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Interactive Computer Graphics

 Lecture 14

 Introduction to Surface Construction
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Non Parametric Surface

 Surfaces can be constructed from Cartesian equations 
directly, and this is acceptable for specific 
applications.

 As before the polynomial surface can be used.
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Non Parametric Polynomial Surface

 x y z 1 a b c d x =    0 
    b e f g y  
    c f h i z  
    d g i 1 1  

 
 The matrix formulation is a good way of expressing 

polynomial equations.

 Because of the symmetry it is really just upper 
triangular (there are 9 unknowns)
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Multiplying out

 ax2+ey2+hz2+2bxy+2cxz+2fyz+2dx+2gy+2iz+1 = 0

 We have 9 unknowns, so we need to be able to supply 
9 points from which we obtain 9 equations and can 
solve for coefficients [a..i]
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As Before

 This formulation suffers the same problems as the 
non-parametric spline curve. It is a fixed surface for a 
given set of knots.

 It has no flexibility for design of surfaces, though it 
could be used for particular problems.
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Simple Parametric surfaces

P(µ,ν) = µ ν 1 a b c µ 
     b d e ν 
     c e f 1 

 We can extend the formulation to simple parametric 
surfaces
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Or if multiplied out

 P(µ,ν) = aµ 2 + 2bµν + 2cµ + dν2 + 2eν +f

 We have six vector unknowns in this equation, so we 
need six points to create a surface.

 This time we have two parameters, and as before we 
will restrict them to the range [0..1]
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Surface Edges

 P(µ,ν) = aµ2 + 2bµν + 2cµ + dν2 + 2eν + f

 The boundary of the surface is given by the four 
curves where:

 µ=0  P(0,ν) = dν2 + 2eν + f
 µ=1  P(1,ν) = dν2 + 2(e+b)ν + f + a + 2c
 ν=0  P(µ,0) = aµ2 + 2cµ + f
 ν=1  P(µ,1) = aµ2 + 2(b+c)µ + d + 2e + f
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Associating points and parameters

 We can solve for the unknowns by substituting in six 
points at known values of ν and µ. We might have an 
arrangement such as:

  µ ν 
P0 0 0 
P1 0 1 
P2 1 0 
P3 1 1 
P4 1/2 0 
P5 1/2 1 
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Surface equations

 This data then gives us six equations in the unknowns 
which we can solve using standard methods.

 P0 = f
 P1 = d + 2e + f
 P2 = a + 2c + f
 P3 = a + 2b + 2c + d + 2e + f
 P4 = a/4 + c + f
 P5 = a/4 + b + c + d + 2e + f
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The resulting surface

P4

P2

P3

P5

P1

P0

ν=0 curve

ν=1 curve

µ=1 curve

µ=0 curve
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The boundary equations

 The boundaries are all second order curves and so 
will be nice and smooth.

 There is quite a lot of flexibility in this formulation, 
but it is still only suitable for simple surfaces.
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A higher order tensor product

 
P(ν,µ) = µ3 µ2 µ 1 a b c d ν3 
     b e f g ν2 
     c f h i ν 
     d g i j 1 

 Using higher orders gives more variety in shape and 
better control, but the method is hard to apply and 
generalise
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Cubic Spline Patches

 The patch method is generally effective in creating 
more complex surfaces.

 The idea is, as in the case of the curves, to create a 
surface by joining a lot of simple surfaces 
continuously.
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Cartesian formulation

y

z

x
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Points and Gradients

 At each corner of the patch we need to interpolate the 
points and set the gradients to match the adjacent 
patch.

 There are two gradients
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Patch gradients

∂y
∂x

∂y
∂z
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Parametric patches

 In practice we use parametric patches with two 
parameters µ and ν.

 We need to match three values at each corner:

P(µ,ν) ∂P(µ,ν) 
∂µ 

∂P(µ,ν) 
∂ν 
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Corners

 As usual we adopt the convention that the corners are 
at parameter values (0,0) (0,1) (1,0) and (1,1)

 We need to ensure that the patch joins its neighbours
exactly at the edges.

 Hence we ensure that the edge contours are the same 
on adjacent patches
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Edges

 We do this by designing the edge curves in an 
identical manner to the cubic spline curve patch.

 P(0,ν) joining Pi,j to Pi,j+1

 P(1,ν) joining Pi+1,j to Pi+1,j+1

 P(µ,0) joining Pi,j to Pi+1,j

 P(µ,1) joining Pi,j+1 to Pi+1,j+1
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A spline patch

Pi+1,j

Pi,j+1

Pi+1,j+1Pi,j

µ

ν

P(0,ν)

P(1,ν)P(µ,0)

P(µ,1)
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The Coon’s patch

 To define the internal points we linearly interpolate 
the edge curves:

 P(µ,ν) = 
 P(µ,0)(1-ν) + P(µ,1)ν + P(0,ν)(1-µ) + P(1,ν)µ -
 P(0,0)(1-ν)(1-µ) - P(0,1)ν(1-µ) -
 P(1,0)(1-ν)µ - P(1,1)νµ
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Polygonisation

 To draw a spline patch we can simply transform it 
into polygons.

 We select a grid of points, eg:

 µ = 0.0, 0.1, 0.2, 0.3, . . .  1.0
 ν = 0.0, 0.1, 0.2, 0.3, . . .  1.0

 and triangulate to that grid
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Polygonisation of a patch
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Choosing the polygon size

 For speed we can use large polygons with Gouraud or 
Phong shading.

 For accuracy we use small polygons, chosen to match 
the pixel size.
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Lofting

 Surfaces can also be drawn by a technique called 
lofting.

 This means drawing contours of constant µ and of 
constant ν

 Algorithms for eliminating the hidden parts have been 
devised
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Ray tracing a Patch

 The patch equation is fourth order

 P(µ,ν) = P(µ,0)(1-ν) + P(µ,1)ν + P(0,ν)(1-µ) + P(1,ν)µ -
P(0,0)(1-ν)(1-µ) - P(0,1)ν(1-µ) - P(1,0)(1-ν)µ - P(1,1)νµ

 Hence no closed form solution exists for a ray patch 
intersection.

 There are various numeric algorithms.
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Numerical Ray-Patch algorithm

 1. Polygonise the patch at a low resolution (say 4*4)

 2. Calculate the ray intersection with the 32 triangles 
and find the nearest intersection.

 3. Polygonise the immediate area of the insection and 
calculate a better estimate of the intersection

 4. Continue until the best estimate is found
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Multiple Roots

 This algorithm will find a root, but it is not 
guaranteed to find the nearest root.

 However, it the object is relatively smooth it should 
work well in all cases.

 Note that it will be necessary to do a ray intersection 
with each patch of the object to find the nearest 
intersection.
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Example of Using a Coon's Patch

Part of a terrain map defined on a regular x,y grid is as 
follows:

Find the Coons patch on the centre four points

 
 y,ν 
 

 
3 4 5 6 

8  10 9  
9 14 12 11 10 

10 15 13 14 10 x,µ 

11  10 11  
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Corners

 The corners are defined directly in the question:

 P(0,0) = (9,4,12)
 P(0,1) = (9,5,11)
 P(1,0) = (10,4,13)
 P(1,1) = (10,5,14)
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Gradients in the x (µ) direction

 ∂P/dµ (at P(0,0)) = ((10,4,13) - (8,4,10))/2 = (1,0,1.5)

 ∂P/dµ (at P(1,0)) = ((11,4,10) - (9,4,12))/2 = (1,0,-1)

 ∂P/dµ (at P(0,1)) = ((10,5,14) - (8,5,9))/2 = (1,0,2.5)

 ∂P/dµ (at P(1,1)) = ((11,5,11) - (9,5,11))/2 = (1,0,0)
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Gradients in the y (ν) direction

 ∂P/dν (at P(0,0)) = ((9,5,11) - (9,3,14))/2 = (0,1,-1.5)

 ∂P/dν (at P(1,0)) = ((9,6,10) - (9,4,12))/2 = (0,1,-1)

 ∂P/dν (at P(0,1)) = ((10,5,14) - (10,3,15))/2 = (0,1,-0.5)

 ∂P/dν (at P(1,1)) = ((10,6,10) - (10,4,13))/2 = (0,1,-1.5)
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Finding the boundary curves

 P(µ,0) = a3µ3 + a2µ2 + a1µ + a0

 

(10,4,13)

(9,5,11)

(10,4,14) (9,4,12)

µ 

ν 

P(0,ν)

P(1,ν) P(µ,0) 

P(µ,1) 

 a0  1 0 0 0 (9,4,12) 
a1 = 0 1 0 0 (1,0,1.5) 
a2  -3 -2 3 -1 (10,4,13) 
a3  2 1 -2 1 (1,0,-1) 
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Solving for the constants a0 - a3

 a0 = (9,4,12)
 a1 = (1,0,1.5)
 a2 = -3*(9,4,12) - 2*(1,0,1.5) + 3*(10,4,13) - (1,0,1)
 = (0,0,1)
 a3 = 2*(9,4,12) + (1,0,1.5) - 2*(10,4,13) + (1,0,1)
 = (0,0,0.5)
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Solving for the curves P(µ,1), P(0,ν) and P(1,ν)

 These curves are found identically to P(µ,0).

 We now have all the individual bits:
 P(µ,0)  cubic polynomial in µ
 P(µ,1)  cubic polynomial in µ
 P(0,ν)  cubic polynomial in ν
 P(1,ν)  cubic polynomial in ν
 P(0,0), P(0,1), P(1,0), P(1,1)

 Given µ and ν we can evaluate each of these eight 
points
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So, for any given value for µ and ν

 we can evaluate the coordinate on the Coon's patch:

 P(µ,ν) = 
 P(µ,0)(1-ν) + P(µ,1)ν + P(0,ν)(1-µ) + P(1,ν)µ -
 P(0,0)(1-ν)(1-µ) - P(0,1)ν(1-µ) -
 P(1,0)(1-ν)µ - P(1,1)νµ


