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Interactive Computer Graphics

 Lecture 11:  Radiosity - Principles
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The reflectance equation

 Earlier in the course we introduced the reflectance 
equation for modelling light reflected from surfaces:

 Ireflected =  ka + Ii kd n.s +  Ii Ks (r.v)t

 Where I is the incident light and the constants 
represent: ka the amount of ambient light

 kd the amount of diffuse reflection
 ks the amount of specular reflection
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Lighting model for ray tracing

 When we used ray tracing we assumed that there was 
a small number of point light sources.

 However, according to the reflectance equation, every 
surface is reflecting light, and so should also be 
considered a light source.

 So rather than use a constant for ambient light, should 
we not sum the light received from all other surfaces 
in the scene?
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Ambient light

 A better approximation to the reflectance equation is 
to make the ambient light term a function of the 
incident light as well:

 Ireflected = Ii ka + Ii kd n.s +  Ii Ks (r.v)t

 or more simply to write (for a given viewpoint)

 Ireflected = R Ii

 where R is the reflectance function. 
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Radiosity

 Radiosity is defined as the energy per unit area 
leaving a surface. It is the sum of the emitted energy 
(if any) and the reflected energy.

 For a small area of the surface dA (where the emitted 
energy can be regarded as constant) we have:

 B dA = E dA +  R I

 Notice that we now treat light sources as distributed
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Collecting energy

 The incident energy can now be written (for patch i) 
as:

 Ii =  ∫Bj Fij dAj

 where the integral is taken over all patches except i

 Fij is a constant that links patch i and patch j called the 
form factor
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Discrete formulation

 For computer graphics we cannot expect to compute a 
continuous solution, so we divide all polygons up into 
patches and replace the integral with a sum:

 Bi = Ei + Ri Σ Bj Fij

 Where the sum is taken over all patches except i (or 
alternatively we can set Fii = 0)

Graphics Lecture 11:  Slide 8

1 -R1F12 -R1F13 .     . -R1F1n B1 E1
-R2F21 1 -R2F23 .     . -R2F2n B2 E2
-R3F31 -R3F32 1 .     . -R3F3n B3 = E3
.     . .     . .     . .     . .     . .     . .     .

-RnFn1 -RnFn2 -RnFn3 .     . 1 Bn En

In matrix form

 If we can solve this for all Bi then we will be able to 
render each patch with a correct light model.

 However, this is not so easy to do since 
 the form factors are not known.
 the reflectance equation is insoluable
 the matrix is big - circa 10000 by 10000
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Wavelengths

 The radiosity values are wavelength dependent, hence 
we will need to compute a radiosity value for RG and 
B. 

 Each patch will require a separate set of paramaters
for R,G and B.

 The three radiosity values are the values that the 
rendered pixels will receive.
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Back to the reflectance function

 Ireflected = Ii ka + Ii kd n.s +  Ii Ks (r.v)t

 Note that the specular term depends on the vector to 
the light source v. 

 But now, every patch is a light source!
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Specular reflections

 Moreover our light sources are no longer points, so 
we need to collect the incident light in  a specular 
cone to determine the specular reflection.

 This is computationally infeasible.

 We will return to specularities later, but for the 
moment we will consider only diffuse radiosity.
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Patching Problems

 We need to divide our graphics scene into patches for 
computing the radiosity. 

 For small polygons we can perhaps use the polygon 
map, but for large polygons we need to subdivide 
them. 

 Since the emitted light will not be constant across a 
large polygon we will see the subdivisions
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Large Polygons

 Each Patch will have a different but constant 
illumination.

 Thus we will see the patches unless either:

 Patches project to (sub) pixel size
 or        We smooth the results (eg by interpolation)
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Form Factors

 The form factors couple every pair of patches, 
determining the proportion of radiated energy from 
one that strikes the other.

φi 

nj 

ni 
Aj 

Ai 

φj r 

1 Cos φi Cos φj Fij = Area(Ai) ∫ ∫ πr2 
dAj dAi

 Ai Aj   
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Simplifying Form Factors
 The equation can be simplified if we consider solving 

just an elemental area dAi of Ai, placed at the centre 
of Ai. If r is large, the inner integral can be considered 
constant over dAi 
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ni 
Aj 

dAi 

φj r 

1 Cos φi Cos φj Fij =  Area(dAi) ∫ ∫ πr2 
dAj dAi 

  dAi Aj   
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Simplifying form factors

 With this assumption the outer integral evaluates to 1, 
and we assume that the same value persists over the 
patch.

 Hence we can write the integral as:

Cos φi Cos φjFij = ∫ πr2 dAj

Aj
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Further simplifying

 Having assumed that the radius is large compared 
with patch Ai, it should not be unreasonable to 
assume that it is also large with respect to the size of 
Aj. Hence the integrand of

 can similarly be considered constant over Aj
 Thus Fij = cos φicos φj Area(Aj) / π r2

 Cos φi Cos φj Fij =  ∫ 
πr2 

dAj 

 Aj  
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The Hemicube method

 Using a bounding 
hemisphere it can be 
shown that all patches 
that project onto the 
same area of the 
hemisphere have the 
same form factor
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The Hemicube method

 So, all patches that 
project onto the same 
area of a surrounding 
hemicube have the same 
form factor.

 Computing intersections 
with planes is less 
computationally 
demanding
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Delta form factors
 The hemicube is divided into small “pixel” areas and 

form factors are computed for each.
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Delta form factors

 If the area of a hemicube pixel is ∆A, its form factor 
is:

 cos φicos φj ∆A / π r2

 These delta form factors can be computed and stored 
in a look up table.
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Problem Break

 Given that the hemicube is defined at the origin, with 
the z axis vertical what is the delta form factor for the 
following two hemi cube pixels in the top face, z=1:

 {xmin,ymin,xmax,ymax} = {-0.05, -0.05, 0.05,0.05}
 and
 {xmin,ymin,xmax,ymax} = {-0.45, -0.05, -0.55,0.05} 
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Solution

 For the top face cos φi = cos φj = 1/r
 (The top face is the plane z=1)

 Thus, cos φicos φj ∆A / π r2 = ∆A/π r4 

 ∆A in our example is 0.01 giving  0.01/π r4 

 Case 1, r=1, form factor is 0.01/π = 0.00318
 Case 2, r=√1.25, form factor is 0.01/1.56π = 0.002
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Projection of patches onto the hemicube

 We now need to know 
which patch is visible from 
each hemicube pixel.

 This could be done by ray 
tracing, or projection.

 Further patches are rejected, 
solving the occlusion 
problem.

 
Occluded 

Visible 
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Sum the pixels per patch

 Notice that all we need to determine is which patches 
are visible at each hemicube pixel. 

 Once this is found we calculate the form factor for 
each patch by summing the delta form factors of the 
hemicube pixels to which it projects.
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Inside the hemicube
 Images from Alan Watt: The Computer Image
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In summary
 1. Divide the graphics world into discrete patches

 2. Compute form factors by the hemicube method

 3. Solve the matrix equation for the radiosity of each patch.

 4. Average the radiosity values at the corners of each patch 

 5a. Compute a texture map of each point on the patch

 5b. Project to the viewing window and render with 
interpolation shading.
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Radiosity Images

 Much of the early work on radiosity was carried out 
at Cornell University, and images and tutorial 
material can be found on their web site.

 http://www.graphics.cornell.edu/online/research/
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