Tutorial 8: Spline Curves and Surfaces

1. A four knot, two dimensional Bezier curve is defined by the following table

	X	у
\mathbf{P}_{0}	0	0
\mathbf{P}_{1}	2	3
P ₂	3	-1
P ₃	0	0

Use Casteljau's construction to sketch the curve.

Calculate the coefficients a_0 , a_1 , a_2 and a_3 of the corresponding cubic spline patch:

$$\mathbf{P}(\mu) = \mathbf{a}_3 \mu^3 + \mathbf{a}_2 \mu^2 + \mathbf{a}_1 \mu + \mathbf{a}_0$$

Differentiate the spline patch equation to find $P'(\mu)$ and hence show that the gradient at P_3 is the same as the gradient of the line joining P_3 to P_2 .

2. A Coons surface patch is to be drawn using the following array of points:

		μ				
		-1	0	1	2	
ν	-1	(0,0,0)	(0,10,5)	(0,20,10)	(0,30,20)	
	0	(10,0,5)	(10,10,20)	(10,25,30)	(15,35,40)	
	1	(20,0,10)	(20,12,40)	(20,30,50)	(25,40,30)	
	2	(30,0,5)	(35,15,30)	(40,35,40)	(50,50,20)	

We are interested in the patch constructed on the centre knots, P[0,0], P[0,1], P[1,0] and P[1,1].

a. Find the equations of the four cubic spline patches that bound the Coon's Patch $P(\mu,0)$, $P(\mu,1)$, $P(0,\nu)$, $P(1,\nu)$. These are each parametric cubic splines of the form:

$$\mathbf{P} = \mathbf{a_3} \; \mathbf{\mu}^3 + \mathbf{a_2} \mathbf{\mu}^2 + \mathbf{a_1} \mathbf{\mu} + \mathbf{a_0}$$

whose parameters are found using:

$$\begin{pmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{P_i} \\ \mathbf{P'_i} \\ \mathbf{P_{i+1}} \\ \mathbf{P'_{i+1}} \end{pmatrix}$$

b. Find the point at the centre of the patch using the equation:

$$\begin{split} \textbf{P}(\mu,\nu) &= \textbf{P}(\mu,0) \; (1\text{-}\nu) + \textbf{P}(\mu,1) \; \nu + \textbf{P}(0,\nu) \; (1\text{-}\mu) + \textbf{P}(1,\nu) \; \mu \\ &\quad - \textbf{P}(0,0)(1\text{-}\nu)(1\text{-}\mu) - \textbf{P}(0,1)\nu(1\text{-}\mu) - \textbf{P}(1,0)(1\text{-}\nu)\mu - \textbf{P}(1,1) \; \nu\mu \end{split}$$

NB: the numerical solution to this is rather tedious unless you use a programmable calculator or spreadsheet