

DOC: Interactive Computer Graphics Lecture 11 Page: 1

Lecture 11: Radiosity

Earlier in the course we introduced the reflectance equation for modelling light reflected from surfaces:

Ireflected = ka + Ii kd n.s + Ii Ks (r.v)t

Where I is the incident light and the constants represent:
ka the amount of ambient light
kd the amount of diffuse reflection
ks the amount of specular reflection

We used this lighting model for calculating shading values for polygons using both Phong and
Gouraud shading. We used the same equations when calculating the illumination at a ray object
intersection while ray tracing. In both cases we assumed that there was a small number of point light
sources, or if light was distributed then it came from a point source at infinity.

However, according to the reflectance equation, every surface in a graphics scene is emitting light. We
have considered the emitted light travelling in the viewing direction, and neglected the emitted light
travelling in other directions. This light will contribute to the illumination of neighbouring objects. In
practice we did not attempt to calculate this, but rather chose a constant ka to represent the ambient
light. We will now attempt to model it more accurately through the use of radiosity.

A better approximation to the reflectance equation is to make the ambient light term a function of the
incident light as well:

Ireflected = Ii ka + Ii kd n.s + Ii Ks (r.v)t

or more simply to write (for a given viewpoint)
Ireflected = R Ii

where R is the viewpoint dependant reflectance function.

For any given surface (polygon) of our model we can define the term Radiosity as the energy per unit
area leaving a surface. It will not be constant over the surface of a polygon. It is the sum of the emitted
energy (if any) and the reflected energy. For a small area of the surface dA (where the emitted energy
can be regarded as constant) we have:

B dA = E dA + R I
We are now treating each polygon of our scene as a distributed light source. The incident energy at any
patch is collected from all other patches, in particular for patch i:

 Ii = ∫Bj Fij dAj

where the integral is taken over all patches except i, and Fij is a constant that links patch i and patch j
called the form factor. For computer graphics we cannot expect to compute a continuous solution, so
we divide all polygons up into patches and replace the integral with a sum:
 Bi = Ei + Ri Σ Bj Fij
Where the sum is taken over all patches except i (or alternatively we can set Fii = 0) If we can solve
this for all Bi then we will be able to render each patch directly with a correct light model. We can
formulate the problem as a matrix equation:

1 -R1F12 -R1F13 . . -R1F1n B1 E1
-R2F21 1 -R2F23 . . -R2F2n B2 E2
-R3F31 -R3F32 1 . . -R3F3n B3 = E3
.

-RnFn1 -RnFn2 -RnFn3 . . 1 Bn En

DOC: Interactive Computer Graphics Lecture 11 Page: 2

However, the solution is so easy to do since the form factors are not known. Moreover, the matrix will
be big 10,000 by 10,000 may be typical. The radiosity values are wavelength dependent, hence we will
need to compute a radiosity value for RG and B. The radiosity values are the values that the rendered
pixels will receive.

When considering the form factors the specular reflection will be seen to cause problems. The
difficulty is that unlike the diffuse reflection which is uniform, the specular reflection is very much
direction dependent and involves the vector to the light source v. But now, as we have noted, every
patch is a light source! There will be problems with specularities as well since all the light sources are
no longer points, so we have to integrate incident light over a specluar cone. All this means that
computing specularities will be very difficult, so for the moment we will consider only diffuse
radiosity.

As previously mentioned, we need to divide our graphics scene into patches for computing the
radiosity. If our graphics scene consisted of small polygons we can perhaps use the polygon map as a
set of radiosity patches, but for large polygons, such as might make up a wall, we need to subdivide to
make the patches small enough. This is going to cause a problem, since the emitted light will not be
constant across a large polygon we will see the subdivisions. This is because in normal circumstances
large polygons will show shading differentials, or may have shadows thrown across them. As we will
see, we will compute a single value for each patch, so the patching pattern will become visible. There
are two ways to et round this:
 Make patches small enough to project to (sub) pixel size
or Smooth the results (eg by interpolation like Gouraud shading)

The form factors couple every pair of patches,
determining the proportion of radiated energy
from one that strikes the other. The general
equation is shown in diagram 1. The two cos
terms effectively compute the projection of the
two patches in the direction normal to the line
joining them. (If they were at right angles then
there would be no light transmitted from on to
the other. If they are facing each other then they
are maximally coupled. The 1/r2 is the normal
inverse square law. The equation can be
simplified if we consider Ai to be small. If r is
large, compared with the dimensions of Ai, the

cos terms and the 1/r2 can be considered constant over Ai. Thus the outer integral evaluates to 1, and
the equation reduces to

And, of course, we can make the same assumption for patch Aj. Thus this integrand is also treated as a
constant, to give the approximate solution:
 Fij = cos φicos φj Area(Aj)/π r2

The Hemicube method

φi

nj

ni
Aj

Ai

φj r

1 Cos φi Cos φj Fij = Ai ∫ ∫ πr2
dAj dAi

 Ai Aj

Diagram 1: Form Factors

Cos φi Cos φjFij = ∫ πr2 dAj

Aj

DOC: Interactive Computer Graphics Lecture 11 Page: 3

Although we have simplified the form factor equation, it would still be expensive to evaluate on a
patch by patch basis. Accordingly, a fast algorithm was
devised which makes the computation of form factors
uniform. Using a bounding hemisphere it can be shown
that all patches that project onto the same area of the
hemisphere have the same form factor. This is illustrated
by diagram 2, where all four patches have the same form
factor. In particular, the patches on the hemicube are used
in the algorithm.

A hemicube of side 1 unit is placed over the centre of a
patch whose form factors are to be computed. Each of the
five faces of the hemicube is divided regularly into a set of
square “hemicube pixels”. There will be a trade off here
between speed and accuracy. The larger the size of the
hemicube pixels, the worse the estimate of the form
factors, but the faster the algorithm.

It will be observed that the form factors between the hemicube pixels and patch under consideration,
called the delta form factors, will be the same whichever patch we are computing. Moreover, they will
be simple to compute since the geometry is highly regular. For example, for the top face, where z=1,
we will have that
 cos φi = cos φj = 1/r
where r is the distance from the centre of the patch to the hemicube pixel. If the area of a hemicube
pixel is ∆A, its form factor is:
 cos φicos φj ∆A /π r2
 Thus the delta form factors on the top plane are given by the
equation:
 ∆A/π r4
Values can easily be computed and stored for these pixels.

We have previously noted that all patches that project onto
the same area of a surrounding hemicube have the same form
factor. Thus all patches that project to a hemicube pixel will
have the form factor calculated for that pixel. If a patch
projects to several hemicube pixels, its form factor will be
simply the sum of the form factors of those hemicube pixels.

One of the justifications for choosing the hemicube, as
opposed to the hemisphere is that the computation of the
projection of the patch onto the plane(s) is straightforward.
We need to develop a viewing transformation matrix with the
origin (viewpoint) at the centre of the patch, and the viewing
direction (z) in the normal direction, and the projection plane
at z=1. Each patch vertex can then be projected onto the top
plane with one matrix multiplication, and the pixels it
projects to can be determined by a raster filling algorithm. However, if we take this approach we need
to solve the occlusion problem. We need to find the closest patch that projects to a pixel. All others can

Diagram 2: The HemiSphere and Hemicube

 Occluded

Visible

Diagram 3: Finding visible
patches

DOC: Interactive Computer Graphics Lecture 11 Page: 4

be considered occluded. Essentially we have the same choices to make as we had when removing
hidden parts when rendering a scene. We could make use of a z-buffer, and allocate a patch to a pixel
only if it is closer than any other previous allocation. Alternatively we can use the painter's algorithm,
and sort the patches by distance before projecting them onto the hemicube. The last patch to be
allocated to a particular pixel displaces all others. When the allocation process is complete, the form
factors of the patches are found by summing the form factors of the pixels to which they have been
allocated. If a patch is not allocated to any pixel its form factor is zero.

An alternative to the process is to use a modified ray tracing algorithm. For each pixel we project a ray
back into the scene and find the nearest patch that it intersects with. Again all the previously elaborated
methods can be used to establish coherence and minimise the ray patch intersection calculations.
Notice that all we need to determine is which patches are visible at each hemicube pixel. We do not
need to generate any secondary rays after the nearest intersection has been found.

In summary, the radiosity method is as follows:

 1. Divide the graphics world into discrete patches
 2. Compute form factors by the hemicube method
 3. Solve the matrix equation for the radiosity of each patch.
 4. Average the radiosity values at the corners of each patch,
 5a. Compute a texture map of each point on the patch (for walkthroughs)
or
 5b. Project to the viewing window and render with interpolation shading.

Radiosity Images
Much of the early work on radiosity was carried out at Cornell University, and images and tutorial
material can be found on their web site.

http://www.graphics.cornell.edu/online/research/

