

DOC Interactive Computer Graphics, Lecture 4 Page: 1

Lecture 4: Algorithms for 3D volumes
In building graphical scenes from a number of sub-objects, it is frequently necessary to discover
how one object interferes with another. We may wish to do this to remove hidden lines from parts
of a wireframe representation, or alternatively we may wish simply to check for collisions between
objects, which, in the design of chemical plant piping for example, would indicate errors in the
design. This study normally involves two fundamental tests: containment, which checks to see if a
point is inside an object and clipping, which determines where a line (or polygon) intersects an
object.

Containment within a convex
volume
A simple definition of a convex
volume is one where the line joining
any two points on the surface is
completely contained within the
volume. An object produced by the
intersection of infinite planes is always
convex. The convexity of an object
bounded by planar facets can be tested
by the following simple algorithm (see
Diagram 4.1):

convex:=true;
for each planar facet do
begin
{ find the functional equation of the facet plane f(x,y,z)=0 }
for all other vertices not belonging to this facet do

if sign(f(xi,yi,zi))<>sign(previous vertex)
then convex:=false;

end

This is not a particularly efficient
algorithm but it works for all cases.
For convex objects there is an easy
test to determine whether a point P
is contained within that volume.
Consider a line drawn from the
point under test to any point on any
surface of the convex volume as
shown in Diagram 4.2. If the point
is inside the volume then the angle
made by the line to the surface
inward normal is always acute (or zero).

 n.(P - A) >= 0
A is a point on the surface, n is the inner
normal of the surface. As shown in Diagram
4.3, we do not necessarily know the direction
of the surface normal. To find the normal to
any surface we take the cross product of two
edges, and to determine its sign we test it with
a vertex of an adjoining surface as shown in

Plane Equation F(x,y,z) = 0
(a x + b y + c z + d = 0)

For all points in
this halfspace
F(xi,yi,zi) <0

Diagram 4.1
Planes and Halfspaces

For all points in
this halfspace
F(xi,yi,zi) >0

n

P

(P-A)θ

One face of a
convex object

Inner
Normal

Point being
tested

Origin

Diagram 4.2 Containment within
a convex object

A

Contained of θ is acute
ie Cos(θ) is positive
or n.(P-A) is positive
n.(P-A) = |n||P-A|Cos(θ)

e2

e1

e2 x e1

e2

e1

e1 x e2

Diagram 4.3
Which normal points inwards?

DOC Interactive Computer Graphics, Lecture 4 Page: 2

Diagram 4.4. The inner surface normal is a useful quantity to store in the data structure describing
the object.

Clipping to a convex volume (Cyrus Beck Algorithm)

This algorithm is a simple extension of the containment algorithm given above. Given a line
joining P1 and P2 and a convex volume, we wish to find the part of that line that lies completely
within the volume as shown in Diagram 4.5. For each surface, we take a point A on the surface,
which could simply be one of the vertices, and examine the signs of:
 n.(P1 - A) and n.(P2 - A)
where n is is the inner surface normal. The following cases are possible:

Both signs -ve or zero: The line is completely outside the body and the algorithm terminates

returning null.
Both signs +ve or zero: The line could be inside the body, but it is not clipped by this plane.
Both signs zero: The line lies on the plane. Depending on the desired result, either finish or

proceed to the next surface.
One sign negative, one sign positive:

Find the intersection of the line and the plane by solving:
n.(µP2 + (1-µ)P1 - A) = 0.
Replace the point that yielded the negative sign by the intersection point.
When all surfaces have been considered, the remaining line span is the
required result.

Containment within a non-convex volume
If the volume is concave, the best test for
containment is the piercing test. We take a ray,
for simplicity parallel to one of the axes, and
count the number of intersections it makes
leaving the body. If that is odd, the point is
contained, if even then it is outside. (Diagram
4.6)

Suppose the point under test is: P1 = [x1,y1,z1]
and we choose: P2 =
[x1+1,y1,z1]
then the line: µP2 + (1-µ)P1 is a ray parallel to
the x axis.

2 Faces of a
Convex Object

Origin

A

B

n

(B-A)

 if n•(B-A) > 0 then n is
the inner surface normal

Diagram 4.4: Checking for the inner surface normal

Given a line segment P1 to P2
determine the part of the line
inside a convex object,
ie P3 to P4

P1

P2

P3

P4

Diagram 4.5: Clipping to a convex volume

Diagram 4.6
The Ray Intersection test

A ray is projected in any direction.

If the number of intersections with the
object is odd, then the test point is inside

Test
point

DOC Interactive Computer Graphics, Lecture 4 Page: 3

We test this ray against the plane of each surface of the body, finding the intersection between the
plane containing the face and the ray. This calculation is very simple for the ray parallel to the x
direction since the y and z components in the equations are known constants. If the intersection
point is such that µ<0 we ignore it since we are only interested in intersections in one direction
which we choose to be positive µ.

If the intersection point does
have a positive µ, then we do a
further test to find if it is
contained within the edges
bounding that face. This is
essentially a two dimensional
containment test and it is done
by the same method. This time
however, we need to choose a
ray that lies on the plane. One
simple way of doing that is to
take a point on the boundary,
for example midway between two vertices Pb = (Vj+Vk)/2 (see Diagram 4.7). This gives us a line
equation:
 P = Pi + µ(Pb-Pi)
each line of the face has equation
 P= Vi + ν(Vj-Vi)
and we solve for the intersection point values of µ and ν. Note that we have a redundant system of
equations (3 equations and two unknowns) since the plane of the face is not the x-y plane. In
practice we the problem can be solved in orthographic projection but we may need to choose the
correct pair of variables. If at the solution point µ>0 and 0<=ν<1 we add 1 to the intersection
count. Note that there is a problem when the intersection goes through a vertex as to how many
intersections are calculated. When all lines have been tested, if the count is even then the point is
contained in this polygon, and we add one to our 3D count of intersections.

Clipping to a Concave Volume
Clipping can be easily achieved by the same basic methods used for the containment test. We need
to find every intersection of the line to be clipped with the volume. Thus the line to be clipped is
intersected with the plane of each face, and a valid intersection is recorded if the intersection found
is between the end points of the line and within the polygon bounding the face. This process
divides the line into one or more segments. Now it follows that the segments on the line alternate
between being inside and outside the concave volume. If we test a point on the first segment for
containment, we can then deduce which parts of the line are inside and which are outside, and we
can clip the line accodringly.

Breaking a Concave volumes into several Convex Volumes
Algorithms for concave objects are in general difficult, and contain many exceptional cases which
need to be dealt with separately. Thus, it is often simpler to break a concave object into a set of
convex ones, and perform a simpler algorithm on each of the resultant parts.

To do this we need to consider the plane of each face in turn. Now if n is the normal vector of that
plane we know that the sign of n.(P - A) will determine which side of the plane the point P lies.
We therefore test each vertex of the polyhedron. If they all have the same sign, or are zero, then
the polyhedron is convex with respect to that plane as shown in figure 4.8. If not we break the
object into convex parts.

Vi

Vj

Vk

Vl

Vm

Pi

Pa

Pb

Ray, Pi + µ(Pb-Pi)

Diagram 4.7
Containment in 2D

DOC Interactive Computer Graphics, Lecture 4 Page: 4

The first step is to determine how
many sub-objects the original object
has been divided into. This can be
done by checking the connectivity of
the vertices. For each connected set of
vertices on one side of the cutting
plane, it is then necessary to find all
the edges that project from them that
intersect with the cutting plane.
Finally, it is necessary to determine
how these points are arranged to form
the closed polygon(s) on the cutting
plane which will be bounding face(s)
of the sub-object.

Use can be made of the fact that the
new boundaries found will be the same
for objects on both sides of the cutting
plane. Once an object has been divided
into two or more sub-objects the
algorithm is re-entered with those sub-
objects, and proceeds until all sub-
objects are found to be convex. The
implementation details are complex,
and depend strongly on the data
structure chosen to represent the
object.

If all the object vertices lie on one
side of the plane of of a face, we
proceed to the next face

Diagram 4.8: Testing the faces of a concave volume

New Face

Split Face

New Face

Split Face

Repeat on all concave sub parts

