
Lecture 6: Polygon rendering and OpenGL

3-Dimensional Objects Bounded by Planar Surfaces (Facets)
A planar facet is defined by an
ordered set of 3D vertices, lying on
one plane, which form a closed
polygon, (straight lines are drawn
from each vertex to the following
one with the last vertex connected
to the first). The data describing a
facet are of two types. First, there
is the numerical data which is a list
of 3D points, (3*N numbers for N
points), and secondly, there is the

topological data which describes which points are connected to form edges of the facet. For the cube
shown in Diagram 1 we need 24 real numbers for the numerical data, 24 integers to store the line
topology, and 24 integers to store the face topology. We will also need to maintain the number of
lines and faces in the figure, and the number of edges per face. All this could be done using static
structures (arrays), alternatively, if we start with abstract data types that express the structure of three
dimensional objects, we may define the following data types (Diagram 2):

ordinate=x,y,z;
Point = array[ordinate] of real;
Edge = record
 start, finish: Point;
 end ;
Edgelist = record
 thisedge: Edge ;
 nextedge: ^Edgelist;
 end ;
Facetlist = record
 thisfacet: ^Edgelist;
 nextfacet:^Facetlist;
 end ;
Object=^Facetlist;

It should be noted that redundancy exists in this case, since edges which belong to two facets are
duplicated, and vertices which belong to three edges appear three times. However, when a large
number of objects are processed, redundancy of data may help the speed. Later on in this lecture we
will see other examples where this is true.

What is OpenGL?
OpenGL is a software library which creates an interface to graphics hardware. The OpenGL library
provides an interface to the graphics hardware at the lowest level. Many graphics applications or
graphics packages provide an interface to the graphics hardware at a much higher level and are
built on top of OpenGL. Examples are packages such as OpenInventor or VTK. OpenGL is not a

P1
P2 P3

P2
P4
P3 Face 1

Face 2

Face 3

&c.

&c.

P4
P1

Object

&c.

Edge 1 Edge 2 Edge 3 Edge 4

Diagram 2
Possible Organisation for

Graphical Data

Y

X

Z

1 2

3 4

5 6

7 8

Diagram 1: Representing 3D objects

NUMERICAL
DATA

TOPOLOGICAL DATA

Points Lines Faces
1. [0,0,0] 1. 1>>2 1,2,4,4
2. [2,0,0] 2. 1>>4 1,4,8,5
3. [2,2,0] 3. 1>>5 &c
4. [0,2,0] 4. 3>>4

&c 5. 3>>2
 &c

general purpose graphics system. Instead, OpenGL is a polygon-based rendering system which
supports a small number of geometric primitives for creating models: points, lines and polygons.

Application or high-level graphics library

Graphics hardware

OpenGL Utility Library (GLU)

OpenGL Utility Toolkit (GLUT)

OpenGL Library (GL)

OpenGL Extension
(GLX, WGL)

Figure 1: Overview of the OpenGL API

OpenGL is hardware and operating system independent. It is up to the underlying implementation
of the OpenGL system to decide how to implement the OpenGL functionality. On some platforms,
the implementation may use accelerated hardware for rendering while on other platforms the
implementation may use only software for rendering. OpenGL is available for operating systems
like Windows 98/NT, Linux and Unix and for a wide variety of programming languages such as C,
C++, Ada, Fortran and Java.

The functionality of the OpenGL library is extended by a number of related libraries: The OpenGL
utility library (GLU) contains several convenience routines which are implemented in terms of
lower-level OpenGL commands. These include routines for setting up viewing transformations.
The OpenGL Utility Toolkit (GLUT), a window system independent toolkit for writing OpenGL
programs, implements a simple windowing application programming interface for OpenGL. GLUT
makes it considerably easier to learn about and to explore OpenGL programming. In addition it
provides a portable application programming interface (API) which facilitates writing a single
OpenGL program that works on window systems such as Microsoft Windows and X Window
System environments. Finally, each window system has a specific library that extends OpenGL
functionality on that platform. For the X Window System, the OpenGL extension is called GLX.
For Microsoft Windows, the OpenGL extension is called WGL.

OpenGL Command Syntax
All OpenGL commands use the prefix gl before the command name. Similarly, the OpenGL related
libraries GLU and GLUT use the prefix glu and glut before the command name. For example, to
define a vertex at position (1.0, 2.0, 0) the OpenGL command is:

glVertex3f(1.0, 2.0, 0.0);

In addition, the suffix 3f after the command name specifies the number of arguments and their type.
In the example above, the last letter indicates the data type of the arguments (float in this case),
while the preceding number indicates the number of arguments expected (3 in this case). Other

possible data types include bytes (suffix b), short integers (suffix s), long integers (suffix i), and
doubles (suffix d). Most OpenGL arguments are available for different number and types of
arguments. For example, the effect of the command

glVertex2i(1, 2);

is equivalent to the command above, except that it expects only two arguments whose type is int.

OpenGL State Machine
OpenGL is a state machine. OpenGL can be put into various states (or modes) that remain in effect
until they are changed. The state encapsulates control for operations like transformations,
rendering, lighting, shading and texture mapping. For example color is a state variable. By setting
the color to red with command

glColor3f(1.0, 0.0, 0.0);

the state of the variable color is set to red and all objects are drawn in this color until the current
color is set to another color. Many other state variables can be enabled with the commands
glEnable() and glDisable().

OpenGL Rendering Pipeline
In OpenGL the different processing stages define the OpenGL rendering pipeline (shown in Figure
2). At the beginning of this pipeline are either vertex data (describing points, lines, and polygons)
or pixel data (bitmaps, pixmaps). The rendering pipeline is slightly different for vertex and pixel
data. In the following, the rendering pipeline for vertex data is described in more detail.

All geometric data has to be represented by vertices. However, it is common in computer graphics
to model curves and surfaces by representing them in a parametric form, i.e. using control points.
These representations are compact and easy to modify and store. Before such curves and surfaces
can be rendered, they have to be transformed to vertices. Evaluators provide ways of deriving
vertex data including their spatial coordinates, texture coordinates and surface normals from these
parametric representations.

The vertex data is then passed to the next stage during which per-vertex operations are carried out.
In this stage vertices are transformed from their world coordinates to their screen coordinates. If
texture-mapping is enabled, the texture coordinates of vertices are calculated. If lighting is enabled,
the lighting for each vertex is calculated using its transformed position and surface normal, the light
source position, as well as other lighting information. The next stage for vertex data is the primitive
assembly during which vertex data may be clipped according to the shape of the viewing volume.
For point data, clipping may be achieved by accepting or rejecting vertices. For line and polygon
data, clipping may introduce new vertices depending on how a line or polygon is clipped.

During the rasterization stage, both geometric data and pixel data are converted to fragments where
each fragment corresponds to a pixel in the framebuffer. In this step, parameters such as line pattern
and width are taken into account. Furthermore, calculations necessary for antialiasing are carried
out. At the end of this step each fragment has an associated value for its color and depth.

Vertex data

Pixel data

Display list

Evaluators

Pixel
operations

Rasterization

Texture
assembly Framebuffer

Per-vertex operations
and primitive assembly

Per-fragment
operations

Figure 2: Order of operations in the OpenGL rendering pipeline

In the final stage, so-called per-fragment operations are performed. Before anything is drawn into
the framebuffer, series of operations are performed to modify or delete fragments. For example,
fragments may be passed through a number of tests including the depth-buffer test (which
eliminates hidden surfaces using a z-buffer algorithm). If a fragment fails the test, it is not
processed any further. Finally, other operations such as blending or dithering may be performed. At
the end of this step, the processed fragments are drawn into the framebuffer.

OpenGL Drawing Primitives
OpenGL supports a number geometric primitives for drawing. All geometric primitives are
described in terms of vertices. Each vertex is represented as the three coordinates (x, y, z) of a 3D
point and can be used to define the endpoints of line segments or the corners of polygons. Note that
internally OpenGL uses homogeneous coordinates so that each vertex is actually represented by
four coordinates (x, y, z, w). If w is different from zero, these coordinates correspond to the
Euclidean point (x/w, y/w, z/w).

Since vertices can be used to define different geometric primitives such as points, lines and
polygons, the type of geometric primitive associated with the vertex data has to be defined
explicitly. For example, the following two code segments can be used to draw a polygon or a set of
points:

glBegin(GL_POLYGON);

glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 3.0, 0.0);
glVertex3f(4.0, 3.0, 0.0);
glVertex3f(5.0, 1.5, 0.0);
glVertex3f(4.0, 0.0, 0.0);

glEnd();

glBegin(GL_POINTS);

glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 3.0, 0.0);
glVertex3f(4.0, 3.0, 0.0); glVertex3f(5.0, 1.5, 0.0);
glVertex3f(4.0, 0.0, 0.0);

glEnd();

An example of the output of the two code segments is shown in Figure 3. In addition to these two
geometric primitives, OpenGL defines eight further geometric primitives shown in Figure 4. These
include unconnected line segments (GL_LINES), connected line segments (GL_LINE_STRIP),
triangles (GL_TRIANGLES), triangle strips (GL_TRIANGLE_STRIP), and fans
(GL_TRIANGLE_FAN) as well as quadrilaterals (GL_QUADS) and quadrilaterals strips
(GL_QUAD_STRIP). Quadrilaterals are four sided polygons. In addition to defining the
coordinates of each vertex (using glVertex()), one can also define additional data for each vertex
such as its color (using glColor()), its normal (using glNormal()) and its texture coordinates (using
glTexCoord()).

Figure 3: Drawing a polygon or a set of points

GL_POINTS GL_LINES GL_LINE_STRIP

GL_LINE_LOOP GL_TRIANGLES GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN GL_QUADS GL_POLYGON

Figure 4: Different geometric primitives

In general, polygons can be very complicated and slow to draw so that many high performance
graphics systems like OpenGL make some strong assumptions on valid polygons. First, the edges
of the polygon cannot intersect (i.e. the polygon must be simple). Second, polygons cannot have
indentations (i.e. the polygon must be convex). In the real-world, the surfaces of objects consist
often of non-simple or non-convex polygons. However, since all non-simple or non-convex
polygons can be described as unions of simple, convex polygons, the problem does not arise in
practice. For example, to draw non-convex polygons, one can subdivide them into convex
polygons, i.e. triangles. Finally, the polygons must be planar, i.e. the vertices of a polygon must lie
in a plane. Non-planar polygons are not allowed since after various transformations they may
project to non-simple or non-convex polygons.

OpenGL Viewing
In order to render geometric primitives, OpenGL requires the definition of a number of
transformations which determine the relationship between world, model, camera and screen
coordinates. In OpenGL, the viewing, modelling, and projection transformations are specified by 4
x 4 matrices. The first matrix is the modelview matrix which transforms object coordinates into eye
coordinates. In the next step, OpenGL applies the projection matrix to yield clipped coordinates. At
this point, normalized device coordinates are obtained by perspective division, that means
coordinates in the form (x, y, z, w) are normalised to yield (x/w, y/w, z/w, 1). Finally, window
coordinates are obtained by applying the viewport transformation.

World
coordinates

Perspective
transformation

Modelview
transformation

Perspective
division

Viewport
transformation

Window
coordinates

Camera coordinates

Clip coordinates

Normalised device
coordinates

Figure 5: Transformtions in OpenGL

The easiest way to set up the viewing transformation is to use the function gluLookAt():

void gluLookAt(float eyex, float eyey, float eyez, float focalx, float focaly, float focalz, float
upx, float upy, float upz);

Here the desired viewpoint is specified by eyex, eyey and eyez. The focalx, focaly and focalz
arguments specify the focal point along the line of sight while the upx, upy and upz arguments
specify the direction which is up.

OpenGL supports perspective and orthographic (parallel) projection transformations. In order to
define a perspective transformation, a viewing frustum must be defined. This viewing frustum
forms a truncated pyramid which encapsulates the viewing volume (the part of the world which is
visible). In this truncated pyramid the base corresponds to the front clipping plane while the apex
corresponds to the back clipping plane.

The easiest way to set up the perspective projection transformation is to use the function
gluPerspective():

void gluPerspective(float fovy, float aspect, float near, float far);

The meaning of the parameters of the function gluPerspective() is illustrated in Figure 6: The
parameter fovy specifies the angle of the field of view while the aspect defines the aspect ratio of
the viewing frustum, i.e. its width divided by its height. The near and far values denote the distance
of the viewpoint to the front and back clipping planes.

As mentioned it is also possible to set up a parallel (or orthographic) projection transformation
using the function glOrtho:

glOrtho(double left, double right, double bottom, double top, double near, double far);

The meaning of the parameters of the function glOrtho() is illustrated in Figure 7.

y

z

x

near
far

h

w

aspect = w / h

θ

Figure 6: Specifying the perspective projection transformation using gluPerspective

near

far

bottom

right

top

left

towards the viewpoint

Figure 7: Specifying the parallel projection transformation using glOrtho

