
1

Graphics Lecture 10: Slide 1

Interactive Computer Graphics

Lecture 11: Ray tracing (cont.)

Some slides adopted from
H. Pfister, Harvard

Graphics Lecture 10: Slide 2

Ray tracing - Summary

Graphics Lecture 10: Slide 3

Ray tracing - Summary

trace ray
Intersect all objects
color = ambient term
For every light

cast shadow ray
col += local shading term

If mirror
col += k_refl * trace reflected ray

If transparent
col += k_trans * trace transmitted ray

Graphics Lecture 10: Slide 4

Ray tracing - Summary

trace ray
Intersect all objects
color = ambient term
For every light

cast shadow ray
col += local shading term

If mirror
col += k_refl * trace reflected ray

If transparent
col += k_trans * trace transmitted ray

2

Graphics Lecture 10: Slide 5

Ray tracing - Summary

secondary rays

primary ray

primary ray

Graphics Lecture 10: Slide 6

Intersection calculations

• For each ray we must calculate all possible intersections with each
object inside the viewing volume

• For each ray we must find the nearest intersection point
• We can define our scene using

– Solid models
• sphere
• cylinder

– Surface models
• plane
• triangle
• polygon

Graphics Lecture 10: Slide 7

Rays

• Rays are parametric lines
• Rays can be defined an

– origin p0

– direction d
• Equation of ray:

Graphics Lecture 10: Slide 8

Ray tracing: Intersection calculations

• The coordinates of any point along each primary ray are
given by:

– p0 is the current pixel on the viewing plane.
– d is the direction vector and can be obtained from the position of

the pixel on the viewing plane p0 and the viewpoint pv:

3

Graphics Lecture 10: Slide 9

Ray tracing: Intersection calculations
• The viewing ray can be parameterized by µ:

– µ > 0 denotes the part of the ray behind the viewing plane
– µ < 0 denotes the part of the ray in front of the viewing plane
– For any visible intersection point µ > 0

µ < 0 µ > 0

p0

Graphics Lecture 10: Slide 10

Intersection calculations: Spheres

For any point on the surface of the sphere

where r is the radius of the sphere

Graphics Lecture 10: Slide 11

Intersection calculations: Spheres

• To test whether a ray intersects a surface we can substitute
for q using the ray equation:

• Setting and expanding the dot product
produces the following quadratic equation:

Graphics Lecture 10: Slide 12

Intersection calculations: Spheres

• The quadratic equation has the following solution:

• Solutions:
– if the quadratic equation has no solution, the ray does not intersect the sphere
– if the quadratic equation has two solutions (µ1 < µ2):

• µ1 corresponds to the point at which the rays enters the sphere
• µ2 corresponds to the point at which the rays leaves the sphere

4

Graphics Lecture 10: Slide 13

Precision Problems

• In ray tracing, the origin of (secondary) rays is often on the
surface of objects

– Theoretically, µ = 0 for these rays
– Practically, calculation imprecision creeps in, and the origin of

the new ray is slightly beneath the surface
• Result: the surface area is shadowing itself

Graphics Lecture 10: Slide 14

ε to the rescue ...

• Check if t is within some epsilon tolerance:
– if abs(µ) < ε

• point is on the sphere
– else

• point is inside/outside
– Choose the ε tolerance empirically

• Move the intersection point by epsilon along the surface
normal so it is outside of the object

• Check if point is inside/outside surface by checking the
sign of the implicit (sphere etc.) equation

Graphics Lecture 10: Slide 15

Problem Time

• Given:
– the viewpoint is at pv = (0, 0, -10)
– the ray passes through viewing plane at pi = (0, 0, 0).

• Spheres:
– Sphere A with center ps = (0, 0, 8) and radius r = 5
– Sphere B with center ps = (0, 0, 9) and radius r = 3
– Sphere C with center ps = (0, -3, 8) and radius r = 2

• Calculate the intersections of the ray with the spheres
above.

Graphics Lecture 10: Slide 16

Solution

• The direction vector is d = (0, 0, 10) / 10 = (0, 0, 1)
– Sphere A:
Δp = (0, 0, 8), so µ = 8 ± sqrt(64 – 64 + 25) = 8 ± 5
As the result, the ray enters A sphere at (0, 0, 3) and exits the
sphere at (0, 0, 13)).

– Sphere B:
Δp = (0, 0, 9), so µ = 9 ± sqrt(81 – 81 + 9) = 9 ± 3
As the result, the ray enters B sphere at (0, 0, 6) and exits the
sphere at (0, 0, 12)).

– Sphere C has no intersections with ray.

5

Graphics Lecture 10: Slide 17

Intersection calculations: Cylinders

• A cylinder can be described by
– a position vector p1 describing the first end point of the long axis

of the cylinder
– a position vector p2 describing the second end point of the long

axis of the cylinder
– a radius r

• The axis of the cylinder can be written as and
can be parameterized by 0 ≤ α ≤ 1

Graphics Lecture 10: Slide 18

Intersection calculations: Cylinders

• To calculate the intersection
of the cylinder with the ray:

• Since we can
write

p1

p2
Δp

q

Graphics Lecture 10: Slide 19

Intersection calculations: Cylinders

• Solving for α yields:

• Substituting we obtain:

Graphics Lecture 10: Slide 20

Intersection calculations: Cylinders

• Using the fact that we can use the same
approach as before to the quadratic equation for µ:

– If the quadratic equation has no solution:
➨ no intersection

– If the quadratic equation has two solutions:
➨ intersection

6

Graphics Lecture 10: Slide 21

Intersection calculations: Cylinders

• Assuming that µ1 ≤ µ2 we can determine two solutions:

• If the value of α1 is between 0 and 1 the intersection is on the
outside surface of the cylinder

• If the value of α2 is between 0 and 1 the intersection is on the inside
surface of the cylinder

Graphics Lecture 10: Slide 22

Intersection calculations: Plane

• Objects are often described by geometric primitives such
as

– triangles
– planar quads
– planar polygons

• To test intersections of the ray with these primitives we
must whether the ray will intersect the plane defined by
the primitive

Graphics Lecture 10: Slide 23

Intersection calculations: Plane

• The intersection of a ray with a
plane is given by

 where p1 is a point in the plane.
Subtracting p1 and multiplying with
the normal of the plane n yields:

• Solving for µ yields:

Graphics Lecture 10: Slide 24

Intersection calculations: Triangles

• To calculate intersections:
– test whether triangle is front facing
– test whether plane of triangle

intersects ray
– test whether intersection point is

inside triangle
• If the triangle is front facing:

7

Graphics Lecture 10: Slide 25

• To test whether plane of triangle intersects ray
– calculate equation of the plane using

– calculate intersections with plane as before

• To test whether intersection point is
inside triangle:

Intersection calculations: Triangles

Graphics Lecture 10: Slide 26

Intersection calculations: Triangles

• A point is inside the triangle if

• Calculate α and β by taking the dot product with a and b:

Graphics Lecture 10: Slide 27

Ray tracing: Pros and cons

• Pros:
– Easy to implement
– Extends well to global illumination

• shadows
• reflections / refractions
• multiple light bounces
• atmospheric effects

• Cons:
– Speed! (seconds per frame, not frames per second)

Graphics Lecture 10: Slide 28

Speedup Techniques

• Why is ray tracing slow? How to improve?
– Too many objects, too many rays
– Reduce ray-object intersection tests
– Many techniques!

8

Graphics Lecture 10: Slide 29

Acceleration of Ray Casting

• Goal: Reduce the number of ray/primitive intersections

Graphics Lecture 10: Slide 30

Conservative Bounding Region

• First check for an intersection
with a conservative bounding region

• Early reject

Graphics Lecture 10: Slide 31

Bounding Regions

• What makes a good bounding region?

Graphics Lecture 10: Slide 32

Conservative Bounding Regions

9

Graphics Lecture 10: Slide 33

Regular Grid

Graphics Lecture 10: Slide 34

Create Grid

• Find bounding box of
scene

• Choose grid resolution
(nx, ny, nz)

• gridx need not = gridy

Graphics Lecture 10: Slide 35

Insert Primitives into Grid

• Primitives that overlap
multiple cells?

• Insert into multiple cells
(use pointers)

Graphics Lecture 10: Slide 36

For Each Cell Along a Ray

• Does the cell contain
an intersection?

• Yes: return closest
intersection

• No: continue

10

Graphics Lecture 10: Slide 37

Preventing Repeated Computation

• Perform the computation once,
"mark" the object

• Don't re-intersect marked
objects

Graphics Lecture 10: Slide 38

Don't Return Distant Intersections

• If intersection t is
not within the cell
range, continue
(there may be
something closer)

Graphics Lecture 10: Slide 39

Adaptive Grids

• Subdivide until each cell contains no more than n
elements, or maximum depth d is reached

Graphics Lecture 10: Slide 40

Primitives in an Adaptive Grid

• Can live at intermediate levels, or be pushed to lowest
level of grid

11

Graphics Lecture 10: Slide 41

Binary Space Partition (BSP) Tree

• Recursively partition space by planes
• Every cell is a convex polyhedron

Graphics Lecture 10: Slide 42

Binary Space Partition (BSP) Tree

• Simple recursive algorithms
• Example: point finding

Graphics Lecture 10: Slide 43

Binary Space Partition (BSP) Tree

• Trace rays by recursion on tree
– BSP construction enables simple front-to-back traversal

Graphics Lecture 10: Slide 44

Grid Discussion

• Regular
+ easy to construct
+ easy to traverse
– may be only sparsely filled
– geometry may still be clumped

• Adaptive
+ grid complexity matches

geometric density
– more expensive to traverse

(especially BSP tree)

