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Lecture 11: Radiosity 
 
Earlier in the course we introduced the reflectance equation for modelling light reflected from surfaces: 

Ireflected =  ka + Ii kd n.s +  Ii Ks (r.v)t 

Where I is the incident light and the constants represent:   
ka the amount of ambient light 
kd the amount of diffuse reflection 
ks the amount of specular reflection 

We used this lighting model for calculating shading values for polygons using both Phong and 
Gouraud shading. We used the same equations when calculating the illumination at a ray object 
intersection while ray tracing. In both cases we assumed that there was a small number of point light 
sources, or if light was distributed then it came from a point source at infinity. 
 
However, according to the reflectance equation, every surface in a graphics scene is emitting light. We 
have considered the emitted light travelling in the viewing direction, and neglected the emitted light 
travelling in other directions. This light will contribute to the illumination of neighbouring objects. In 
practice we did not attempt to calculate this, but rather chose a constant ka to represent the ambient 
light. We will now attempt to model it more accurately through the use of radiosity. 
 
A better approximation to the reflectance equation is to make the ambient light term a function of the 
incident light as well: 

Ireflected = Ii ka + Ii kd n.s +  Ii Ks (r.v)t 

or more simply to write (for a given viewpoint) 
Ireflected = R Ii  

where R is the viewpoint dependant reflectance function.  
 
For any given surface (polygon) of our model we can define the term Radiosity as the energy per unit 
area leaving a surface. It will not be constant over the surface of a polygon. It is the sum of the emitted 
energy (if any) and the reflected energy. For a small area of the surface dA (where the emitted energy 
can be regarded as constant) we have: 

B dA = E dA  +  R I 
We are now treating each polygon of our scene as a distributed light source. The incident energy at any 
patch is collected from all other patches, in particular for patch i: 

 Ii  =  ∫Bj Fij dAj 

where the integral is taken over all patches except i, and Fij is a constant that links patch i and patch j 
called the form factor. For computer graphics we cannot expect to compute a continuous solution, so 
we divide all polygons up into patches and replace the integral with a sum: 
 Bi = Ei + Ri Σ Bj Fij    
Where the sum is taken over all patches except i (or alternatively we can set Fii = 0) If we can solve 
this for all Bi then we will be able to render each patch directly with a correct light model. We can 
formulate the problem as a matrix equation: 

 

1 -R1F12 -R1F13 .     . -R1F1n B1 E1
-R2F21 1 -R2F23 .     . -R2F2n B2 E2
-R3F31 -R3F32 1 .     . -R3F3n B3 = E3
.     . .     . .     . .     . .     . .     . .     .

-RnFn1 -RnFn2 -RnFn3 .     . 1 Bn En
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However, the solution is so easy to do since the form factors are not known. Moreover, the matrix will 
be big 10,000 by 10,000 may be typical. The radiosity values are wavelength dependent, hence we will 
need to compute a radiosity value for RG and B. The radiosity values are the values that the rendered 
pixels will receive. 
 
When considering the form factors the specular reflection will be seen to cause problems. The 
difficulty is that unlike the diffuse reflection which is uniform, the specular reflection is very much 
direction dependent and involves the vector to the light source v. But now, as we have noted, every 
patch is a light source! There will be problems with specularities as well since all the light sources are 
no longer points, so we have to integrate incident light over a specluar cone. All this means that 
computing specularities will be very difficult, so for the moment we will consider only diffuse 
radiosity. 
 
As previously mentioned, we need to divide our graphics scene into patches for computing the 
radiosity. If our graphics scene consisted of small polygons we can perhaps use the polygon map as a 
set of radiosity patches, but for large polygons, such as might make up a wall, we need to subdivide to 
make the patches small enough.  This is going to cause a problem, since the emitted light will not be 
constant across a large polygon we will see the subdivisions. This is because in normal circumstances 
large polygons will show shading differentials, or may have shadows thrown across them. As we will 
see, we will compute a single value for each patch, so the patching pattern will become visible. There 
are two ways to et round this: 
           Make patches small enough to project to (sub) pixel size 
or        Smooth the results (eg by interpolation like Gouraud shading) 
 

The form factors couple every pair of patches, 
determining the proportion of radiated energy 
from one that strikes the other. The general 
equation is shown in diagram 1. The two cos 
terms effectively compute the projection of the 
two patches in the direction normal to the line 
joining them. (If they were at right angles then 
there would be no light transmitted from on to 
the other. If they are facing each other then they 
are maximally coupled. The 1/r2 is the normal 
inverse square law. The equation can be 
simplified if we consider Ai to be small. If r is 
large, compared with the dimensions of Ai, the 

cos terms and the 1/r2 can be considered constant over Ai. Thus the outer integral evaluates to 1, and 
the equation reduces to 

And, of course, we can make the same assumption for patch Aj. Thus this integrand is also treated as a 
constant, to give the approximate solution: 
 Fij = cos φicos φj Area(Aj)/π r2 
 
 
The Hemicube method 
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Diagram 1: Form Factors 

Cos φi Cos φjFij = ∫ πr2 dAj
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Although we have simplified the form factor equation, it would still be expensive to evaluate on a 
patch by patch basis. Accordingly, a fast algorithm was 
devised which makes the computation of form factors 
uniform. Using a bounding hemisphere it can be shown 
that all patches that project onto the same area of the 
hemisphere have the same form factor. This is illustrated 
by diagram 2, where all four patches have the same form 
factor. In particular, the patches on the hemicube are used 
in the algorithm.  
 
A hemicube of side 1 unit is placed over the centre of a 
patch whose form factors are to be computed. Each of the 
five faces of the hemicube is divided regularly into a set of 
square “hemicube pixels”. There will be a trade off here 
between speed and accuracy. The larger the size of the 
hemicube pixels, the worse the estimate of the form 
factors, but the faster the algorithm. 
 
It will be observed that the form factors between the hemicube pixels and patch under consideration, 
called the delta form factors, will be the same whichever patch we are computing. Moreover, they will 
be simple to compute since the geometry is highly regular. For example, for the top face, where z=1, 
we will have that 
  cos φi  = cos φj = 1/r 
where r is the distance from the centre of the patch to the hemicube pixel. If the area of a hemicube 
pixel is ∆A, its form factor is: 
 cos φicos φj ∆A /π r2 
 Thus the delta form factors on the top plane are given by the 
equation: 
 ∆A/π r4 
Values can easily be computed and stored for these pixels.  
 
We have previously noted that all patches that project onto 
the same area of a surrounding hemicube have the same form 
factor. Thus all patches that project to a hemicube pixel will 
have the form factor calculated for that pixel. If a patch 
projects to several hemicube pixels, its form factor will be 
simply the sum of the form factors of those hemicube pixels. 
 
One of the justifications for choosing the hemicube, as 
opposed to the hemisphere is that the computation of the 
projection of the patch onto the plane(s) is straightforward. 
We need to develop a viewing transformation matrix with the 
origin (viewpoint) at the centre of the patch, and the viewing 
direction (z) in the normal direction, and the projection plane 
at z=1. Each patch vertex can then be projected onto the top 
plane with one matrix multiplication, and the pixels it 
projects to can be determined by a raster filling algorithm. However, if we take this approach we need 
to solve the occlusion problem. We need to find the closest patch that projects to a pixel. All others can 

 

Diagram 2: The HemiSphere and Hemicube

 Occluded 

Visible 

Diagram 3: Finding visible 
patches 
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be considered occluded. Essentially we have the same choices to make as we had when removing 
hidden parts when rendering a scene. We could make use of a z-buffer, and allocate a patch to a pixel 
only if it is closer than any other previous allocation. Alternatively we can use the painter's algorithm, 
and sort the patches by distance before projecting them onto the hemicube. The last patch to be 
allocated to a particular pixel displaces all others. When the allocation process is complete, the form 
factors of the patches are found by summing the form factors of the pixels to which they have been 
allocated. If a patch is not allocated to any pixel its form factor is zero.  
 
An alternative to the process is to use a modified ray tracing algorithm. For each pixel we project a ray 
back into the scene and find the nearest patch that it intersects with. Again all the previously elaborated 
methods can be used to establish coherence and minimise the ray patch intersection calculations. 
Notice that all we need to determine is which patches are visible at each hemicube pixel. We do not 
need to generate any secondary rays after the nearest intersection has been found. 
 
In summary, the radiosity method is as follows: 
 
 1. Divide the graphics world into discrete patches 
 2. Compute form factors by the hemicube method 
 3. Solve the matrix equation for the radiosity of each patch. 
 4. Average the radiosity values at the corners of each patch,  
 5a. Compute a texture map of each point on the patch (for walkthroughs) 
or 
 5b. Project to the viewing window and render with interpolation shading. 
 
 
Radiosity Images 
Much of the early work on radiosity was carried out at Cornell University, and images and tutorial 
material can be found on their web site. 
 
http://www.graphics.cornell.edu/online/research/ 
 
 


