
Lecture 14 Spline Surface Construction

Non-ParametricSurfaces
We now turn to the question of how to represent surfaces, and how to draw them. As before, one possibility 
is to adopt the simple solution of non parametric Cartesian equations. A quadratic surface would have an 
equation of the form: 

which multiplies out to:
ax2 + ey2 + hz2 + 2bxy + 2cxz + 2fyz + 2dx + 2gy + 2iz + 1 = 0

and the nine unknowns could be found by specifying nine points  Pi = [xi,yi,zi], which yields a system of 
nine linear equations to solve. Notice that because of the inherent symmetry of the formulation there are 
only nine unknowns, not 16. The constant term can always be taken as 1. This method however suffers the 
same limitations as the analogous method for curves. It is difficult to control the shape since there is only 
one quadratic surface that will fit the points. 
Parametric Surfaces
It is a simple generalisation to go to parametric surfaces, but we note that we now need two parameters to 
define  the  surface.  We  will  call  these  µ and ν.  We  could  define  a  parametric  surface  using  a  matrix 
formulation:

P( ,) =   1 a  b  c 
b  d  e 
c   e  f 1

P(µ,ν) = aµ 2 + 2bµν + 2cµ + dν2 + 2eν +f
The surface has edges given by the following four curves, which are quadratics
µ=0  P(0,ν) = dν2 + 2eν + f
µ=1  P(1,ν) = dν2 + 2(e+b)ν + f + a + 2c 
ν=0  P(µ,0) = aµ2 + 2cµ + f
ν=1  P(µ,1) = aµ2 + 2(b+c)µ + d + 2e + f
The values in the matrix (a,b,c etc) are all vectors 
whose values can be computed by substituting in 
six points to be interpolated for given values of  µ 
and  ν.  We need to specify the values of  µ and  ν 
where  the  knots  are  located.  For  example,  one 
possibility is:

µ ν
P0 0 0
P1 0 1
P2 1 0
P3 1 1
P4 1/2 0
P5 1/2 1

Finally we solve a set of linear equations to find the actual patch, which will be like that shown in diagram 1.
P0 = f
P1 = d + 2e + f
P2 = a + 2c + f
P3 = a + 2b + 2c + d + 2e + f
P4 = a/4 + c  + f
P5 = a/4 + b + c + d + 2e + f
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Diagram 1: A Parametric Spline Patch 



This is more flexible than the non-parametric formulation, but it still does not provide us with a very useful 
spline since there are no intuitive ways of using it to create a particular shape. Higher orders can be designed 
by including  µ2 and  ν2 in  the  vectors.  However  little  is  gained  by doing  this.  Like  the  equations  we 
developed  for  the  curves,  this  simple  parametric  form  is  only  really  applicable  for  solving  specific 
interpolation problems. It is not suitable for use as a general method.

Bi-cubic surface patches
The patch method is available, and represents a good general method, but it is more complex. Consider four 
points belonging to a surface, P0,P1,P2, and P3. We will consider first the case where the points are part of a 
regular grid. This gives us a non-
parametric  formulation  in  which 
we can write, for each grid points:

y=f(x,z)
A  typical  patch  is  shown  in 
diagram  2.  We  can  see  that,  at 
every  grid  point  there  are  two 
gradients:

Thus, if we are going to fit a patch 
to the four points, we need twelve 
parameters in our equation, so that 
we  can  match  the  positions  and 
both gradients at the four corners. Furthermore, we need to ensure continuity along the boundaries of the 
patches.  Rather  than  try to  develop  one  equation  which  will  do  this  for  us,  we normally use  bi-cubic 
interpolation. It will be seen from diagram 2 that we can easily design spline curves for the four edges. 
These curves will be continuous with the neighbouring patches. Thus we adopt a solution where we use 
these curves at the edges of the patch, and we interpolate them in the middle of the patch. 

As a refinement of this process, it is convenient to use a parametric formulation. This means that the 
points which are to be interpolated need not be on a regular grid in the z-x plane though we still need them 
to form a rectangular array. A typical patch in parametric space is shown in diagram 3.

Referring to diagram 3, it is clear that we can specify four curves that bound each patch, using the method of 
cubic spline curve patches described previously. In particular, we can derive the gradients from the central 
differences of the adjoining points such that the surface will fit a rectangular grid of points smoothly.
Notice that the contours are orthogonal in the parameter space, and we have two parameters. That is to say, 
contours joining Pi,j to Pi,j+1 and Pi+1,j to Pi+1,j+1, are both functions of the ν parameter as it varies from 0 to 1, 
with constant µ. Similarly the contours joining Pi,j to Pi+1,j and Pi,j+1 to Pi+1,j+1 are both functions of µ in the 
range 0 to 1 with constant ν.  It is convenient to introduce a new notation for these curves. In the previous 
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Diagram 2: Non parametric Patch constructed on a regular grid 
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Diagram 3: A parametric spline patch 



case we considered the locus of a point as a function of one parameter, we now wish to consider a point 
inside the patch as a function of two parameters, so we write this as P(µ,ν). We can describe the contours 
joining the knots simply by treating one of the parameters as fixed. Thus for the four contours we write:

P(0,ν) joining Pi,j to Pi,j+1

P(1,ν) joining Pi+1,j to Pi+1,j+1

P(µ,0) joining Pi,j to Pi+1,j

P(µ,1) joining Pi,j+1 to Pi+1,j+1

We need now to define the locus of P(µ,ν) within the patch, in such a way that at the edges it follows the 
contours, and in the middle it is a reasonable blend of them. This is most simply done by linear interpolation, 
the equation being:
P(µ,ν) = P(µ,0) (1-ν) + P(µ,1) ν + P(0,ν) (1-µ) + P(1,ν) µ

- P(0,0)(1-ν)(1-µ) - P(0,1)ν(1-µ) - P(1,0)(1-ν)µ - P(1,1) νµ 
This is a tricky equation to understand, but you can verify it for the four edge contours by substituting µ=0,µ
=1,ν=0 and ν=1. The first four terms are simply a linear interpolation of both the bounding curves. However 
it is clear that we cannot just add them together, as this would no longer go through the four points that 
define  the patch.  Consequently we subtract  the last  four  negative  terms which correct  the curve at  the 
defining points without introducing any discontinuity. This formulation is called the Coon's Patch, and is 
probably the easiest to use surface construction method.

A simple way to draw a patch of this kind is called polygonisation. The method is illustrated in diagram 4. 
We can easily calculate a value of 
P given  µ and  ν,  and so we can 
calculate a grid of points over the 
patch.  These  are  then  treated  as 
polygons  and  fed  to  a  polygon 
rendrer.  Providing  we  make  the 
grid  fine  enough  we  can  get  an 
exact representation down to pixel 
resolution.  For  faster  results  we 
can  use  coarser  polygons,  and 
apply Gouraud or Phong shading 
to smooth out the discontinuities. 

Ray tracing is also possible, but it 
is made difficult by the high order of the patch equation. If we write the ray in the form P = S +γd then we 
can equate P with P(µ,ν) and then attempt to solve for the three parameters, γ,µ,ν. However, the equation of 
the  patch  is  fourth  order  (it  has  terms  of  νµ3 and  µν3)  and  so  only  numerical  solution  is  possible. 
Unfortunately, there may be several valid intersections between the ray and the patch, and the problem is to 
find the nearest.  This can be done by numerical methods,  but is computationally very expensive. If  the 
surface is smooth, and relatively well behaved, then a practical solution is to do a coarse polygonistion, 
using triangles, and intersect the ray with each triangle to find the closest intersection. This area of the patch 
can then be polygonised further,  and the process repeated until  sufficient accuracy is reached. Thus the 
calculation is simply the intersection of the ray and the triangle.

An older way of drawing surfaces is to represent them by contours. This is called lofting (a term originating 
from the aircraft industry). To draw a contour we need only fix one of the parameters, and draw the curve as 
the other ranges over the interval 0 to 1. To produce any meaningful representation of a complex surface 
however,  it  is  necessary to eliminate the hidden lines,  and this  is  done by a method called the floating 
horizon.  Basically  we  sort  the  contours  into  the  order  of  the  distance  from us,  which  in  the  normal 
configuration is in order of z. Then, we set up a record, for each pixel in the x direction of the largest y 
(height)  found so far:  ie the horizon.  Before each part  of  a contour  is  drawn it  is  checked against  this 
horizon. If it is above it, it is drawn, and the horizon is updated, if not it is ignored.
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Diagram 4: Polygonisation of a spline patch 



Example of Using a Coon's Patch.
We will conclude with an example of the construction of a Coon’s patch. Part of a terrain map defined on a 
regular x,y grid is shown in diagram 5. We will construct a spline patch on the four centre points.

The corners are defined directly in the figure so we can 
write:
P(0,0) = (9,4,12)
P(0,1) = (9,5,11)
P(1,0) = (10,4,13)
P(1,1) = (10,5,14)

The next task is to find the gradients at the corners. For 
gradients in the x(µ) direction we can take the difference 
of the two adjacent points which gives a central 
difference approximation to the gradient.
∂P/dµ (at P(0,0)) = ((10,4,13) - (8,4,10))/2 = (1,0,1.5)
∂P/dµ (at P(1,0)) = ((11,4,10) - (9,4,12))/2 = (1,0,-1)
∂P/dµ (at P(0,1)) = ((10,5,14) - (8,5,9))/2 = (1,0,2.5)
∂P/dµ (at P(1,1)) = ((11,5,11) - (9,5,11))/2 = (1,0,0)

Similarly we can find the gradients in the y(ν) direction
∂P/dν (at P(0,0)) = ((9,5,11) - (9,3,14))/2 = (0,1,-1.5)
∂P/dν (at P(1,0)) = ((10,5,14) - (10,3,15))/2 = (0,1,-0.5)
∂P/dν (at P(0,1)) = ((9,6,10) - (9,4,12))/2 = (0,1,-1)
∂P/dν (at P(1,1)) = ((10,6,10) - (10,4,13))/2 = (0,1,-1.5)

Finding the boundary curves we use the equation for a simple cubic patch. For example:
P(µ,0) = a3 µ3 + a2 µ2 + a1 µ + a0

Solving for the constants a0 - a3

a0 = (9,4,12)
a1 = (1,0,1.5)
a2 = -3*(9,4,12) - 2*(1,0,1.5) + 3*(10,4,13) - (1,0,1) = (0,0,1)
a3 = 2*(9,4,12) + (1,0,1.5) - 2*(10,4,13) + (1,0,1) = (0,0,0.5)
Similarly we can solve for the curves P(µ,1), P(0, ν) and P(1, ν).

We now have all the individual bits:
P(µ,0)  cubic polynomial in µ
P(µ,1)  cubic polynomial in µ
P(0,ν) cubic polynomial in ν
P(1,ν) cubic polynomial in ν
P(0,0), P(0,1), P(1,0), P(1,1)
Given µ and ν we can evaluate each of these eight points
So, for any given value for µ and ν we can evaluate the coordinate on the Coon's patch using the formula:

P(µ,ν) =  P(µ,0)(1-ν) + P(µ,1) ν + P(0, ν)(1-µ) + P(1, ν) µ - 
                P(0,0)(1-µ)(1-ν) - P(1,0) µ (1-ν) - P(0,1)(1-µ)ν - P(1,1) µ ν 

P(µ,ν) = P(µ,0) (1-ν) + P(µ,1) ν + P(0,ν) (1-µ) + P(1,ν) µ
- P(0,0)(1-ν)(1-µ) - P(0,1)ν(1-µ) - P(1,0)(1-ν)µ - P(1,1) νµ 
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Diagram 5 


