
Lecture 14 Spline Surface Construction

Non-ParametricSurfaces
We now turn to the question of how to represent surfaces, and how to draw them. As before, one possibility
is to adopt the simple solution of non parametric Cartesian equations. A quadratic surface would have an
equation of the form:

which multiplies out to:
ax2 + ey2 + hz2 + 2bxy + 2cxz + 2fyz + 2dx + 2gy + 2iz + 1 = 0

and the nine unknowns could be found by specifying nine points Pi = [xi,yi,zi], which yields a system of
nine linear equations to solve. Notice that because of the inherent symmetry of the formulation there are
only nine unknowns, not 16. The constant term can always be taken as 1. This method however suffers the
same limitations as the analogous method for curves. It is difficult to control the shape since there is only
one quadratic surface that will fit the points.
Parametric Surfaces
It is a simple generalisation to go to parametric surfaces, but we note that we now need two parameters to
define the surface. We will call these µ and ν. We could define a parametric surface using a matrix
formulation:

P( ,) =  1 a b c 
b d e 
c e f 1

P(µ,ν) = aµ 2 + 2bµν + 2cµ + dν2 + 2eν +f
The surface has edges given by the following four curves, which are quadratics
µ=0 P(0,ν) = dν2 + 2eν + f
µ=1 P(1,ν) = dν2 + 2(e+b)ν + f + a + 2c
ν=0 P(µ,0) = aµ2 + 2cµ + f
ν=1 P(µ,1) = aµ2 + 2(b+c)µ + d + 2e + f
The values in the matrix (a,b,c etc) are all vectors
whose values can be computed by substituting in
six points to be interpolated for given values of µ
and ν. We need to specify the values of µ and ν
where the knots are located. For example, one
possibility is:

µ ν
P0 0 0
P1 0 1
P2 1 0
P3 1 1
P4 1/2 0
P5 1/2 1

Finally we solve a set of linear equations to find the actual patch, which will be like that shown in diagram 1.
P0 = f
P1 = d + 2e + f
P2 = a + 2c + f
P3 = a + 2b + 2c + d + 2e + f
P4 = a/4 + c + f
P5 = a/4 + b + c + d + 2e + f

DOC: InteractiveGraphics Lecture 14 Page: 1

x y z 1 a b c d x = 0
b e f g y
c f h i z
d g i 1 1

P4

P2

P3
P5

P1

P0

ν=0 curve

ν=1 curve

µ=1 curve

µ=0 curve

Diagram 1: A Parametric Spline Patch

This is more flexible than the non-parametric formulation, but it still does not provide us with a very useful
spline since there are no intuitive ways of using it to create a particular shape. Higher orders can be designed
by including µ2 and ν2 in the vectors. However little is gained by doing this. Like the equations we
developed for the curves, this simple parametric form is only really applicable for solving specific
interpolation problems. It is not suitable for use as a general method.

Bi-cubic surface patches
The patch method is available, and represents a good general method, but it is more complex. Consider four
points belonging to a surface, P0,P1,P2, and P3. We will consider first the case where the points are part of a
regular grid. This gives us a non-
parametric formulation in which
we can write, for each grid points:

y=f(x,z)
A typical patch is shown in
diagram 2. We can see that, at
every grid point there are two
gradients:

Thus, if we are going to fit a patch
to the four points, we need twelve
parameters in our equation, so that
we can match the positions and
both gradients at the four corners. Furthermore, we need to ensure continuity along the boundaries of the
patches. Rather than try to develop one equation which will do this for us, we normally use bi-cubic
interpolation. It will be seen from diagram 2 that we can easily design spline curves for the four edges.
These curves will be continuous with the neighbouring patches. Thus we adopt a solution where we use
these curves at the edges of the patch, and we interpolate them in the middle of the patch.

As a refinement of this process, it is convenient to use a parametric formulation. This means that the
points which are to be interpolated need not be on a regular grid in the z-x plane though we still need them
to form a rectangular array. A typical patch in parametric space is shown in diagram 3.

Referring to diagram 3, it is clear that we can specify four curves that bound each patch, using the method of
cubic spline curve patches described previously. In particular, we can derive the gradients from the central
differences of the adjoining points such that the surface will fit a rectangular grid of points smoothly.
Notice that the contours are orthogonal in the parameter space, and we have two parameters. That is to say,
contours joining Pi,j to Pi,j+1 and Pi+1,j to Pi+1,j+1, are both functions of the ν parameter as it varies from 0 to 1,
with constant µ. Similarly the contours joining Pi,j to Pi+1,j and Pi,j+1 to Pi+1,j+1 are both functions of µ in the
range 0 to 1 with constant ν. It is convenient to introduce a new notation for these curves. In the previous

DOC: InteractiveGraphics Lecture 14 Page: 2

∂y
∂x

and ∂ y
∂ z

y

z

x
Diagram 2: Non parametric Patch constructed on a regular grid

Pi+1,j

Pi,j+1

Pi+1,j+1 Pi,j

µ

ν

P(0,ν)

P(1,ν)
P(µ,0)

P(µ,1)

Diagram 3: A parametric spline patch

case we considered the locus of a point as a function of one parameter, we now wish to consider a point
inside the patch as a function of two parameters, so we write this as P(µ,ν). We can describe the contours
joining the knots simply by treating one of the parameters as fixed. Thus for the four contours we write:

P(0,ν) joining Pi,j to Pi,j+1

P(1,ν) joining Pi+1,j to Pi+1,j+1

P(µ,0) joining Pi,j to Pi+1,j

P(µ,1) joining Pi,j+1 to Pi+1,j+1

We need now to define the locus of P(µ,ν) within the patch, in such a way that at the edges it follows the
contours, and in the middle it is a reasonable blend of them. This is most simply done by linear interpolation,
the equation being:
P(µ,ν) = P(µ,0) (1-ν) + P(µ,1) ν + P(0,ν) (1-µ) + P(1,ν) µ

- P(0,0)(1-ν)(1-µ) - P(0,1)ν(1-µ) - P(1,0)(1-ν)µ - P(1,1) νµ
This is a tricky equation to understand, but you can verify it for the four edge contours by substituting µ=0,µ
=1,ν=0 and ν=1. The first four terms are simply a linear interpolation of both the bounding curves. However
it is clear that we cannot just add them together, as this would no longer go through the four points that
define the patch. Consequently we subtract the last four negative terms which correct the curve at the
defining points without introducing any discontinuity. This formulation is called the Coon's Patch, and is
probably the easiest to use surface construction method.

A simple way to draw a patch of this kind is called polygonisation. The method is illustrated in diagram 4.
We can easily calculate a value of
P given µ and ν, and so we can
calculate a grid of points over the
patch. These are then treated as
polygons and fed to a polygon
rendrer. Providing we make the
grid fine enough we can get an
exact representation down to pixel
resolution. For faster results we
can use coarser polygons, and
apply Gouraud or Phong shading
to smooth out the discontinuities.

Ray tracing is also possible, but it
is made difficult by the high order of the patch equation. If we write the ray in the form P = S +γd then we
can equate P with P(µ,ν) and then attempt to solve for the three parameters, γ,µ,ν. However, the equation of
the patch is fourth order (it has terms of νµ3 and µν3) and so only numerical solution is possible.
Unfortunately, there may be several valid intersections between the ray and the patch, and the problem is to
find the nearest. This can be done by numerical methods, but is computationally very expensive. If the
surface is smooth, and relatively well behaved, then a practical solution is to do a coarse polygonistion,
using triangles, and intersect the ray with each triangle to find the closest intersection. This area of the patch
can then be polygonised further, and the process repeated until sufficient accuracy is reached. Thus the
calculation is simply the intersection of the ray and the triangle.

An older way of drawing surfaces is to represent them by contours. This is called lofting (a term originating
from the aircraft industry). To draw a contour we need only fix one of the parameters, and draw the curve as
the other ranges over the interval 0 to 1. To produce any meaningful representation of a complex surface
however, it is necessary to eliminate the hidden lines, and this is done by a method called the floating
horizon. Basically we sort the contours into the order of the distance from us, which in the normal
configuration is in order of z. Then, we set up a record, for each pixel in the x direction of the largest y
(height) found so far: ie the horizon. Before each part of a contour is drawn it is checked against this
horizon. If it is above it, it is drawn, and the horizon is updated, if not it is ignored.

DOC: InteractiveGraphics Lecture 14 Page: 3

Diagram 4: Polygonisation of a spline patch

Example of Using a Coon's Patch.
We will conclude with an example of the construction of a Coon’s patch. Part of a terrain map defined on a
regular x,y grid is shown in diagram 5. We will construct a spline patch on the four centre points.

The corners are defined directly in the figure so we can
write:
P(0,0) = (9,4,12)
P(0,1) = (9,5,11)
P(1,0) = (10,4,13)
P(1,1) = (10,5,14)

The next task is to find the gradients at the corners. For
gradients in the x(µ) direction we can take the difference
of the two adjacent points which gives a central
difference approximation to the gradient.
∂P/dµ (at P(0,0)) = ((10,4,13) - (8,4,10))/2 = (1,0,1.5)
∂P/dµ (at P(1,0)) = ((11,4,10) - (9,4,12))/2 = (1,0,-1)
∂P/dµ (at P(0,1)) = ((10,5,14) - (8,5,9))/2 = (1,0,2.5)
∂P/dµ (at P(1,1)) = ((11,5,11) - (9,5,11))/2 = (1,0,0)

Similarly we can find the gradients in the y(ν) direction
∂P/dν (at P(0,0)) = ((9,5,11) - (9,3,14))/2 = (0,1,-1.5)
∂P/dν (at P(1,0)) = ((10,5,14) - (10,3,15))/2 = (0,1,-0.5)
∂P/dν (at P(0,1)) = ((9,6,10) - (9,4,12))/2 = (0,1,-1)
∂P/dν (at P(1,1)) = ((10,6,10) - (10,4,13))/2 = (0,1,-1.5)

Finding the boundary curves we use the equation for a simple cubic patch. For example:
P(µ,0) = a3 µ3 + a2 µ2 + a1 µ + a0

Solving for the constants a0 - a3

a0 = (9,4,12)
a1 = (1,0,1.5)
a2 = -3*(9,4,12) - 2*(1,0,1.5) + 3*(10,4,13) - (1,0,1) = (0,0,1)
a3 = 2*(9,4,12) + (1,0,1.5) - 2*(10,4,13) + (1,0,1) = (0,0,0.5)
Similarly we can solve for the curves P(µ,1), P(0, ν) and P(1, ν).

We now have all the individual bits:
P(µ,0) cubic polynomial in µ
P(µ,1) cubic polynomial in µ
P(0,ν) cubic polynomial in ν
P(1,ν) cubic polynomial in ν
P(0,0), P(0,1), P(1,0), P(1,1)
Given µ and ν we can evaluate each of these eight points
So, for any given value for µ and ν we can evaluate the coordinate on the Coon's patch using the formula:

P(µ,ν) = P(µ,0)(1-ν) + P(µ,1) ν + P(0, ν)(1-µ) + P(1, ν) µ -
 P(0,0)(1-µ)(1-ν) - P(1,0) µ (1-ν) - P(0,1)(1-µ)ν - P(1,1) µ ν

P(µ,ν) = P(µ,0) (1-ν) + P(µ,1) ν + P(0,ν) (1-µ) + P(1,ν) µ
- P(0,0)(1-ν)(1-µ) - P(0,1)ν(1-µ) - P(1,0)(1-ν)µ - P(1,1) νµ

DOC: InteractiveGraphics Lecture 14 Page: 4

 y,ν

3 4 5 6

8 10 9
9 14 12 11 10

10 15 13 14 10
x,µ

11 10 11

Diagram 5

