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Lecture 4: Algorithms for 3D volumes 
In building graphical scenes from a number of sub-objects, it is frequently necessary to discover 
how one object interferes with another. We may wish to do this to remove hidden lines from parts 
of a wireframe representation, or alternatively we may wish simply to check for collisions between 
objects, which, in the design of chemical plant piping for example, would indicate errors in the 
design. This study normally involves two fundamental tests: containment, which checks to see if a 
point is inside an object and clipping, which determines where a line (or polygon) intersects an 
object. 
 
Containment within a convex 
volume 
A simple definition of a convex 
volume is one where the line joining 
any two points on the surface is 
completely contained within the 
volume. An object produced by the 
intersection of infinite planes is always 
convex.  The convexity of an object 
bounded by planar facets can be tested 
by the following simple algorithm (see 
Diagram 4.1):  
 
convex:=true;  
for each planar facet do 
begin 
{ find the functional equation of the facet plane f(x,y,z)=0 } 
for all other vertices not belonging to this facet do 

if sign(f(xi,yi,zi))<>sign(previous vertex) 
then  convex:=false; 

end 
 
This is not a particularly efficient 
algorithm but it works for all cases. 
For convex objects there is an easy 
test to determine whether a point P 
is contained within that volume. 
Consider a line drawn from the 
point under test to any point on any 
surface of the convex volume as 
shown in Diagram 4.2. If the point 
is inside the volume then the angle 
made by the line to the surface 
inward normal is always acute (or zero).  
 
 n.(P - A) >= 0               
A is a point on the surface, n is the inner 
normal of the surface. As shown in Diagram 
4.3, we do not necessarily know the direction 
of the surface normal. To find the normal to 
any surface we take the cross product of two 
edges, and to determine its sign we test it with 
a vertex of an adjoining surface as shown in 

 

Plane Equation F(x,y,z) = 0 
(a x + b y + c z + d = 0) 

For all points in 
this halfspace 
F(xi,yi,zi) <0 

Diagram 4.1 
Planes and Halfspaces

For all points in 
this halfspace 
F(xi,yi,zi) >0 
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Diagram 4.2 Containment within 
a convex object 
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Diagram 4.3 
Which normal points inwards? 
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Diagram 4.4. The inner surface normal is a useful quantity to store in the data structure describing 
the object. 
 

 
 
Clipping to a convex volume (Cyrus Beck Algorithm) 
 
This algorithm is a simple extension of the containment algorithm given above. Given a line 
joining P1 and P2  and a convex volume, we wish to find the part of that line that lies completely 
within the volume as shown in Diagram 4.5.  For each surface, we take a point A on the surface, 
which could simply be one of the vertices, and examine the signs of: 
 n.(P1 - A) and n.(P2 - A) 
where n is is the inner surface normal. The following cases are possible: 
 
Both signs -ve or zero: The line is completely outside the body and the algorithm terminates 

returning null. 
Both signs +ve or zero: The line could be inside the body, but it is not clipped by this plane.  
Both signs zero: The line lies on the plane. Depending on the desired result, either finish or 

proceed to the next surface. 
One sign negative, one sign positive:  

Find the intersection of the line and the plane by solving:   
n.(µP2 + (1-µ)P1 - A) = 0. 
Replace the point that yielded the negative sign by the intersection point. 
When all surfaces have been considered, the remaining line span is the 
required result. 

 
Containment within a non-convex volume 
If the volume is concave, the best test for 
containment is the piercing test. We take a ray, 
for simplicity parallel to one of the axes, and 
count the number of intersections it makes 
leaving the body. If that is odd, the point is 
contained, if even then it is outside. (Diagram 
4.6) 
 
Suppose the point under test is: P1 = [x1,y1,z1] 
and we choose: P2 = 
[x1+1,y1,z1] 
then the line: µP2 + (1-µ)P1  is a ray parallel to 
the x axis. 

 

2 Faces of a 
Convex Object 
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 if n•(B-A) > 0 then n is 
the inner surface normal 

Diagram 4.4: Checking for the inner surface normal

 

Given a line segment P1 to P2 
determine the part of the line  
inside a convex object,  
ie P3 to P4 
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Diagram 4.5: Clipping to a convex volume 

 

Diagram 4.6 
The Ray Intersection test 

A ray is projected in any direction. 
 
If the number of intersections with the 
object is odd, then the test  point is inside 

Test 
point
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We test this ray against the plane of each surface of the body, finding the intersection between the 
plane containing the face and the ray. This calculation is very simple for the ray parallel to the x 
direction since the y and z components in the equations are known constants. If the intersection 
point is such that µ<0 we ignore it since we are only interested in intersections in one direction 
which we choose to be positive µ.  
 
If the intersection point does 
have a positive µ, then we do a 
further test to find if it is 
contained within the edges 
bounding that face. This is 
essentially a two dimensional 
containment test and it is done 
by the same method. This time 
however, we need to choose a 
ray that lies on the plane. One 
simple way of doing that is to 
take a point on the boundary, 
for example midway between two vertices Pb = (Vj+Vk)/2 (see Diagram 4.7). This gives us a line 
equation: 
 P = Pi + µ(Pb-Pi) 
each line of the face has equation 
 P= Vi + ν(Vj-Vi) 
and we solve for the intersection point values of µ and ν. Note that we have a redundant system of 
equations (3 equations and two unknowns) since the plane of the face is not the x-y plane. In 
practice we the problem can be solved  in orthographic projection but we may need to choose the 
correct pair of variables. If at the solution point µ>0 and 0<=ν<1 we add 1 to the intersection 
count. Note that there is a problem when the intersection goes through a vertex as to how many 
intersections are calculated. When all lines have been tested, if the count is even then the point is 
contained in this polygon, and we add one to our 3D count of intersections. 
 
Clipping to a Concave Volume 
Clipping can be easily achieved by the same basic methods used for the containment test. We need 
to find every intersection of the line to be clipped with the volume. Thus the line to be clipped is 
intersected with the plane of each face, and a valid intersection is recorded if the intersection found 
is between the end points of the line and within the polygon bounding the face.  This process 
divides the line into one or more segments. Now it follows that the segments on the line alternate 
between being inside and outside the concave volume. If we test a point on the first segment for 
containment, we can then deduce which parts of the line are inside and which are outside, and we 
can clip the line accodringly. 
 
Breaking a Concave volumes into several Convex Volumes 
Algorithms for concave objects are in general difficult, and contain many exceptional cases which 
need to be dealt with separately. Thus, it is often simpler to break a concave object into a set of 
convex ones, and perform a simpler algorithm on each of the resultant parts. 
 
To do this we need to consider the plane of each face in turn. Now if n is the normal vector of that 
plane we know that the sign of  n.(P - A) will determine which side of the plane the point P lies. 
We therefore test each vertex of the polyhedron. If they all have the same sign, or are zero, then 
the polyhedron is convex with respect to that plane as shown in figure 4.8. If not we break the 
object into convex parts. 
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Diagram 4.7 
Containment in 2D 
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The first step is to determine how 
many sub-objects the original object 
has been divided into. This can be 
done by checking the connectivity of 
the vertices. For each connected set of 
vertices on one side of the cutting 
plane, it is then necessary to find all 
the edges that project from them that 
intersect with the cutting plane. 
Finally, it is necessary to determine 
how these points are arranged to form 
the closed polygon(s) on the cutting 
plane which will be bounding face(s) 
of the sub-object.  
 
Use can be made of the fact that the 
new boundaries found will be the same 
for objects on both sides of the cutting 
plane. Once an object has been divided 
into two or more sub-objects the 
algorithm is re-entered with those sub-
objects, and proceeds until all sub-
objects are found to be convex. The 
implementation details are complex, 
and depend strongly on the data 
structure chosen to represent the 
object. 

 

 

If all the object vertices lie on one 
side of the plane of of a face, we 
proceed to the next face 

Diagram 4.8: Testing the faces of a concave volume
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Repeat on all concave sub parts


