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Lecture 3

 Transformations and animation
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Flying Sequences

 We now return to the question of transforming the 
origin of a graphics scene

 This would be used in generating animated flying 
sequences where the viewpoint moves round the 
scene.

 Let the required viewpoint be L = [Lx,Ly,Lz]
 and the required view direction be d = [dx,dy,dz]
 Let |d| = 1
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Transformation of viewpoint
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Flying Sequences

 The required transformation is in three parts:

 1. Translation of the Origin
 2. Rotate about Y
 3. Rotate about X
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Translation of the Origin
 

d 
y 

z 

x 

d 

L y 
z 

x 

Viewing direction 

Step 1: Move origin to the required viewpoint 

AA = 1 0 0 0
0 1 0 0
0 0 1 0

-Lx - Ly - Lz 1
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Rotate about Y until dx = 0

BB = dz/v 0 dx/v 0
0 1 0 0

- dx/v 0 dz/v 0
0 0 0 1

Step 2: Rotate about Y

θ

dz

dx
X

Z

Cos θ = dz/√(dx*dx + dz*dz)
Sin θ = dx/√(dx*dx + dz*dz)
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Rotate about X until dy = 0
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|d|=1 

Step 3: Rotate about X  

Cos ψ = √(dx*dx+dz*dz)/|d|  
Sin ψ = dy/|d| = dy 

CC = 1 0 0 0
0 v dy 0
0 -dy v 0
0 0 0 1

Graphics Lecture 3:  Slide 8

Combining the matrices

 The matrix that transforms the origin is:

  TT = AA * BB * CC

 and for every point in the graphics scene we calculate

 P’ = P * TT
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Verticals

 Notice we have not introduced verticals in the above 
analysis.

 Usually, the y direction is treated as vertical, and by 
doing the Ry transformation first things work out 
correctly

 However it is possible to invert the vertical
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Viewing Direction [0,0,-1]
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Rotation about a general line

 Special effects, such as rotating a scene about a 
general line can be achieved by transformations,

 The transformation is formed by:

 Making the line of rotation one of the Cartesian axes
 Doing the rotation
 Restoring the line to its original place
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Rotation about a general line

 The first part is achieved by the same matrix that we 
derived for the flying sequences

  TT = AA * BB * CC

 and the rest is achieved by a rotation followed by the 
inversion of T

  TT = AA * BB * C C * Rz Rz * CC-1 * BB-1 * AA-1
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Other Effects

 Similar effects can be created using this approach

 eg Making objects shrink

 1. Move the object to the origin
 2. Apply a scaling matrix
 3. Move the object back to where it was

Graphics Lecture 3:  Slide 14

Projection by Matrix multiply

 Usually projection and drawing of a scene comes after 
transformation.

 It is therefore convenient to combine the projection 
with the other parts of the transformation
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Orthographic Projection Matrix

 For orthographic projection we simply drop the z 
coordinate

MMo= 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1
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Perspective Projection Matrix

[x,y,z,1] 1 0 0 0 =    [x,y,z,z/f]
0 1 0 0
0 0 1 1/f
0 0 0 0
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Normalisation

 Remember that homogenous coordinates need to be 
normalised, so we need to divide by the last ordinate 
as a final step:

 [x,y,z,z/f] is normalised to [x*f/z,  y*f/z,  f,  1]

 as required
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Projection matrices are singular

 Notice that projection matrices are singular (they 
cannot be inverted)

 This is because a projection cannot be inverted, ie

 Given a 2D image, we cannot in general reconstruct 
the 3D original.
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Affine transformations

 Affine transformations:
 translation
 scaling
 rotation
 orthographic projection

 preserve parallelism and linearity. 

 Non-affine transformations:
 perspective projection
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Homogenous Coordinates as Vectors

 We now take a second look at homogeneous 
coordinates, and their relation to vectors.

 In the previous lecture we described the fourth 
ordinate as a scale factor.

 [X, Y, Z, h]   is equivalent to    [X/h, Y/h, Z/h]

 Homogenous Cartesian
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Homogenous co-ordinates and vectors

 Homogenous co-ordinates fall into two types:

 1. Those with the final ordinate non-zero, which 
can be normalised into position vectors.

 2. Those with zero in the final ordinate which are 
direction vectors, and have direction magnitude.

Graphics Lecture 3:  Slide 22

Vector Addition

 If we add two direction vectors,  we obtain a direction 
vector. ie:

 [xi,yi,zi,0] + [xj,yj,zj,0] = [xi+xj, yi+yj, zi+zj,0]

 This is the normal vector addition rule.
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Adding position and direction vectors

 If we add a direction vector to a position vector we 
obtain a position vector:

 [Xi,Yi,Zi,1]+[xj,yj,zj,0] = [Xi+xj,Yi+yj,Zi+zj,1]

 This is a nice result, because it ties in with our 
definition of a straight line in Cartesian space being 
defined by a one point and a direction:
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P

d

Diagram 4.2 Adding a direction
vector to a position vector
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Adding two position vectors

 If we add two position vectors we obtain their mid-
point:

 [Xi,Yi,Zi,1] + [Xj,Yj,Zj,1]  = [Xi+Xj,Yi+Yj,Zi+Zj,2]

 = [(Xi+Xj)/2,(Yi+Yj)/2,(Zi+Zj)/2,1]

 Note that this is a reasonable result since adding two 
position vectors has no meaning in vector algebra.
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Direction Vector

Position Vector

Direction Vector

Direction Vector

Diagram 4.3 The composition of an
affine transformation matrix

qx qy qz 0
rx ry rz 0
sx sy sz 0
Tx Ty Tz 1
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Characteristics of Transformation matrices

 In a direction vector the zero in the last ordinate 
ensures vectors will not be affected by the translation.

 In a position vector the 1 in the last ordinate means all  
vectors will have the same displacement.

 If we do not shear the object the three vectors q r and 
s will remain orthogonal, ie:

 q • r = r • s = q • s = 0. 
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What the individual rows mean?

 To see this we consider the effect of the 
transformation in simple cases.

 For example take the unit vectors along the Cartesian 
axes eg along the x axis, i = [1,0,0,0] 

[1,0,0,0] qx qy qz 0 =     [qx, qy, qz, 0]
rx ry rz 0
sx sy sz 0
Tx Ty Tz 1
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Axis Transformation

 Similarly we find that direction 
 j = [0,1,0,0] 
 will be transformed to direction 
 [rx,ry,rz,0] 

 and k = [0,0,1,0] 
 will be transformed to [sx,sy,sz,0].
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Transforming the Origin

[0,0,0,1] qx qy qz 0 =     [Tx, Ty, Tz, 1]
rx ry rz 0
sx sy sz 0
Tx Ty Tz 1
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Meaning of a transformation matrix

The old X axis after
transformation

qx qy qz 0
rx ry rz 0
sx sy sz 0
Tx Ty Tz 1

The old Y axis after
transformation

The old Z axis after
transformation

The old origin after
transformation
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Effect of a transformation matrix
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qx qy qz 0
rx ry rz 0
sx sy sz 0
Cx Cy Cz 1
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What we want is the other way round

 We are given the values of [u,v,w] and C and would 
like to know the transformation matrix that moves the 
scene to that coordinate system.

 To see how to do this we introduce the notion of the 
dot product as a projection.
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The dot product as projection
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Changing axes by projection
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Transforming point P

 Given point P in the [x,y,z] axis system, we can 
calculate the corresponding point in the [u,v,w] space 
as:

 P'x = (P-C).u = P.u - C.u
 P'y = (P-C).v = P.v - C.v
 P'z = (P-C).w = P.w - C.w
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Or in Matrix form:

[P'x,P'y,P'z,1]     =   [Px,Py,Pz,1] ux vx wx 0
uy vy wy 0
uz vz wz 0

-C•u -C•v -C•w 1
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Verticals

 Unlike the previous analysis we now can control the 
vertical,

 ie the v direction is taken as the vertical and 
constrained by the software to be upwards
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Back to flying sequences

 Given a viewpoint point C and a view direction d we 
need to find the transformation matrix.

 We know that d is the direction of the new z axis, so 
we can write immediately:

 w = d/|d|
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Now the horizontal direction

 Let the horizontal direction be p

 Thus u = p/|p|

 To keep the horizontal direction we need

 py = 0

 (p has no vertical component)
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And the vertical direction

 Let q be the vertical direction, thus

 v = q/|q|

 q must have a positive y component, so we can say:

 qy = 1
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So we have four unknowns

 p = [px,0,pz]
 q = [qx,1,qz]

 To solve for these we use the cross product and dot 
product. Since the axis system is left handed:

 d = p x q

 (we can do this because p’s magnitude is not set)
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Evaluating the cross product

 dx = -pz
 dy = pz qx - px qz
 dz = px

 so we have now completely specified vector p

[dx,dy,dz]  = i j k
px 0 pz
qx 1 qz
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Using the dot product

 Lastly we can use the fact that the vectors p and q are 
orthogonal, thus

 p.q = 0

 px qx + pz qz = 0
 and from the cross product (last slide)
 dy = pz qx - px qz
 So we have a simple linear equation to solve for q
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The final matrix

 As defined we have

 u = p/|p|    v = q/|q|   w= d/|d|

 so we can write down the matrix.


