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Lecture 13:

Data Modelling and Distributions
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Why data distributions?

 It is a well established fact that many naturally 
occurring data sets have values distributed normally.

 If we can find the correct distribution and the 
parameters we have a compact model that we can use 
for classification or prediction. 

 Distributions can also be used in mathematical proofs.
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Uniform Distributions

 Distributions are usually constructed to represent 
probability, so the area under them integrates to 1. 

 The numeric ranges of the data are set by the 
parameters:

 eg Uniform distribution:
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Other Distributions

 There are many other distributions offering different 
shapes of probability density function.

 The  distribution is one such with two shape 
parameters: (see http://mathworld.wolfram.com/)

Cumulative form
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The Multi-dimensional Gaussian distribution

 Multi-variate joint normal (Gaussian) distribution.

 where: 
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The Covariance Matrix

 The covariance matrix is symmetric with variances on 
the diagonal:

 Covariance is defined as follows:
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The covariance matrix

 Diagonal elements are individual variances, 

 Off diagonal elements are co-variances indicating 
data dependencies.

 Recall that we used the correlation coefficient as a 
dependency measure:
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2D Illustration of covariance
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Mahalanobis Distance

 Euclidian distance weights all dimensions (variables) 
equally, however, statistically they may not be the 
same:

 The Euclidian distance tells us that (x2-x1) = (y2-y1), 
however statistically (x2-x1) < (y2-y1).
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Mahalanobis Distance

 It is easy to see that for low (or zero) covariance we can 
can normalise the distances by dividing by the variance:

 In general the Mahalanobis distance between two points 
can be written as:
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Mahalanobis Distance

 The Mahalanobis distance also 
works for high co-variance.

 For the 2D case the inverse of the 
covariance matrix is:

  
 

-1 = 1/(xxyy  - xy
2) yy xy 

  xy xx 
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Likelihood and Probability

 Likelihood and Probability are dual concepts:

 Given a distribution we can work out the probability 
of a point.

 Given a set of data points we work out the likelihood 
of a distribution
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Probability
 Given a distribution we can calculate a 

probability,

 eg: What is the probability of finding an 
adder between 65 and 75 cm long? 
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Likelihood

 Given a data set we can ask: 
"How likely is a model"

The likelihood of a distribution is the product of the 
probability of each data point in the distribution - 
likelihood is not probability.
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Maximum Likelihood

 The maximum likelihood can be found for a given 
distribution by differentiating the likelihood function 
with respect to the parameters (eg mean and variance) 
and setting the result to zero. 

 For the Gaussian this produces the well known 
formulae for  and  which, when calculated from a 
data set define the maximum likelihood distribution 
given that data.
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Log Likelihood

 Computationally is is often more convenient to find the 
log likelihood (since the product will underflow for 
large data sets):

 The maximum likelihood distribution can also be 
found by maximising the log likelihood.
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Probability/Likelihood duality in BNs

 In Bayesian networks the Probability-Likelihood 
duality is shown in the conditional probability 
matrices
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Mixture Models

 Gaussian classifiers have class boundaries that are 
hyper-ellipsoids.  If the boundary is more complex we 
may need a mixture model.

A mixture of M Gaussians 
has pdf:

where 
M

 = 1
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Problems with Mixture Models

 Maximum likelihood estimates of single distributions 
can be calculated directly from the data. (mean and 
covariance).

 Mixture models are data dependent, and maximum 
likelihood estimates can only be found numerically. 
This means a large optimisation problem.
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If we knew which points 
belong to which class it 
would be easy to fit a mixture 
distribution. Using the 
standard formulae.

However this is rarely the 
case

Problems in estimating mixture models
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In general we don't know 
which points belong to 
which class, or even how 
many classes there are.

There may be many 
possible mixture models

Problems in estimating mixture models
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In general we don't know 
which points belong to 
which class, or even how 
many classes there are.

There may be many 
possible mixture models

Problems in estimating mixture models

The problems are normally addressed 
using the EM Algorithm
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The Expectation Maximisation (EM) Algorithm

 As before, let us define a mixture model as:

 where the individual distributions are all Gaussians. 
Our problem is to choose the parameters (j, j j) that 
maximise the log likelihood:

 Where there are N data points.
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The EM Algorithm - the E step

 The EM algorithm starts by choosing a mixture model 
at random.

 Suppose each point has a class label yi which indicates 
which component of the mixture model it belongs to.

 In the EM algorithm the yi values are unknown. They 
are estimated from the current mixture parameters.

 This is called the Expectation (E) step
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The EM Algorithm - The M step

 In the M step we take the current estimate of which 
point belongs to which class and use it to find the 
means and covariances of each class. 

 This can be done analytically.

 The E and M steps are repeated until convergence.
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Illustration of the EM Algorithm

The first step is to take a 
random guess at the class 
means and covariances.
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Illustration of the EM algorithm

The probability that each 
point belongs to each class 
is then found. The diagram 
illustrates the most likely 
class each point belongs 
to.

This is the expectation (E) 
step.
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The EM algorithm - the E step

 Given that the tth step estimate of the jth Gaussian in the 
mixture is written                        , we can calculate the 
probability that point xi belongs to class j as:

 We could allocate each point to its most probable class, 
but it is better to retain all the membership 
probabilities.
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The outcome of the E step

 The E step uses the values of P(xi  j) to create an 
expectation function. This in essence is an estimate of 
the log likelihood function from which we can 
calculate the maximum likelihood estimate of the 
parameters of the distributions in the mixture.

 The maximum likelihood estimates can be found 
analytically.
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Calculating the M step

 The M step makes the maximum likelihood extimate 
using the following formulae:
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Illustration of the EM algorithm

The class means and 
covariances are calculated 
using the probabilities of class 
membership to weight the 
formulae

This is the maximisation (M) 
step



Intelligent Data Analysis and Probabilistic Inference Lecture 13 Slide No              32

Illustration of the EM Algorithm

We carry out the E step again. 
The probabilities of class 
membership for each point are 
updated.
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Illustration of the EM Algorithm

The M step is then repeated, 
and the process continues.
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Illustration of the EM algorithm

The membership probabilities 
begin to converge
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Illustration of the EM Algorithm

Finally the algorithm has 
converged to a stable state and 
terminates.
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Overfitting

 If our classifier is trained on a small data set it is 
inadvisable to build too complex a classification 
boundary
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Overfitting

 If our classifier is trained on a small data set it is 
inadvisable to build too complex a classification 
boundary

More data in favour of a loose 
boundary implies overfitting
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Overfitting

 If our classifier is trained on a small data set it is 
inadvisable to build too complex a classification 
boundary

More data in favour of a loose 
boundary implies overfitting
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Overfitting

 If our classifier is trained on a small data set it is 
inadvisable to build too complex a classification 
boundary

More data in favour of a loose 
boundary implies overfitting

More data could favour the mixture
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Bias

 Parameters of a distribution are normally computed 
from a data set.

 The difference between a true mean and an estimated 
mean is termed bias.
 

Maximum Likelihood estimate  
made from unrepresentative data 

Bias   

True distribution 
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Regression Models

 In most of our classification examples the state of a 
hypothesis variable Y is predicted by a set of random 
variables X = {X1,X2, .  . Xn}

 Regression models estimate a numeric value for Y 
from the values of discrete or continuous variables.

 eg Y ~ N(B0 + B.X, 2) - linear regression model

 we can write this as Y ~ N(E(Y|X), 2) 
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Regression Models 

 The regression model need not be linear, it can be any 
function of X.

 Higher order models may fit the data better: Consider:
 Linear E(Y|X) = B0 + B1X

 Quadratic E(Y|X) = B0 + B1X + B2X2

 Cubic E(Y|X) = B0 + B1X + B2X2 + B3X3

 The higher order models encapsulate the lower order 
models, and therefore fit the data better.

 However higher order models are susceptible to 
overfitting if the data is not sufficiently 
representative.
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Prediction Error

 Suppose we use an estimation method to calculate the 
parameters of a regression model B = {B0, B1, . . . Bn}

 we write Y = f(X|T) where T is the training data set.

 We can distinguish two types of error, if the correct 
estimate of Y = f(X) then we can define the reducible 
prediction error as:

 (f(X) - f(X|T))2
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Irreducible Error

 The reducible part of the error is only reducible by 
finding a better model. (or more representative data)

 There is also irreducible error which is caused by the 
natural variation in y.

 Irreducible error = E[(y-f(X))2]

  where E stands for the expected value (mean), and 
f(X) is (as before) the true estimate of y.

 Nothing can be done about irreducible error
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Reducible Error

 We can further divide the reducible error to:

 (f(X) - E[f(X|T)])2 - The error due to bias

 and

 E[(f(X|T) - E[f(X|T)])2] - The error due to variance

 where E[f(X|T)] is the mean over the training set
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Trade off between bias and variance

 Statistically it turns out that there is a trade off 
between bias and variance:

 Low order models (eg linear) tend to be biased

 High order models have greater variance.

 For large training sets variance tends to decrease for a 
fixed bias, hence higher order models may be more 
appropriate.
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Bias and variance in re-sampling

As noted previously, Bagging and Boosting are both 
found to reduce the variance component of 
prediction error in simulation studies.

Boosting is also claimed to reduce bias, though the 
degree to which this happens is highly data 
dependent.
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