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Lecture 2: Projection and Transformation 
 
3-Dimensional Objects Bounded by Planar Surfaces (Facets) 
A planar facet is defined by an ordered set of 3D vertices, lying on one plane, which form a closed 
polygon, (straight lines are drawn from each vertex to the following one with the last vertex 
connected to the first). The data describing a facet are of two types. First, there is the numerical 
data which is a list of 3D points, (3*N numbers for N points), and secondly, there is the topological 
data which describes which points are connected to form edges of the facet.  
 
Projections of Wire-Frame Models 
Since our display device is only 2D, we have to define a transformation from the 3D space to the 
2D surface of the display device. This transformation is called a projection. In general, projections 
transform an n-dimensional vector space into an m-dimensional vector space where m<n.  
Projection of a 3D object onto a 2D surface is done by selecting first the projection surface and 
then defining projectors or lines 
which are passed through each 
vertex of the object. The 
arrangement is shown in Diagram 
2.1. The projected vertices are 
placed where the projectors intersect 
the projection surface. The most 
common (and simplest) projections 
used for viewing 3D scenes use 
planes for the projection surface and 
straight lines for projectors. These 
are called planar geometric 
projections.  
 
The simplest form of viewing an object is by drawing all its projected edges. This is called a wire-
frame representation, since the object could be modelled in three dimensions using wires for the 
edges of the object. Note that for such viewing the topological information for the facets is not 
required. 
 
There are two common classes of planar geometric projections. Parallel projections use parallel 
projectors, perspective projections use projectors which pass through one single point called the 
viewpoint. In order to minimise confusion in dealing with a general projection problem, we can 
standardise the plane of projection by making it always parallel to the z=0 plane, (the plane which 
contains the x and y axis). This does not limit the generality of our discussion because if the 
projection plane of the actual scene is not parallel to the z=0 plane then we can use coordinate 
transformations in 3D and make the projection plane parallel to the z=0 plane. We shall restrict the 
viewed objects to be in the positive half space (z>0), therefore the projectors starting at the vertices 
will always run in the negative z direction. 
 
Parallel Projections 
If the direction of a projector is given by vector d=[dx, dy, dz], and it passes through the vertex 
V=[Vx, Vy, Vz] it may be expressed by the parametric line equation: 
 P  =  V  + µd 
In orthographic  projection the projectors are perpendicular to the projection plane, which we 
define as z=0. In this case the projectors are in the direction of the z axis and: 
 d = [0,0,-1]  
and so Px = Vx  
and Py = Vy 
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Diagram 2.1 
Planar projection 
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which means that the x and y 
co-ordinates of the projected 
vertex is equal to the x and y 
co-ordinates of the vertex 
itself and no calculations are 
necessary. A cube drawn in 
orthographic projection is 
shown in Diagram 2.2.  
 
If the projectors are not 
perpendicular to the plane of 
projection then the projection is called oblique. The projected vertex intersects the z=0 plane where 
the z component of the P vector is equal to zero, therefore: 
 Pz = 0 = Vz + µ dz 

so µ = - Vz/ dz 
and we can use this value of µ to compute: 
 Px = Vx + µ dx  =  Vx - dxVz/ dz 
and Py = Vy + µ dy  =   Vy - dyVz/ dz 
 
These projections are similar to the orthographic projection with one or other of the dimensions 
scaled. They are not often used in practice. 
 
Perspective Projections 
In perspective projection, all the rays pass 
through one point in space, the centre of 
projection, which we will designate with 
the capital letter C, as shown in Diagram 
2.5. If the centre of projection is behind the 
plane of projection then the orientation of 
the image is the same as the image. By 
contrast, in a pin hole camera it is inverted. 
To calculate perspective projections we 
adopt a canonical form in which the centre 
of projection is at the origin, and the 
projection plane is placed at a constant z 
value, z=f. The projection of a 3D point 
onto the z=f plane is calculated as follows. 
If the centre of projection is at the origin, 
and we are projecting the point V then the projector has equation:   
 P = µV 
Since the projection plane has equation z=f, it follows that:    
 f = µ Vz 
If we write µp = f/ Vz for the intersection point on the plane of projection then: 
thus  
 Px = µp Vx = f* Vx/ Vz  
and Py = µp Vy = f* Vy / Vz 
 
The factor µp is called the foreshortening factor, because the further away an object is, the larger 
Vz and the smaller is its image. The perspective projection of a cube is shown in Diagram 2.4.  
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Diagram 2.3: Canonical form for Perspective projection 
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The introduction of 
canonical forms for 
perspective and orthographic 
projection simplifies their 
computation. However it 
means that we must be able 
to transform a scene, which 
could be defined in any 3D 
coordinate system, such that 
the view direction is along 
the z axis and (for 
perspective projection) the viewpoint is at the origin. In general we would like to change the 
coordinates of every point in the scene, such that some chosen viewpoint C = [Cx,Cy,Cz] is the 
origin and some view direction d = [dx,dy,dz] is the Z axis. Frequently, we may want to transform 
the points of a graphical scene for other purposes such as generation of special effects in pictures, 
like rotating objects. Transformations of this kind are achieved by multiplying every point of the 
scene by a transformation matrix. Unfortunately however, we cannot perform a general translation 
using normal Cartesian coordinates, and for that reason we now introduce a system called 
homogeneous coordinates.  Three dimensional points expressed in homogeneous form have a 
fourth ordinate: 
 P = [px, py, pz,s] 
The fourth ordinate is a scale factor, and conversion to Cartesian form is achieved by dividing it 
into the other ordinates, so  

[px, py, pz,s]     has Cartesian coordinate equivalent    [px/s, py/s, pz/s].  
In most cases, s will be 1. The point of introducing homogenous coordinates is to allow us to 

translate the points of a scene by using matrix multiplication. 
The matrix for scaling a graphical scene is also easily expressed in homogenous form: 

 
 
Notice that these two 
transformations are not 
commutative, and it is 
essential that they are 
carried out in the 
correct order. Diagram 
2.5 illustrates the 
problem for a simple 
picture.  
 
 

[x, y, z, 1] sx 0 0 0   = [sx*x, sy*y, sz*z, 1]
0 sy 0 0
0 0 sz 0
0 0 0 1
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Diagram 2.5: The order in which transformations are applied is significant 

[ x, y, z, 1] 1 0 0 0 = [x+tx, y+ty, z+tz, 1 ]
0 1 0 0
0 0 1 0
tx ty tz 1
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Rotation has to be treated differently since we need to specify an axis. The matrices for rotation 
about the three Cartesian axes are: 

 
 
Some care is required with the signs. The above formulation obeys the conventions of a left hand 
axis system. That is, if the positive y-axis is taken as vertical, and the positive x-axis horizontal to 
the right, the positive z-axis is into the page. In these cases, rotation is in a clockwise direction 
when viewed from the positive side of the axis, or vice versa, anti-clockwise when viewed from 
the negative side of the axis. The derivation of the RRzz matrix is shown in Diagram 2.6 the others 
may be proved similarly.  

Inversions of these matrices can be computed easily, without recourse to Gaussean elimination, by 
considering the meaning of each transformation. For scaling, we substitute 1/sx for sx, 1/ sy for sy 
and 1/ sz for sz to invert the scaling. For translation we substitute -tx for tx, - ty for ty and - tz for tz. 
For the rotation matrices we note that: 
 Cos(-θ) = Cos(θ) and Sin(-θ) = -Sin(θ) 
Hence to invert the matrix we simply change the sign of the Sin terms. 
 
 

RRxx = 1 0 0 0 RRyy = Cos(θ) 0 -Sin(θ) 0
0 Cos(θ) Sin(θ) 0 0 1 0 0
0 -Sin(θ) Cos(θ) 0 Sin(θ) 0 Cos(θ) 0
0 0 0 1 0 0 0 1

RRz = Cos(θ) Sin(θ) 0 0
-Sin(θ) Cos(θ) 0 0

0 0 1 0
0 0 0 1

 

Diagram 2.6: Derivation of the Rotation Matrix 
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[X,Y] = [r Cosφ, r Sinφ] 
[X',Y'] = [ r Cos(θ+φ) , r Sin(θ+φ) ] 

= [ r Cosφ Cosθ - rSinφ Sinθ,  rSinφCosθ +  rCosφSinθ ]
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