ−
1
2VT(I−E)

(
g(xt)−

1
n
K1

)

where

g(xt) = XΦT
φ(xt) =

 φ(x1)
Tφ(xt)
. . .

φ(xn)Tφ(xt)

 =

 k(x1,xt). . .
k(xn,xt)

 .
Kernel LDA is a tutorial exercise.

83

2.2. Computing Linear Discriminant Analysis Chapter 2. Feature Extraction

2.2.1.1 Maximum Likelihood for Probabilistic PCA

PCA, as defined above, is a deterministic procedure. In the following, we will dis-
cuss about a probabilistic counterpart of PCA, the so-called Probabilistic PCA (PPCA).
PPCA forms the basis for a Bayesian treatment of PCA in which the dimensionality
of the principal subspace can be found automatically from the data. Furthermore,
PPCA can be used to model class-conditional densities and hence be applied to clas-
sification problems. Finally, PPCA model can be run generatively to provide samples
from the distribution.
The probabilistic model of PPCA can be written as

xi =Wyi +m+ ei
ei ∼N (ei |0,σ2I)
yi ∼N (yi |0,I)

(2.77)

or equivalently

p(xi |yi ,W,σ) =N (xi |Wyi +m,σ2I) =
1√

(2π)FσF
exp

(
− 1
2σ2 (xi −m−Wyi)

T (xi −m−Wyi)
)

p(yi) =N (yi |0,I) =
1√

(2π)d
exp

(
−1
2
yTi yi

)
.

(2.78)
Given the conditional probability p(xi |yi ,W,σ) and prior p(y) we can compute the
two following important distributions

p(yi |xi ,W,σ), posterior
p(xi |W,σ), marginal.

(2.79)

We apply the technique called “completing the square” in order to do so.

p(xi |W,σ) =
∫
yi
p(xi ,yi |W,σ)dyi =

∫
yi
p(xi |yi ,W,σ)p(yi)dyi . (2.80)

p(xi |yi ,W,σ)p(yi) =
1√

(2π)FσF
√
(2π)d

exp
(
− 1
2σ2

(
(xi −m−Wyi)

T (xi −m−Wyi) + σ
2yTi yi

))
.

(2.81)
Now, in order to compute the marginal, as well as the posterior, we will restructure
the exponent of the exponential. The aim of the restructure is to reveal a term that
does not depend on yi , so that it can be safely go out of the integral in (2.80). This
term is used to produce the marginal. The other term is used to produce the pos-
terior. Let’s now see how to restructure the exponent (for convenience let’s assume
x̄i = xi −m)

(x̄i −Wyi)
T (x̄i −Wyi) + σ

2yTi yi
= x̄Ti x̄i − 2x̄

T
i Wyi + yTi W

TWyi + σ
2yTi yi

= x̄Ti x̄i − 2x̄
T
i Wyi + yTi (W

TW+ σ2I)yi
= x̄Ti x̄i − 2x̄

T
i Wyi + yTi Myi

(2.82)

84

Chapter 2. Feature Extraction 2.2. Computing Linear Discriminant Analysis

where M =WTW+ σ2I.
We observe that we have a quadratic term yTi Myi and we need some extra terms in
order to complete its quadratic form. We can do so as follows

x̄Ti x̄i − 2x̄
T
i Wyi + yTi Myi

= x̄Ti x̄i − 2(M
−1WT x̄i)

TMyi + yTi Myi
= x̄Ti x̄i − 2(M

−1WT x̄i)
TMyi + yTi Myi + (M−1WT x̄i)

TM(M−1WT x̄i)− (M−1WT x̄i)
TM(M−1WT x̄i)

= (yi −M−1WT x̄i)
TM(yi −M−1WT x̄i) + x̄Ti (I−WM−1WT)x̄i .

(2.83)
Hence, after straightforward computations (i.e., putting the exponent back to the
integral), we have that

p(yi |xi ,W,σ) =N (yi |M−1WT (xi −m),σ2M−1)

p(xi |W,σ) =N (xi |m, (σ−2I− σ−2WM−1WT)−1)
(2.84)

In order to simplify the marginal we will make use of the Woodbury identity

(A+UCV)−1 =A−1 −A−1U(C−1 +VA−1U)−1VA−1. (2.85)

Using the above we can easily verify that if D =WWT + σ2I then

D−1 = σ−2I− σ−2WM−1WT = σ−2I− σ−2W(σ2I+WTW)−1WT . (2.86)

Hence, the marginal can be written as

p(xi |W,σ) =N (xi |m,σ2I+WWT). (2.87)

Having computed the marginal, we are ready to formulate a maximum likelihood
framework in order to estimate the parameters of the model, i.e., θ = {W,m,σ },
given a set of training data samples x1, . . . ,xn

θo = argmax
θ

lnp(x1, . . . ,xn|θ)

= argmax
θ

ln
n∏
i=1

p(xi |θ)

= argmax
θ

−nd2 ln(2π)− n
2
lndet(D)− 1

2

n∑
i=1

(xi −m)TD−1(xi −m)

 .
(2.88)

Hence, by removing the constant terms, the function we want to optimise with re-
gards to the parameters is

L(W,σ ,m) =
n
2
lndet(D)− 1

2

n∑
i=1

(xi −m)TD−1(xi −m)

=
n
2
lndet(D)− 1

2

n∑
i=1

tr(D−1(xi −m)(xi −m)T)

=
n
2
lndet(D)− n

2
tr(D−1St)

(2.89)

85

2.2. Computing Linear Discriminant Analysis Chapter 2. Feature Extraction

We will now take the derivative of the function with regards to the parameters

∇mL = 0⇒m =
1
n

n∑
i=1

xi

∇WL = 0⇒D−1StD
−1W−D−1W⇒ StD

−1W =W

. (2.90)

There are three different solutions. The first is W = 0 (not useful). The second is
D = St. In this case, if St =UΛUT is the covariance matrix eigendecomposition, then
W = U(Λ − σ2I)

1
2VT for an arbitrary rotation matrix V (i.e., VTV = I), D , St and

W , 0 d < q = rank(St).
Assume the SVD of W =ULVT

U = [u1 . . .ud] F × d matrix

UTU = I, VTV =VVT = I

L =


l1 . . . 0
...

. . .
...

0 . . . ld


StD

−1ULVT =ULVT

Let’s study D−1U.

D−1 = (WWT + σ2I)−1
W=ULVT

=======⇒
= (UL2UT + σ2I)−1

Assume a set of bases UF−d such that UT
F−dU = 0 and UT

F−dU
T
F−d = I. We then have

D−1 =
(
ULUT + σ2I

)−1
=
(
[U UF−d]

[
L2 0
0 0

]
[U UF−d]

T + [U UF−d]σ
2I[U UF−d]

T
)−1

=[U UF−d]
[
L2 + σ2I 0

0 σ2I

]−1
[U UF−d]

T

=[U UF−d]
[
(L2 + σ2I)−1 0

0 σ−2I

]
[U UF−d]

T

And subsequently

D−1U = [U UF−d]
[
(L2 + σ2I)−1 0

0 σ−2I

]
[U UF−d]

TU

= [U UF−d]
[
(L2 + σ2I)−1 0

0 σ−2I

]
[I 0]T

86

Chapter 2. Feature Extraction 2.2. Computing Linear Discriminant Analysis

= [U UF−d]
[
(L2 + σ2I)−1

0

]
=U(L2 + σ2I)−1

As a result, we have

StD
−1ULVT =ULVT

StU(L
2 + σ2I)−1 =U

StU =U(L2 + σ2I)

Hence we have that Stui = (l2i + σ
2)ui . For St = UΛUT, ui are the eigenvectors of St

and λi = l2i + σ
2⇒ l =

√
λ− σ2. Unfortunately, V cannot be determined thus there is

a rotation ambiguity.
Concluding, the optimum Wd is given by (keeping d eigenvectors)

Wd =Ud(Λd − σ2I)
1
2VT

Having computed W, we need to compute the optimum σ2

L(W,σ2,µ) = −NF
2

ln(2π)− N
2
ln(|D|)− N

2
tr[D−1St]

= −NF
2

ln(2π)− N
2
ln |WWT + σ2I| − N

2
tr[(WWT + σ2I)−1St]

WdW
T
d + σ

2I = [Ud UF−d]
[
Λd − σ2I 0

0 0

]
[Ud UF−d]

T

+[Ud UF−d]


σ2 . . . 0
...

. . .
...

0 . . . σ2

 [Ud UF−d]
T

= [Ud UF−d]
[
Λd 0
0 σ2I

]
[Ud UF−d]

T

Hence

|WdW
T
d + σ

2I| =
d∏
i=1

λi

F∏
i=d+1

σ2

And thus the log of the determinant is given by

ln |WdW
T
d + σ

2I| = (F − d) lnσ2 +
d∑
i=1

lnλi

87

2.2. Computing Linear Discriminant Analysis Chapter 2. Feature Extraction

We also have that

D−1St = [Ud UF−d]
[
Λd 0
0 σ2I

]−1
[Ud UF−d]

T[Ud UF−d]

 Λd 0 0
0 Λq−d 0
0 0 0


[Ud UF−d]

T

= [Ud UF−d]


I 0 0
0 1

σ2Λq−d 0
0 0 0

 [Ud UF−d]
T

⇒ tr(D−1St) =
1
σ2

q∑
i=d+1

λi + d

L(σ2) = −N
2

F ln2π+
d∑
j=1

lnλj + (F − d) lnσ2 +
1
σ2

q∑
j=d+1

λj + d


∂L
∂σ

= 0⇒−2σ−3
q∑

j=d+1

λj +
2(F − d)
σ

= 0⇒ σ2 =
1

F − d

q∑
j=d+1

λj

Putting the solution back, we have

L(σ2) = −N
2


d∑
j=1

lnλj + (F − d) ln 1
F − d

q∑
j=d+1

λj +F ln2π+F


L(σ2) = −N

2
{
d∑
j=1

lnλj +
q∑
j=d

lnλj

︸ ︷︷ ︸
ln |St |

−
q∑
j=d

lnλj

+(F − d) ln 1
F − d

q∑
j=d+1

λj +F ln2π+F}

max
N
2

 1
F − d

ln |St | −
1

F − d

q∑
j=d

lnλj + ln

 1
F − d

q∑
j=d+1

lnλj

+ const.


⇒min

ln
 1
F − d

q∑
j=d

lnλj

− 1
F − d

q∑
j=d

lnλj


Taking into account Jensen inequality

ln
(∑n

i=1 ri
n

)
≥ 1
n

n∑
i=1

lnri

88

Chapter 2. Feature Extraction 2.2. Computing Linear Discriminant Analysis

we have that

ln

 1
F − d

q∑
j=d+1

λj

 ≥ 1
F − d

q∑
j=d+1

lnλj

Hence

⇒ ln

 1
F − d

q∑
j=d

lnλj

− 1
F − d

q∑
j=d

lnλj ≥ 0

Therefore, the function is minimised when the discarded eigenvectors are the ones
that correspond to the q − d eigenvalues.
A brief summary:

σ2 =
1

F − d

q∑
j=d+1

λj

Wd =Ud(Λd − σ2I)
1
2VT

µ =
1
N

N∑
i=1

xi

We no longer have a projection but: Ep(yi |xi){yi} = M−1WT(xi − µ). We also have a
reconstruction x̂i =WEp(yi |xi){yi}+µ. We can notice that

lim
σ2→0

Wd =UdΛ
1
2
d

lim
σ2→0

M =WT
dWd

Hence,

lim
σ2→0

Ep(yi |xi){yi} =M−1WT
d(xi −µ)

=Λ
− 1
2

d Ud(xi −µ)

which gives PCA.

89

Chapter 3

Support Vector Machines

3.1 Support Vector Classification

In the following, we will touch upon quadratic optimisation problems with con-
straints in order to see in more details how the methods of Lagrangian multipliers
work. Furthermore, we will study how the dual optimisation problem is formulated
and solved. We will study this in the context of Support Vector Machines (SVMs) for
classification and regression.

3.1.1 Linear Separating Hyperplane with Maximal Margin

The original idea of SVM classification is to use a linear separating hyperplane to
create a classifier. Given training vectors xi , i = 1, . . . ,n with xi ∈ RF , a vector y is
defined as follows

yi =
{

1 if xi in class 1
−1 if xi in class 2

The SVM technique tries to find the separating hyperplane with the largest margin
between two classes, measured along a line perpendicular to the hyperplane. For
example, in Figure 3.1, the two classes could be fully separated by a dotted line
wTx + b = 0. We would like to decide the line with the largest margin. In other
words, intuitively we think that the distance between two classes of training data
should be as large as possible. That means we find a line with parameters w and b
such that the distance between wTx+ b = ±1 is maximised.
The distance between wTx + b = 1 and −1 can be calculated by the following way.
Consider a point x̃ on wTx + b = −1 (see Figure 3.2). As w is the “normal vector”
of the line wTx + b = −1, w and the line are perpendicular to each other. Starting
from x̃ and moving along the direction w, we assume x̃+tw touches line wTx+b = 1.
Therefore,

wT(x̃+ tw) + b = 1 and wTx̃+ b = −1

We then have twTw = 2, so the distance (i.e., the length of tw) is ||tw||2 = 2 ||w||2wTw =
2
||w||2

. Note that ||w||2 =
√
w2
1 + · · ·+w

2
n. As maximising 2

||w||2
is equivalent to minimis-

90

Chapter 3. Support Vector Machines 3.1. Support Vector Classification

Figure 3.1: Separating Hyperplanes.

Figure 3.2: Distance between hyperplanes.

ing wTw
2 , we have the following problem:

min
w,b

1
2w

Tw

subject to yi(wTxi + b) ≥ 1
i = 1, . . . , l

(3.1)

The constraint yi(wTxi + b) ≥ 1 means

(wTxi) + b ≥ 1 if yi = 1,

(wTxi) + b ≤ −1 if yi = −1,
(3.2)

That is, data in the class 1 must be on the right-hand side of wTx+ b = 0 while data
in the other class must be on the left-hand side. Note that the reason of maximising
the distance between wTx+b = ±1 is based on Vapnik’s Structural Risk Minimisation
(Vapnik (2013)).
The following example gives a simple illustration of maximal-margin separating hy-
perplanes:

91

3.1. Support Vector Classification Chapter 3. Support Vector Machines

Figure 3.3: 1D Toy Example

Figure 3.4: Solution Toy

Example
Given two training data in R

1 as in the following Figure 3.3: What is the separating
hyperplane?
We have two data points, namely x1 = 1, x2 = 0 with y = [+1,−1]T. Furthermore,
w ∈R1, so Eq. 3.1 becomes

min
w,b

1
2
w2

subject to w · 1+ b ≥ 1 (3.3)
− 1(w · 0+ b) ≥ 1 (3.4)

From Ineq. 3.4, −b ≥ −1. Putting this into Ineq. 3.3, w ≥ 2. In other words, for
any (w,b) which satisfies 3.3 and 3.4, we have w ≥ 2. As we are minimising 1

2w
2,

the smallest possibility is w = 2. Thus, (w,b) = (2,−1) is the optimal solution. The
separating hyperplane is 2x − 1 = 0, in the middle of the two training data points
(Figure 3.4).

In order to find the optimal w in the general case we need to solve optimisation
problem 3.1. Before doing so, we need some basic knowledge regarding Lagrangian
optimisation and Lagrangian duality.

3.1.1.1 Lagrangian Duality

The problem which we have to solve is a constrained optimisation problem. It is of
the form

min
w

f (w)

subject to g(w) ≤ 0. (3.5)

By convention, we write that g(w) ≤ 0, as a result this means that we multiply the
constrains from (3.5) by minus one.

92

Chapter 3. Support Vector Machines 3.1. Support Vector Classification

To solve this we use the method of Lagrange multipliers. We define the Lagrangian
to be the original objective function added to a weighted combination of the con-
straints. The weights are called Lagrange multipliers. It will be helpful to focus on
the simpler case with one inequality constraint and one Lagrange multiplier.

L(w, a) = f (w) + ag(w) (3.6)

Theorem 2
The original minimisation problem can be written as

min
w

max
a≥0

L(w, a) (3.7)

Proof: Looking at the inner term we get

max
a≥0

L(w, a) =
{
f (w), g(w) ≤ 0
∞, g(w) > 0

This is because when g(w) ≤ 0, we maximise (3.6) by setting a = 0. When g(w) > 0,
one can drive the value to infinity by setting a to a large number. Minimising the
outer term, one sees that we obtain the minimum value of f (w) such that the con-
straint g(w) ≤ 0 holds. Therefore, we can say that the two problems are equivalent.
The primal solution to the problem is given by

p∗ =min
w

max
a≥0

L(w, a) (3.8)

The dual solution to the problem is given by

d∗ =max
a≥0

min
w
L(w, a) (3.9)

We claim that d∗ ≤ p∗. Let w∗ be the w value that corresponds to the optimal primal
solution p∗. We can write for all a ≥ 0

max
ã≥0

L(w∗, ã) ≥ L(w∗, a) ≥min
w
L(w, a). (3.10)

The Left-Hand-Side (LHS) of the above is obviously p∗. This means we can interpret
the Right-Hand-Side (RHS) as a lower bound on p∗ for all a ≥ 0. One obtains the
best lower bound when maximising over a - this yields d∗. Hence d∗ ≤ p∗ for any
f (w) and g(w). However, if certain conditions are met, namely

• f (w) is convex

• g(w) is affine (e.g., g(w) =wT x+ b)

then d∗ = p∗.
For the SVM problem, both of these conditions hold. Finally, in order to solve the
SVM optimisation problem using the dual, we need to further explore the optimality
conditions.

93

3.1. Support Vector Classification Chapter 3. Support Vector Machines

3.1.1.2 Conditions for Optimality (Karush-Kuhn-Tucker Conditions)

Lagrangian duality theory also states a number of necessary and sufficient conditions
that hold at the optimum solution.

1. w and a are feasible

2. ag(w) = 0

Condition 1 means that g(w) ≤ 0 and a ≥ 0. Condition 2 is called “complimentary
slackness condition”. It follows from the fact that the constraint g(w) may or may not
affect the final solution. If the minimum of f (w) lies within the region {w : g(w) < 0},
then one can optimise f (w) without the constraint (i.e., let a = 0). If the minimum
of f (w) lies outside this set, then the constraint is turned “on”, and the final solution
must satisfy g(w) = 0. In this case, a behaves like a typical Lagrange multiplier for
an equality constraint.

3.1.1.3 SVM dual problem

We are now ready to formulate the Lagrangian for optimisation problem (3.1). Since
we have n data, we have also n constraints, one for each sample.
The Lagrangian is hence formulated as

L(w,b,a) =
1
2
wTw−

n∑
i=1

ai(yi(w
T xi + b)− 1). (3.11)

The solution of the dual problem is

max
ai≥0

min
w,b

L(w,b,a) (3.12)

Since we are optimising a convex function with linear constraints, the dual solution
will equal the primal solution. To optimise the dual (3.12), we need to minimise
L(w,b,a) with respect to w and b for a fixed value of a. We know that the optimal w
and b must satisfy the condition that the partial derivatives of L with regards to w
and b are 0.

∇wL(w,b,a) =w−
n∑
i=1

aiyixi = 0⇒ (3.13)

w =
n∑
i=1

aiyixi (3.14)

Similarly,

∂L(w,b,a)
∂b

=
n∑
i=1

aiyi = 0. (3.15)

94

Chapter 3. Support Vector Machines 3.1. Support Vector Classification

Therefore, for a fixed value of a, we have a closed form solution for w that minimises
L(w,b,a). We also have a condition on the sum of aiyi . We can plug them back into
the dual expression.

L(a) =
n∑
i=1

ai −
1
2

n∑
i=1

n∑
j=1

aiajyiyjx
T
i xj . (3.16)

Finally, we are left with a function of a what we wish to maximise. Putting this
together with the constraints ai ≥ 0 and the constraint

∑n
i=1 aiyi = 0, we obtain the

following optimisation problem

max
a

1T a− 1
2a
TKya

subject to ai ≥ 0, i = 1, . . . ,n
aT y = 0

(3.17)

where a = [a1, . . . , an]T , 1 = [1, . . . ,1]T , y = [y1, . . . , yn]T and Ky = yiyjxTi xj .
How do I solve this optimisation problem?

Example
In this example we will see how we can solve the optimisation problem using quadprog
of Matlab. The quadprog function solves generic quadratic programming optimisa-
tion problems of the form:

min
g

fT g+ 1
2g

THg

subject to Ag ≤ c,Aeg = ce,gl ≤ g ≤ gu
(3.18)

This minimisation problem solves for the vector g. The first step to solving our
problem, is to encode it using the matrices H, A, f, c, ce, gl , gu and Ae. Assume we
are given a set of data stored as columns in a data matrix X ∈ RF×n and a vector y
of labels 1,−1. Then the SVM optimisation problem (3.17) can be reformulated to
(3.18) by (a) changing maximisation to minimisation by reversing the sign of the
cost function, (b) setting g = a, H = [yiyjxTi xj], (c) f = −1n, A = 0 and c = 0 (a
dummy inequality constraint), Ae = [y1, . . . , yn] and ce = 0, gl = [0, . . . ,0]T , and finally
gu = [∞ . . . ,∞]T . Once we have created the matrices and vectors quadprog function
can be used like so:

1 g = quadprog (H, f, A, c, A e, c e, g l, g u)

which will return the optimal values into vector g.
Assume we are given a set of data stored as columns in a data matrix X ∈<F×n and
a vector y of labels 1,−1.

1 X1 = 4+randn(10,100);
2 X2 = randn(10,100);
3 X = [X1 X2];

95

3.1. Support Vector Classification Chapter 3. Support Vector Machines

4 y1 = ones(1,100);
5 y2 = -ones(1,100);
6 y = [y1 y2]';
7 f = -ones(1,200);
8 A = zeros(1,200);
9 H = (y*y').*(X'*X);

10 c = 0;
11 A e = y';
12 c e = 0;
13 g l = zeros(200,1);
14 g u = 100000*ones(200,1);
15 alpha = quadprog(H,f,A,c,A e,c e,g l,g u);

The claim is that the dual problem is more computationally convenient. We validate
this claim by considering the KKT conditions, which must hold for the solution. In
particular, the complementary slackness condition can be written as

ai = 0⇒ yi(wT xi + b) ≥ 1
ai > 0⇒ yi(wT xi + b) = 1.

(3.19)

Furthermore, from the above conditions we can find b (from any support vector). A
more numerical stable solution can be found by averaging over all support vectors
as

b =
1
NS

∑
xi∈S

(yi −wT xi) (3.20)

where S is the set of support vectors and NS its corresponding cardinality.
These conditions mathematically validate our original sparseness intuition. Points
that lie beyond the margin will have ai = 0, and so will not effect the final solution
w =

∑n
i=1 aiyixi . The final set of points with non-zero ai , or alternatively, the set of

points with margin 1, are called the support vectors.

3.1.2 Mapping Data to Higher Dimensional Spaces

However, problems in practice may not be linearly separable (an example is provided
in Figure 3.5). That is, there is no (w,b) which satisfies the constraints of 3.1. In this
situation, we say 3.1 is “infeasible”. We can introduce slack variables ξi , i = 1, . . . ,n
in the constraints

min
w,b,ξ

1
2
wTw+C

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi (3.21)

ξi ≥ 0 i = 1, . . . ,n

That is, the constraints in 3.21 allow training data to not be on the correct side of
the separating hyperplane wTx+ b = 0. This happens when ξi > 1 and an example is
provided in Figure 3.5.

96

Chapter 3. Support Vector Machines 3.1. Support Vector Classification

Figure 3.5: Allowing errors

We have ξi ≥ 0 since if ξi < 0, we have yi(wTxi + b) ≥ 1 − ξi ≥ 1 and the training
data is already on the correct side. The new problem is always feasible since for any
(w,b),

ξi ≡max(0,1− yi(wTxi + b)), i = 1, . . . , l

we have a feasible solution ((w,b,ξ)). Using this setting, we may worry that for
linearly separable data, some ξi ’s could be larger than 1 and hence corresponding
data could be wrongly classified. For the case that most data except some noisy ones
are separable by a linear function, we would like wTx+b = 0 to correctly classify the
majority of the points. Therefore, in the objective function we add a penalty term
C

∑l
i=1ξi , where C > 0 is the penalty parameter. To have the objective value as small

as possible, most ξi ’s should be zero, so that the constraint goes back to its original
form.
In order to formulate the dual of (3.21) we need to compute

L(w,b,ξi , ai , ri) =
1
2
wTw+C

n∑
i=1

ξi −
n∑
i=1

ai(yi(w
T xi + b)− 1+ ξi)−

n∑
i=1

riξi (3.22)

with Lagrangian multipliers ai ≥ 0, ri ≥ 0. Computing the derivatives

∂L
∂w

=w−
n∑
i=1

aiyixi = 0

∂L
∂b

=
n∑
i=1

aiyi = 0 (3.23)

∂L
∂ξi

= C − ai − ri = 0.

Substituting (3.23) back to (3.22) we get the dual optimisation problem

max
a
L(a) = aT 1− 1

2
aTKya (3.24)

97

3.1. Support Vector Classification Chapter 3. Support Vector Machines

subject to aT y = 0, 0 ≤ ai ≤ C (3.25)

where Ky = [yiyjxTi xj].
If data are distributed in a highly non-linear way, employing only a linear function
causes many training instances to be on the wrong side of the hyperplane. As a
result, under-fitting occurs and the decision function does not perform well. To fit
the training data better, we may think of using a non-linear curve. The problem is
that it is very difficult to model non-linear curves. All we are familiar with are elliptic,
hyperbolic, or parabolic curves, which are far from enough in practice. Instead of
using more sophisticated curves, another approach is to map data into a higher
dimensional space. In this higher dimensional space, it is more likely that data can
be linearly separated. An example by mapping x from R

3 to R
8 is as follows

φ(x) = [1,
√
2x1,
√
2x2,
√
2x3,x

2
1,x

,
2x

2
3,
√
2x1x2,

√
2x2x3,

√
2x1x3]

An extreme example is to map a data instance x to an infinite dimensional space

φ(x) = [1,
x1
1!
,
x22
2!
,
x33
3!
, . . .]T

We then try to find a linear separating plane in a higher dimensional space so that
3.21 becomes

min
w,b,ξ

1
2
wTw+C

n∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi (3.26)

ξi ≥ 0 i = 1, . . . ,n

3.1.3 The Dual Problem

The remaining problem is how to effectively solve 3.26. Especially after data are
mapped into a higher dimensional space, the number of variables (w,b) becomes
very large or even infinite. We handle this difficulty by solving the dual problem of
3.26

min
α

1
2

n∑
i=1

n∑
j=1

aiajyiyjφ(xi)
Tφ(xj)−

n∑
i=1

ai

subject to 0 ≤ ai ≤ C i = 1, . . . ,n (3.27)
n∑
i=1

yiai = 0

This new problem of course has some relation with the original problem 3.26, and
we hope that it can be solved more easily. We may write 3.27 in a matrix form for
convenience:

min
a

1
2
αTKyα − 1Tα

98

Chapter 3. Support Vector Machines 3.2. Support Vector Regression

subject to 0 ≤ ai ≤ C i = 1, . . . , l (3.28)

yTα = 0

In 3.28, 1 is the vector of ones, C is the upper bound, Ky is an n × n positive semi-
definite matrix, Ky ≡ [yiyjk(xi ,xj)], and k(xi ,xj) ≡ φ(xi)Tφ(xj) is the kernel.
Therefore, the crucial point is whether the dual is easier to be solved than the primal.
The number of variables in the dual is the size of the training set is n; a fixed number.
In contrast, the number of variables in the primal problem varies depending on how
data are mapped to a higher dimensional space. Therefore, moving from the primal
to the dual means that we solve a finite-dimensional optimisation problem instead
of a possibly infinite-dimensional one.
If φ(x) is an infinitely-long vector, there is no way to fully write it down and then
calculate the inner product. Therefore, even though the dual possesses the advan-
tage of having a finite number of variables, we could not even write the problem
down before solving it. This is resolved by using special mapping functions φ so that
φ(xi)Tφ(xj) is efficiently calculated (i.e., by using the kernel trick). Then, a decision
function is written as

f (x) = sign(wTφ(x) + b) = sign

 l∑
i=1

yiαiφ(xi)
Tφ(x) + b

 (3.29)

In other words, for a test vector x, if
∑n
i=1 yiαiφ(x)

Tφ(x) + b > 0, we classify it to be
in the class 1. Otherwise, we classify it in the second class. We can see that only
support vectors will affect the results in the prediction stage. In general, the number
of support vectors is not large. Therefore, we can say SVM is used in order to derive
important data (support vectors) from the training data.

3.2 Support Vector Regression

3.2.1 Linear Regression

Given training data (x1, y1), . . . , (xn, yn) in Figure 3.6, where xi is an input vector and
yi is the associated output value for xi , the traditional linear regression finds a linear
function wTx+ b so that (w,b) is an optimal solution of

min
w,b

n∑
i=1

(yi − (wTxi + b))
2 (3.30)

In other words, wTx+b approximates training data by minimising the sum of square
errors.
Note that F, the number of features, is in general less than n. Otherwise, a line
passing through all points so that 3.30 is zero is the optimal function wTx + b. For
such cases, over-fitting occurs.
Similar to classification, if the data is non-linearly distributed, a linear function is
not good enough. Therefore, we also map data to a higher dimensional space by a
function φ(x). Then F ≤ dimensionality of φ(x) and as a result over-fitting happens
again. An example is in Figure 3.7.

99

3.2. Support Vector Regression Chapter 3. Support Vector Machines

Figure 3.6: Linear Regression

Figure 3.7: Non-linear Regression

Figure 3.8: Support Vector Regression

3.2.2 Support Vector Regression

To rectify the over-fitting problem after using φ, we consider the following reformu-
lation of 3.30 (geometric interpretation is given in Figure 3.8):

min
w,b,ξ,ξ∗

n∑
i=1

ξ2i + (ξ∗i)
2

subject to − ξ∗i ≤ yi − (w
Tφ(xi) + b) ≤ +ξi (3.31)

ξi ,ξ
∗
i ≥ 0 i = 1, . . . ,n

It is easy to see that 3.30 (with x replaced by φ(x)) and 3.31 are equivalent: If

100

Chapter 3. Support Vector Machines 3.2. Support Vector Regression

(w,b,ξ,ξ∗) is optimal for 3.31, as ξ2i + (ξ∗i)
2 is minimised, we have

ξi =max(yi − (wTφ(xi) + b),0) and

ξ∗i =max(−yi +−(wTφ(xi) + b),0).

Therefore,
ξ2i + (ξ∗i)

2 = (yi − (wTφ(xi) + b))
2

Moreover, ξiξ∗i = 0 at an optimal solution.
Instead of using square errors, we can use linear ones:

min
w,b,ξ,ξ∗

l∑
i=1

(ξi + ξ
∗
i)

subject to − ξ∗i ≤ yi − (w
Tφ(xi) + b) ≤ +ξi

ξi ,ξ
∗
i ≥ 0 i = 1, . . . , l

Support vector regression (SVR) then employees two modifications to avoid over-
fitting:

1. A threshold ε is given so that if the i-th datum satisfies

− ε ≤ yi − (wTφ(xi) + b) ≤ ε (3.32)

it is considered a correct approximation. Then ξi = ξ∗i = 0

2. To smooth the function wTφ(xi) + b, an additional term wTw is added to the
objective function.

Thus, support vector regression solves the following optimisation problem:

min
w,b,ξ,ξ∗

1
2
wTw+C

l∑
i=1

(ξi + ξ
∗
i)

subject to (wTφ(xi) + b)− yi ≤ ε+ ξi (3.33)

yi − (wTφ(xi) + b) ≤ ε+ ξ∗i (3.34)
ξi ,ξ

∗
i ≥ 0 i = 1, . . . , l

Clearly, ξi is the upper training error (ξ∗i is the lower) subject to the ε-insensitive
tube |yi − (wTφ(xi) + b)| ≤ ε. This can be seen from Figure 3.8. If xi is not in the
tube, there is an error ξi or ξ∗i , which we would like to minimise in the objective
function. SVR avoids under-fitting and over-fitting the training data by minimising
the training error C

∑l
i=1(ξi + ξ

∗
i) as well as the regularisation term 1

2w
Tw. Addition

of the term wTw can be explained by a similar way to that for classification problems.
In Figure 3.9, under the condition that training data are in the ε-insensitive tube, we
would like the approximate function to be as general as possible to represent the
data distribution.

101

3.2. Support Vector Regression Chapter 3. Support Vector Machines

Figure 3.9: More general approximate function by maximising the distance between
wT x+ b = ±ε

The parameters which control the regression quality are the cost of error C, the
width of the tube ε, and the mapping function φ. Similar to support vector classifi-
cation, as w may be a huge vector variable, we solve the dual problem

min
α,α∗

1
2
(α −α∗)TK(α −α∗) + ε

n∑
i=1

(αi +α
∗
i) +

n∑
i=1

yi(αi −α∗i)

subject to
n∑
i=1

(αi −α∗i) = 0,0 ≤ ai , a∗i ≤ C, i = 1, . . . ,n (3.35)

(3.36)

where Kij = k(xi ,xj) ≡ φ(xi)Tφ(xj). The derivation of the dual uses the same proce-
dure for support vector classification. The primal-dual relation shows that

w =
n∑
i=1

(−αi +α∗i)φ(xi),

so the approximate function is:

n∑
i=1

(−αi +α∗i)k(xi ,xj) + b

102

Appendix A

A.1 Preliminaries on Vectors and Matrices

Below are some ”soft” definitions of vectors and matrices. We revise various repre-
sentations of matrices and vectors, as well as useful definitions and identities.

A.1.1 Vectors and Vector Operators

A column vector x ∈Rn is defined as

x =


x1
...
xn

 = [x1 . . .xn]
T = [xi] (A.1)

where [x1 . . .xn] represents a row vector. In these notes we use column vectors. Use
of row vectors will be explicitly noted.
A matrix A ∈Rn×l is defined as the following collection

A =


a11 . . . a1l
...

. . .
...

an1 . . . anl

 = [a1 . . .al] =


ãT1
...
ãTn

 = [aij] (A.2)

where ãj , j = 1, . . . ,n are row vectors.
The inner product between two vectors x,y ∈Rn is a scalar c defined as

c = xT y =
n∑
i=1

xiyi . (A.3)

The squared `2 norm of a vector can be defined using the inner product as

||x||22 = xT x =
n∑
i=1

x2i . (A.4)

The cosine of the angle θ between two vectors x and y is defined as

cos(θ(x,y)) =
xT y
||x||2||y||2

. (A.5)

103

A.1. Preliminaries on Vectors and Matrices Chapter A.

Figure A.1: Geometric interpretation of the projection of a vector y onto x. The green
vector is projxy, while the red vector is y− projxy.

The cosine between two vectors can be used in order to define projections onto
vectors. In particular, the projection of y onto x, denoted as projxy, is a vector that
is co-linear to x and can be computed as

projxy = βx = cos(θ)||y||2x =
xT y
||x||2

x. (A.6)

The outer product of two vectors is the rank-one matrix defined as

xyT =


x1y1 . . . x1yn
...

. . .
...

xny1 . . . xnyn

 . (A.7)

A.1.2 Matrices and Matrix Operators

Let two matrices A = [aij] ∈ Rn×l and B = [bij] ∈ Rl×m. These matrices can be repre-
sented as A = [a1 . . .al] and B = [b1 . . .bm], using column vectors, and as

A =


ãT1
...
ãTn

 = [aij]

and

B =


b̃T1
...
b̃Tl

 = [bij],

using row vectors.

104

Chapter A. A.1. Preliminaries on Vectors and Matrices

A.1.2.1 Matrix Norms

The most frequently used matrix norms are the Frobenius norm

||A||F =
√∑

i

∑
j

|a2ij | (A.8)

and the induced p-norms

||A||p = sup
x,0

||Ax||p
||x||p

= max
||x||p=1

||Ax||p. (A.9)

Important properties of the matrix norms include

• For all A ∈Rm×n,B ∈Rn×q it holds

||AB||p ≤ ||A||p||B||p. (A.10)

• For all A ∈Rm×n,x ∈Rn it holds

||Ax||p ≤ ||A||p||x||p. (A.11)

• For all A ∈Rm×n, we can compute the induced norm for p = 1 as

||A||1 = max
1≤j≤n

m∑
i=1

|aij |. (A.12)

• For all A ∈Rm×n, we can compute the induced norm for p =∞ as

||A||∞ = max
1≤i≤m

n∑
j=1

|aij |. (A.13)

• For all A ∈Rm×n, we can compute the induced norm for p = 2 as

||A||2 = σ1, (A.14)

i.e. the largest singular value of A.

A.1.2.2 Matrix Multiplications

The matrix multiplication between A ∈Rn×l and B ∈Rl×m (the number of rows of A
must be equal to the number of columns of B) can be defined using the following
forms

AB =

 l∑
k=1

aikbkj

 =

ãT1
...
ãTn

 [b1 . . .bm] = [ãTi bj]

= [Ab1 . . .Abm] =


ãT1 B
...

ãTn B


=

l∑
k=1

akb̃
T
k .

(A.15)

105

A.1. Preliminaries on Vectors and Matrices Chapter A.

Furthermore, the i, j element of AB can be expressed as

[AB]ij = [
l∑
k=1

akb̃
T
k]ij =

l∑
k=1

[akb̃
T
k]ij =

l∑
k=1

aikbkj . (A.16)

Using the above a special case is the matrix-vector multiplication

Ab =


ãT1
...
ãTn

b =


ãT1b
...

ãTnb

 = [ãTj b]. (A.17)

Assume that we are given a basis {u1, . . . ,un} and an arbitrary vector x which can be
written as a linear combination of the basis as

x =
n∑
i=1

kiui =Uk (A.18)

where U = [u1, . . . ,un] and k = [k1, . . . , kn].
The identity matrix is defined as identity element of matrix multiplication (i.e., AI =
IA =A). An example of identity matrix for 3× 3 matrices is

I3 =

 1 0 0
0 1 0
0 0 1

 3× 3 Identity Matrix. (A.19)

Using matrix multiplications we can define matrix integer power as

Ak =AA · · ·A, k times. (A.20)

Fractional power of a matrix A can be defined a matrix B =A
1
k such that

Bk =A. (A.21)

A.1.2.3 Matrix Transposition

Matrix transposition operation is defined as AT =


a11 . . . an1
...

. . .
...

a1l . . . anl

 = [ã1 . . . ãn] =
aT1
...
aTl

 i.e. rows become columns and columns rows. Important property is that

(AB)T = BTAT . (A.22)

Important expansion of the matrix multiplication AAT is the following

AAT =
l∑
k=1

aka
T
k . (A.23)

106

Chapter A. A.1. Preliminaries on Vectors and Matrices

Using the above the quadratic form xTAAT x can be expanded as

xTAAT x =
l∑
k=1

xT aka
T
k x =

l∑
k=1

n∑
j=1

n∑
i=1

xjxiajkaik =
l∑
k=1

(aTk x)
2. (A.24)

The matrix product ABCT

[ABCT]il =
∑
j

aij[BC
T]jl =

∑
j

aij
∑
k

bjkclk =
∑
j

∑
k

aijbjkclk . (A.25)

Example (Derivatives of Quadratic Forms)
Let function f (X) = xTBx

f =
∑
i

∑
j

xixjbij . (A.26)

First we need to split function f as

f =
∑
i

∑
j

xixjbij

=
∑
i,k

∑
j,k

xixjbij +
∑
i

xixkbik +
∑
j,k

xkxjbkj

=
∑
i,k

∑
j,k

xixjbij +
∑
i,k

xixkbik +
∑
j,k

xkxjbkj + x
2
kbkk

(A.27)

Then, we can compute

∂f

∂xk
=

∑
i,k

xibik +
∑
j,k

xjbkj +2xkbkk

=
∑
i

xibik +
∑
j

xjbkj

= [Bx]k + [BT x]k .

(A.28)

Hence, ∇xf = Bx+BT x. If B is symmetric then ∇xf = 2Bx.

A.1.2.4 Trace Operator

Matrix trace operation on square matrices is defined as tr(A) :A ∈Rn×n→R

tr(A) =
n∑
i=1

aii . (A.29)

Some important properties of the trace operator

107

A.1. Preliminaries on Vectors and Matrices Chapter A.

• tr(A+B) = tr(A) + tr(B).

• tr(cA) = ctr(A) for all scalars c ∈R

• tr(A) = tr(AT)

• tr(AB) = tr(BA), hence tr(XTY) = tr(XYT)

• tr(ABCD) = tr(BCDA) = tr(DABC) = tr(CDAB)

• If A is an n × n matrix and λ1, . . . ,λn are its corresponding eigenvalues then
tr(A) =

∑
i

λi .

• ||A||2F = tr(ATA).

Example (Trace derivatives A: Linear Case)
Let function f (X) = tr(AXB)

f =
∑
i

[AXB]ii =
∑
i

∑
j

aij[XB]ji =
∑
i

∑
j

∑
k

aijxjkbki . (A.30)

Now we can compute ∇Xf = [∂f∂xjk]

∂f

∂xjk
=

∑
i

aijbki = [BA]kj = [(BA)T]jk . (A.31)

Hence, ∇Xtr(AXB) =ATBT .

Example (Trace derivatives A: Quadratic Case)
Let function f (W) = tr(WTBW). Using the results of the example of derivatives with
quadratic forms we get

f =
∑
i

wT
i Bwi

=
∑
i

∑
j

∑
r

wjiwribjr

=
∑
i

∑
j,k

∑
r,j

wjiwribjr +
∑
r,k

wkiwribkr +
∑
j,k

wjiwkibjk +w
2
kibkk

 .
(A.32)

108

Chapter A. A.1. Preliminaries on Vectors and Matrices

Now we can compute ∇Wf = [∂f∂wki]

∂f

∂wki
=

∑
r,k

wribkr +
∑
j,k

wjibjk +2wkibkk

=
∑
r

wribkr +
∑
j

wjibjk

= [BW]ki + [BTW]ki .

(A.33)

Hence, ∇Wtr(WTBW) = BW+BTW. If B is symmetric then ∇Wtr(WTBW) = 2BW.

A.1.2.5 Matrix Determinant

Matrix determinant is defined as (Laplace formula)

det(A) =
n∑
j=1

(−1)j+kajk |Ajk | (A.34)

where Ajk is defined as the determinant of the (n−1)×(n−1) matrix that is produced
from A by removing the j-th row and k-th column.

Example (Determinant)

Assume matrix A =

 −2 2 −3
−1 1 3
2 0 −1


det(A) = (−1)1+2 · 2 ·

[
−1 3
2 −1

]
+ (−1)2+2 · 1 ·

[
−2 −3
2 −1

]
+ (−1)3+2 · 0 ·

[
−2 −3
−1 3

]
= (−2) · ((−1) · (−1)− 2 · 3) + 1 · ((−2) · (−1)− 2 · (−3))
= (−2) · (−5) + 8 = 18

(A.35)

Some important properties of the determinant of matrix A ∈Rn×n

• det(I) = 1.

• det(A) = det(AT)

• det(AB) = det(A)det(B)

• det(cA) = cndet(A)

109

A.1. Preliminaries on Vectors and Matrices Chapter A.

• If A is a triangular matrix the det(A) =
∏n
i=1 aii .

• If A is an n × n matrix and λ1, . . . ,λn are its corresponding eigenvalues then
det(A) =

∏
i λi .

• ∇Adet(A) = det(A)(A−1)T

• Determinant of block matrices. Let the block matrix and A be invertible, then

det
(
A B
C D

)
= det(A)det(D−CA−1B). Due to the above we have det

(
A 0
C D

)
=

det(A)det(D).

A.1.2.6 Matrix Inverse

The invertible matrix theorem. Let A be a square n×n matrix over R. The following
statements are all equivalent

• A is invertible (or non-singular or non-degenerate)

• det(A) , 0

• A has full rank rank(A) = n

• The system Ax = 0 has only one trivial solution x = 0.

• The null space of A is the empty space.

• The system Ax = b has a unique solution for each b.

• The mapping x 7→Ax is one to one and onto (bijection).

• The columns of A are linearly independent.

• The columns of A form a basis of Rn.

• AT is invertible (hence the rows of A are linearly independent).

• There is a unique n×n matrix A−1 such that AA−1 =A−1A = I.

• A does not have any zero eigenvalues.

Block matrix inversion

A =
[
A B
C D

]
=

[
A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
(A.36)

where D−CA−1B is the so-called Schur complement of A.
In linear algebra, two n×n matrices A and B are called similar if

B = P−1AP. (A.37)

Similar matrices have the same rank, determinant, trace and eigenvalues.

110

Chapter A. A.1. Preliminaries on Vectors and Matrices

A.1.2.7 Matrix Pseudo-Inverse

The pseudo-inverse of an m × n matrix A is a matrix that generalizes to arbitrary
matrices the notion of inverse of a square, invertible matrix.

• If A is full column rank, rank(A) = n ≤ m, that is ATA is not singular, then A†

is a left inverse of A (i.e., A†A = I). We have the closed-form expression

A† = (ATA)−1AT . (A.38)

• If A is full row rank, rank(A) =m ≤ n, that is AAT is not singular, then A† is a
right inverse of A (i.e., AA† = I). We have the closed-form expression

A† =AT (AAT)−1. (A.39)

• If A is square and invertible matrix then A† =A−1.

A.1.2.8 Range, Null Space and Rank of a matrix

There are two important sub-spaces associated with a matrix A ∈ Rn×m. The range
of A is defined by

ran(A) = {y ∈Rn : y =Ax,Rm} (A.40)

and the null space of A is defined by

null(A) = {x ∈Rm :Ax = 0}. (A.41)

If A = [a1, . . . ,an]] is a column partitioning, then1

ran(A) = span{a1, . . . ,am}. (A.42)

The column rank of A is the dimension of the column space of A,while the row rank
of A is the dimension of the row space 2 of A. A fundamental result in linear algebra
is that the column rank and the row rank are always equal.
Hence, column or row rank (e.g., the number of linear independent columns, rank(A) =
dim(ran(A))) is simply called rank of matrix A.
A square matrix A ∈Rn×n is said to have full rank if rank(A) = n. A matrix A ∈Rn×m
has full rank if rank(A) = min{n,m}. If a matrix does not have full rank, then it is
called rank deficient.

• For all matrices A ∈Rn×m we have that rank(A) ≤min{n,m}

• Rank is the dimension of the largest square sub-matrix of a matrix that has a
non-zero determinant.

• rank(A) = 0 iff A = 0.

1Column space, also referred to as the range of a matrix, is the span (set of all possible linear
combinations) of its column vectors

2Row space is the span (set of all possible linear combinations) of its row vectors

111

A.1. Preliminaries on Vectors and Matrices Chapter A.

• If B ∈Rm×k, then
rank(AB) ≤min(rank(A),rank(B)). (A.43)

If rank(B) is of rank m, then rank(AB) = rank(A).

• If C ∈Rl×n of rank n, then

rank(CA) = rank(A). (A.44)

• The rank of A is equal to r if and only if there exists an invertible n× n matrix
X and an invertible m×m matrix Y such that

XAY =
[
Ir 0
0 0

]
(A.45)

where Ir denotes the r × r identity matrix.

•
rank(A) = rank(AT) = rank(AAT) = rank(ATA). (A.46)

• Rank-nullity theorem. The rank and the nullity3 of a matrix equals the number
of columns of the matrix.

A.1.2.9 Eigenvalues and Eigenvectors

The determination of the eigenvalues and eigenvectors of a system is extremely im-
portant in machine learning. Each eigenvalue is paired with a corresponding so-
called eigenvector.
Let A be a square n × n matrix. Vector x is a right eigenvector of matrix A with a
corresponding eigenvalue λ if

Ax = λx. (A.47)

The above equation can be stated equivalently as,

(A−λI)x = 0. (A.48)

The above equation has a non-zero solution if and only if the determinant |A−λI| is
zero. Therefore, the eigenvalues of A are values of λ that satisfy the equation

det(A−λI) = 0. (A.49)

Hence, a way to find eigenvalues analytically is by finding the roots of the above
polynomial (which is called the characteristic polynomial of A).
The generalised eigenvectors of matrices A and B are vectors that satisfy

Ax = λBx (A.50)

3Nullity is the dimension of the null space of the matrix.

112

Chapter A. A.1. Preliminaries on Vectors and Matrices

and λ is the corresponding generalised eigenvalue. If B is invertible, then the original
problem can be written in the form

B−1Ax = λx (A.51)

which is a standard eigenvalue problem. However, in most situations it is preferable
not to perform the inversion, but rather to solve the generalised eigenvalue problem
as stated originally.
The possible values of λ must obey the following equation

det(A−λB) = 0. (A.52)

For an arbitrary matrix A its eigenvalues and eigenvectors could be complex. In
machine learning, generally we will work with symmetric matrices. If A is a sym-
metric n×n matrix, then all its eigenvalues and eigenvectors are real. Furthermore,
its eigenvectors form an orthonormal basis of R

n. Hence, it admits the following
eigendecomposition

A =UΛUT , UTU = In, UU
T = In. (A.53)

If A and B are symmetric and B is a positive-definite matrix, the generalised eigenval-
ues λ are real and eigenvectors vi and vj with distinct eigenvalues are B-orthogonal

vTi Bvj = 0. (A.54)

A.1.2.10 Positive and Negative Definite Matrices

A symmetric matrix A ∈Rn×n is called positive definite if for all x ∈Rn

xTAx > 0. (A.55)

Similarly it is called negative positive if xTAx < 0 for all x ∈Rn.
Furthermore, a matrix A ∈ Rn×n is positive semi-definite if the above inequality is
not strict (i.e., xTAx ≥ 0). All matrices of the form BBT are positive semi-definite
(the proof is in equation (A.24)).

Theorem 3
A matrix A ∈Rn×n is positive definite iff all eigenvalues are positive.

Proof: Assume that all eigenvalues λi are positive. Then according to the eigende-
composition of symmetric matrices in (A.53) we have A =UΛUT . The columns of U
constitute a base of Rn. Hence, x =Uc for all x ∈Rn and c , 0. Then,

xTAx = cTUTUΛUUT c = cTΛc =
n∑
i=1

c2i λi > 0. (A.56)

Hence, A is positive definite.
Assume now that A is positive definite. Then, again

xTAx = cTΛc =
n∑
i=1

c2i λi > 0 (A.57)

which holds for all c ∈ R
n. Now, by choosing as c the columns of the identity In

matrix, the above inequality turns into λi > 0. Hence, all eigenvalues are positive.

113

A.1. Preliminaries on Vectors and Matrices Chapter A.

A.1.2.11 Triangular Matrices

Triangular matrices are very important matrices in linear algebra, because they allow
for efficient computations. A triangular matrix is a special kind of square matrix. A
square matrix is called lower triangular if all the entries above the main diagonal
are zero. Similarly, a square matrix is called upper triangular if all the entries below
the main diagonal are zero. A triangular matrix is one that is either lower triangular
or upper triangular. A matrix that is both upper and lower triangular is called a
diagonal matrix.
Properties of triangular matrices

• The sum of two upper (lower) triangular matrices is upper (lower) triangular.

• The product of two upper (lower) triangular matrices is upper (lower) trian-
gular.

• The inverse of an invertible upper (lower) triangular matrix is upper (lower)
triangular.

• The product of an upper (lower) triangular matrix by a constant is an upper
(lower) triangular matrix.

• A matrix A which is simultaneously triangular and normal (i.e., AAT = ATA)
is also diagonal.

• The transpose of an upper triangular matrix is a lower triangular matrix and
vice versa.

• The determinant of a triangular matrix equals the product of the diagonal en-
tries.

• The diagonal entries of a triangular matrix give the multiset of eigenvalues.

Proof of the above are exercises of the first tutorial.

A.1.2.12 QR decomposition

Theorem 4
If A =QR is the QR decomposition of matrix A then

|det(A)| = |
∏
i

rii |. (A.58)

Proof: First we prove that |det(Q)| = 1.

QQT = I⇒ det(Q)det(QT) = 1⇒ (det(Q))2 = 1⇒ |det(Q)| = 1. (A.59)

Hence, |det(A)| = |
∏
i rii |.

114

Chapter A. A.2. Scalar Products

A.2 Scalar Products
Definition 9
For a vector space V let β : V × V → R be a bilinear mapping (i.e., linear in both
arguments).

• β is called symmetric if β(x,y) = β(y,x) for all x,y ∈ V .

• β is called positive definite if for all x , 0: β(x,x) > 0. β(0,0) = 0.

• A positive definite, symmetric bilinear mapping β : V × V → R is called scalar
product/dot product/inner product on V . We typically write 〈x,y〉 instead of
β(x,y).

• The pair (V ,〈·, ·〉) is called Euclidean vector space or (real) vector space with
scalar product.

Example

• For V =Rn we define the standard scalar product 〈x,y〉 := x>y =
∑n
i=1xiyi .

• V = R2. If we define β(x,y) = 〈x,y〉 := x1y1 − (x1y2 + x2y1) + 2x2y2 then β is a
scalar product but different from the standard scalar product.

In a Euclidean vector space, the scalar product allows us to introduce concepts, such
as lengths, distances and orthogonality.

A.2.1 Lengths, Distances, Orthogonality

Definition 10 (Norm)
Consider a Euclidean vector space (V ,〈·, ·〉). Then ‖x‖ :=

√
〈x,x〉 is the length or norm

of x ∈ V . The mapping

‖ · ‖ : V →R (A.60)
x 7→ ‖x‖ (A.61)

is called norm.

Example (Lengths of Vectors)
In geometry, we are often interested in lengths of vectors. We can now use the scalar
product to compute them. For instance, in a Euclidean vector space with standard
scalar product, if x = [1,2]> then its norm/length is ‖x‖ =

√
12 +22 =

√
5

115

A.2. Scalar Products Chapter A.

Remark 24
The norm ‖ · ‖ possesses the following properties:

1. ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0⇔ x = 0

2. ‖λx‖ = |λ| · ‖x‖ for all x ∈ V and λ ∈R

3. Minkowski inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ V

Definition 11 (Distance and Metric)
Consider a Euclidean vector space (V ,〈·, ·〉). Then d(x,y) := ‖x−y‖ is called distance of
x,y ∈ V . The mapping

d : V ×V →R (A.62)
(x,y) 7→ d(x,y) (A.63)

is called metric.

A metric d satisfies:

1. d is positive definite, i.e., d(x,y) ≥ 0 for all x,y ∈ V and d(x,y) = 0⇔ x = y

2. d is symmetric, i.e., d(x,y) = d(y,x) for all x,y ∈ V .

3. Triangular inequality: d(x,z) ≤ d(x,y) + d(y,z).
Definition 12 (Orthogonality)
Vectors x and y are orthogonal if 〈x,y〉 = 0, and we write x ⊥ y

Theorem 5
Let (V ,〈·, ·〉) be a Euclidean vector space and x,y,z ∈ V . Then:

1. Cauchy-Schwarz inequality: |〈x,y〉| ≤ ‖x‖‖y‖

2. Minkowski inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

3. Triangular inequality: d(x,z) ≤ d(x,y) + d(y,z)

4. Parallelogram law: ‖x+ y‖+ ‖x − y‖ = 2‖x‖2 +2‖y‖2

5. 4〈x,y〉 = ‖x+ y‖2 − ‖x − y‖2

6. x ⊥ y⇔ ‖x+ y‖2 = ‖x‖2 + ‖y‖2

The Cauchy-Schwarz inequality allows us to define angles ω in Euclidean vector
spaces between two vectors x,y. Assume that x , 0,y , 0. Then

−1 ≤
〈x,y〉
‖x‖‖y‖

≤ 1 (A.64)

Therefore, there exists a unique ω ∈ [0,π) with

cosω =
〈x,y〉
‖x‖‖y‖

(A.65)

The number ω is the angle between x and y.

116

Chapter A. A.3. Useful Matrix Identities

A.2.2 Applications

Scalar products allow us to compute angles between vectors or distances. A ma-
jor purpose of scalar products is to determine whether vectors are orthogonal to
each other; in this case 〈x,y〉 = 0. This plays an important role for projections.
The scalar product also allows us to determine specific bases of vector (sub)spaces,
where each vector is orthogonal to all others (orthogonal bases) using the Gram-
Schmidt method. These bases are important optimization and numerical algorithms
for solving linear equation systems. For instance, Krylov subspace methods4, such
as Conjugate Gradients or GMRES, minimize residual errors that are orthogonal to
each other (Stoer and Burlirsch, 2002).
In machine learning, scalar products are important in the context of kernel meth-
ods (Schölkopf and Smola, 2002). Kernel methods exploit the fact that many linear
algorithms can be expressed purely by scalar product computations.5 Then, the
“kernel trick” allows us to compute these scalar products implicitly in a (potentially
infinite-dimensional) feature space, without even knowing this feature space ex-
plicitly. This allowed the “non-linearization” of many algorithms used in machine
learning, such as kernel-PCA (Schölkopf et al., 1998) for dimensionality reduction.
Gaussian processes (Rasmussen and Williams, 2006) also fall into the category of
kernel methods and are the current state-of-the-art in probabilistic regression (fit-
ting curves to data points).

A.3 Useful Matrix Identities

To avoid explicit inversion of a possibly singular matrix, we often employ the follow-
ing three identities:

(A−1 +B−1)−1 = A(A+B)−1B = B(A+B)−1A (A.66)

(Z +UWV >)−1 = Z−1 −Z−1U (W −1 +V >Z−1U)−1V >Z−1 (A.67)

(A+BC)−1 = A−1 −A−1B(I +CA−1B)−1CA−1 . (A.68)

The Searle identity in (A.66) is useful if the individual inverses of A and B do not
exist or if they are ill conditioned. The Woodbury identity in (A.67) can be used
to reduce the computational burden: If Z ∈ Rp×p is diagonal, the inverse Z−1 can
be computed in O(p). Consider the case where U ∈ Rp×q, W ∈ Rq×q, and V > ∈ Rq×p
with p� q. The inverse (Z +UWV >)−1 ∈ Rp×p would require O(p3) computations
(naively implemented). Using (A.67), the computational burden reduces to O(p)
for the inverse of the diagonal matrix Z plus O(q3) for the inverse of W and the
inverse of W −1 +V >Z−1U ∈ Rq×q. Therefore, the inversion of a p × p matrix can be
reduced to the inversion of q × q matrices, the inversion of a diagonal p × p matrix,
and some matrix multiplications, all of which require less than O(p3) computations.

4The basis for the Krylov subspace is derived from the Cayley-Hamilton theorem, which allows us
to compute the inverse of a matrix in terms of a linear combination of its powers.

5Matrix-vector multiplication Ax = b falls into this category since bi is a scalar product of the ith
row of A with x.

117

A.3. Useful Matrix Identities Chapter A.

The Kailath inverse in (A.68) is a special case of the Woodbury identity in (A.67)
with W = I . The Kailath inverse makes the inversion of A + BC numerically a bit
more stable if A+BC is ill-conditioned and A−1 exists.

118

Bibliography

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transac-
tions on Automatic Control, 19(6):716–723. pages 53

Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1997). Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection. IEEE Transactions on
pattern analysis and machine intelligence, 19(7):711–720. pages 2

Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific. pages 47

Bickson, D., Dolev, D., Shental, O., Siegel, P. H., and Wolf, J. K. (2007). Linear
Detection via Belief Propagation. In Proceedings of the Annual Allerton Conference
on Communication, Control, and Computing. pages 22

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer-Verlag. pages 1, 17, 18, 40

Bottou, L. (1998). Online Algorithms and Stochastic Approximations. In Online
Learning and Neural Networks, pages 1–34. Cambridge University Press. pages 46

Bryson, A. E. (1961). A Gradient Method for Optimizing Multi-stage Allocation
Processes. In Proceedings of the Harvard University Symposium on Digital Computers
and Their Applications. pages 33

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.
Data mining and knowledge discovery, 2(2):121–167. pages 2

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z.,
Ranzato, M. A., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012). Large Scale
Distributed Deep Networks. In Advances in Neural Information Processing Systems,
pages 1–11. pages 47

Deisenroth, M. P. and Mohamed, S. (2012). Expectation Propagation in Gaussian
Process Dynamical Systems. In Advances in Neural Information Processing Systems,
pages 2618–2626. pages 22

Deisenroth, M. P. and Ohlsson, H. (2011). A General Perspective on Gaussian Fil-
tering and Smoothing: Explaining Current and Deriving New Algorithms. In Pro-
ceedings of the American Control Conference. pages 13

119

Bibliography BIBLIOGRAPHY

Dreyfus, S. (1962). The Numerical Solution of Variational Problems. Journal of
Mathematical Analysis and Applications, 5(1):30–45. pages 33

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization. Journal of Machine Learning Research,
12:2121–2159. pages 47

Gal, Y., van der Wilk, M., and Rasmussen, C. E. (2014). Distributed Variational
Inference in Sparse Gaussian Process Regression and Latent Variable Models. In
Advances in Neural Information Processing Systems. pages 47

Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 4. JHU Press.
pages 1, 2, 64

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian Processes for Big
Data. In Nicholson, A. and Smyth, P., editors, Proceedings of the Conference on
Uncertainty in Artificial Intelligence. AUAI Press. pages 47

Herbrich, R., Minka, T., and Graepel, T. (2007). TrueSkill(TM): A Bayesian Skill
Rating System. In Advances in Neural Information Processing Systems, pages 569–
576. MIT Press. pages 21, 22

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic Variational
Inference. Journal of Machine Learning Research, 14(1):1303–1347. pages 47

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University
Press. pages 5

Jefferys, W. H. and Berger, J. O. (1992). Ockham’s Razor and Bayesian Analysis.
American Scientist, 80:64–72. pages 49

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME—Journal of Basic Engineering, 82(Series D):35–45. pages
13

Kelley, H. J. (1960). Gradient Theory of Optimal Flight Paths. Ars Journal,
30(10):947–954. pages 33

Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. Inter-
national Conference on Learning Representations, pages 1–13. pages 47

Kittler, J. and Föglein, J. (1984). Contextual Classification of Multispectral Pixel
Data. IMage and Vision Computing, 2(1):13–29. pages 22

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models. MIT Press. pages
21

Lin, C.-J. (2006). A guide to support vector machines. Department of Computer
Science & Information Engineering, National Taiwan University, Taiwan. pages 2

120

BIBLIOGRAPHY Bibliography

MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4:415–447.
pages 49

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK.
pages 49, 50

Maybeck, P. S. (1979). Stochastic Models, Estimation, and Control, volume 141 of
Mathematics in Science and Engineering. Academic Press, Inc. pages 29

McEliece, R. J., MacKay, D. J. C., and Cheng, J.-F. (1998). Turbo Decoding as an
Instance of Pearl’s “Belief Propagation” Algorithm. IEEE Journal on Selected Areas
in Communications, 16(2):140–152. pages 22

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-Level Control through Deep Reinforcement Learning.
Nature, 518:529–533. pages 47

Murphy, K. P. (2012). Machine Learning: A Proabilistic Perspective. MIT Press, Cam-
bridge, MA, USA. pages 11, 14, 16, 49, 51, 52

O’Hagan, A. (1991). Bayes-Hermite Quadrature. Journal of Statistical Planning and
Inference, 29:245–260. pages 52

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann. pages 21

Petersen, K. B. and Pedersen, M. S. (2012). The Matrix Cookbook. Version
20121115. pages 29

Rasmussen, C. E. and Ghahramani, Z. (2001). Occam’s Razor. In Advances in Neural
Information Processing Systems 13, pages 294–300. The MIT Press. pages 53

Rasmussen, C. E. and Ghahramani, Z. (2003). Bayesian Monte Carlo. In Becker, S.,
Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing
Systems 15, pages 489–496. The MIT Press, Cambridge, MA, USA. pages 52

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learn-
ing. Adaptive Computation and Machine Learning. The MIT Press, Cambridge,
MA, USA. pages 14, 117

Roweis, S. and Ghahramani, Z. (1999). A Unifying Review of Linear Gaussian Mod-
els. Neural Computation, 11(2):305–345. pages 14

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Representations
by Back-propagating Errors. Nature, 323(6088):533–536. pages 33, 45

121

Bibliography BIBLIOGRAPHY

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels—Support Vector Ma-
chines, Regularization, Optimization, and Beyond. Adaptive Computation and Ma-
chine Learning. The MIT Press, Cambridge, MA, USA. pages 117

Schölkopf, B., Smola, A. J., and Müller, K.-R. (1998). Nonlinear Component Analysis
as a Kernel Eigenvalue Problem. Neural Computation, 10(5):1299–1319. pages
117

Schwarz, G. E. (1978). Estimating the Dimension of a Model. Annals of Statistics,
6(2):461–464. pages 54

Shental, O., Bickson, D., P. H. Siegel and, J. K. W., and Dolev, D. (2008). Gaussian
Belief Propagatio Solver for Systems of Linear Equations. In IEEE International
Symposium on Information Theory. pages 22

Shor, N. Z. (1985). Minimization Methods for Non-differentiable Functions. Springer.
pages 47

Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2006). TextonBoost: Joint Ap-
pearance, Shape and Context Modeling for Mulit-Class Object Recognition and
Segmentation. In Proceedings of the European Conference on Computer Vision. pages
22

Spiegelhalter, D. and Smith, A. F. M. (1980). Bayes Factors and Choice Criteria for
Linear Models. Journal of the Royal Statistical Society B, 42(2):213–220. pages 49

Stoer, J. and Burlirsch, R. (2002). Introduction to Numerical Analysis. Springer. pages
52, 117

Sucar, L. E. and Gillies, D. F. (1994). Probabilistic Reasoning in High-Level Vision.
Image and Vision Computing, 12(1):42–60. pages 22

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tap-
pen, M., and Rother, C. (2008). A Comparative Study of Energy Minimization
Methods for Markov Random Fields with Smoothness-based Priors. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 30(6):1068–1080. pages 22

Tibshirani, R. (1996). Regression Selection and Shrinkage via the Lasso. Journal of
the Royal Statistical Society B, 58(1):267–288. pages 41

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic Principal Component Analysis.
Journal of the Royal Statistical Society: Series B, 61(3):611–622. pages 14

Toussaint, M. (2012). Some Notes on Gradient Descent. pages 45

Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal of cognitive
neuroscience, 3(1):71–86. pages 2

Vapnik, V. (2013). The nature of statistical learning theory. Springer Science &
Business Media. pages 91

122

	1 Linear Regression
	1.1 Problem Formulation
	1.2 Probabilities
	1.2.1 Means and Covariances
	1.2.1.1 Sum of Random Variables
	1.2.1.2 Affine Transformation

	1.2.2 Statistical Independence
	1.2.3 Basic Probability Distributions
	1.2.3.1 Uniform Distribution
	1.2.3.2 Bernoulli Distribution
	1.2.3.3 Binomial Distribution
	1.2.3.4 Beta Distribution
	1.2.3.5 Gaussian Distribution
	1.2.3.6 Gamma Distribution
	1.2.3.7 Wishart Distribution

	1.2.4 Conjugacy

	1.3 Probabilistic Graphical Models
	1.3.1 From Joint Distributions to Graphs
	1.3.2 From Graphs to Joint Distributions
	1.3.3 Further Reading

	1.4 Vector Calculus
	1.4.1 Partial Differentiation and Gradients
	1.4.1.1 Jacobian
	1.4.1.2 Linearization and Taylor Series

	1.4.2 Basic Rules of Partial Differentiation
	1.4.3 Useful Identities for Computing Gradients
	1.4.4 Chain Rule

	1.5 Parameter Estimation
	1.5.1 Maximum Likelihood Estimation
	1.5.1.1 Closed-Form Solution
	1.5.1.2 Iterative Solution
	1.5.1.3 Maximum Likelihood Estimation with Features
	1.5.1.4 Properties

	1.5.2 Overfitting
	1.5.3 Regularization
	1.5.4 Maximum-A-Posterior (MAP) Estimation
	1.5.4.1 MAP Estimation for Linear Regression

	1.6 Gradient Descent
	1.6.1 Stepsize
	1.6.2 Gradient Descent with Momentum
	1.6.3 Stochastic Gradient Descent
	1.6.4 Further Reading

	1.7 Model Selection and Cross Validation
	1.7.1 Cross-Validation to Assess the Generalization Performance
	1.7.2 Bayesian Model Selection
	1.7.3 Bayes Factors for Model Comparison
	1.7.4 Fully Bayesian Treatment
	1.7.5 Computing the Marginal Likelihood
	1.7.6 Further Reading

	1.8 Bayesian Linear Regression
	1.8.1 Model
	1.8.2 Parameter Posterior
	1.8.2.1 Linear Transformation of Gaussian Random Variables
	1.8.2.2 Completing the Squares

	1.8.3 Prediction and Inference
	1.8.3.1 Derivation

	2 Feature Extraction
	2.1 Decompositions
	2.1.1 Eigen-decomposition
	2.1.1.1 Symmetric Matrices

	2.1.2 QR decomposition
	2.1.2.1 Gram-Schmidt Process

	2.1.3 Singular Value Decomposition
	2.1.3.1 Thin SVD
	2.1.3.2 Dimensionality Reduction and SVD

	2.1.4 Principal Component Analysis
	2.1.4.1 Statistical Perspective
	2.1.4.2 Reconstruction Perspective
	2.1.4.3 Computing PCA
	2.1.4.4 Link between SVD and PCA

	2.1.5 Linear Discriminant Analysis
	2.1.5.1 The two class case
	2.1.5.2 Multi-class Case

	2.2 Computing Linear Discriminant Analysis
	2.2.1 Kernel PCA and Kernel LDA
	2.2.1.1 Maximum Likelihood for Probabilistic PCA

	3 Support Vector Machines
	3.1 Support Vector Classification
	3.1.1 Linear Separating Hyperplane with Maximal Margin
	3.1.1.1 Lagrangian Duality
	3.1.1.2 Conditions for Optimality (Karush-Kuhn-Tucker Conditions)
	3.1.1.3 SVM dual problem

	3.1.2 Mapping Data to Higher Dimensional Spaces
	3.1.3 The Dual Problem

	3.2 Support Vector Regression
	3.2.1 Linear Regression
	3.2.2 Support Vector Regression

	A
	A.1 Preliminaries on Vectors and Matrices
	A.1.1 Vectors and Vector Operators
	A.1.2 Matrices and Matrix Operators
	A.1.2.1 Matrix Norms
	A.1.2.2 Matrix Multiplications
	A.1.2.3 Matrix Transposition
	A.1.2.4 Trace Operator
	A.1.2.5 Matrix Determinant
	A.1.2.6 Matrix Inverse
	A.1.2.7 Matrix Pseudo-Inverse
	A.1.2.8 Range, Null Space and Rank of a matrix
	A.1.2.9 Eigenvalues and Eigenvectors
	A.1.2.10 Positive and Negative Definite Matrices
	A.1.2.11 Triangular Matrices
	A.1.2.12 QR decomposition

	A.2 Scalar Products
	A.2.1 Lengths, Distances, Orthogonality
	A.2.2 Applications

	A.3 Useful Matrix Identities

