
Interactive Computer Graphics
Coursework: Rendering

Important

• The Computer Graphics coursework MUST be submitted electronically
via CATE. For the deadline of the coursework see CATE. The files you
need to submit are described later in this document.

• Before starting the assignment please make sure you have read the
description of the environment and data formats below.

Make sure that you give yourself enough time to do the coursework by
starting it well in advance of the deadline. If you have questions about the
coursework or need any clarifications then you should come to the tutorials!

Coursework

This section describes the main aim of this coursework task. Before you start
the task, however, make sure you have read and understood the sections on
the environment and data formats at the end of this document.

This coursework exercise is a practical programming exercise which should
be done using OpenGL. The goal of the coursework is to produce a realistic
looking 3D rendering of a face.

You are provided with the following:

• This coursework description.

• A skeleton program in the form of a pair of source files (.cpp and .h).

• A Makefile for building the program in a Linux environment.

• A data file containing the surface model of the face, i.e. the geometric
and texture coordinates and the polygon information needed to render
it. This file is in VTK format (see below).

1

• A data file containing the texture information that can be used to
produce a realistic rendering of the face. This file is an image in PPM
format (see below).

You will need to add your own code in order to generate the renderings
required. You can add new classes as part of an object oriented approach if
you like. You will need to amend the Makefile if you decide to use additional
header and/or source files.

When you have completed your code, you will need to submit the follow-
ing items in a tar/zip file:

1. A Gouraud rendering of the face that is similar to the rendering shown
on the left in Figure 1. It just needs to be similar to the Figure, not
exactly the same, i.e. the camera should be in roughly the same place
and pointing roughly in the same direction.

2. A Gouraud rendering of the face with a different viewpoint from the
previous one.

3. A Gouraud rendering of the face with a different viewpoint from the
previous two - you may also like to adjust the lighting or material
properties.

4. A texture mapped rendering using the same viewpoint as the rendering
in 3.

5. The source code that you used to produce the renderings.

Place the renderings in screenshot image files in PNG format. The
names should be ‘gouraud-1.png’, ‘gouraud-2.png’, ‘gouraud-3.png’ and ‘tex-
ture.png’ respectively. The source code should be in a folder called ‘source code’
within the zip/tar file. For further details about the texture map and texture
coordinates in the data files, see below.

Environment

The programming environment for the exercises is OpenGL on the Linux/X11
machines of the department. OpenGL should be installed on all Linux/X11
machines. Macintosh machines may also provide a suitable Linux environ-
ment. You may use a Windows machine but we recommend that you use the
Linux environment. You can program either in C or C++.

2

Figure 1: Example renderings of the data used in this coursework exercise.
Left: Gouraud shading. Right: Texture mapping.

In order to view ppm format image files on the Lab Linux machines ‘Eye
Of Gnome’ can be used, it can be run by typing eog at the command line.
Taking screenshots can be done in a variety of ways. For example the Gnu
Image Manipulation Program (gimp) can be used. After starting gimp, go
to File → Create (or Acquire) to obtain a screenshot.

The provided skeleton program

The skeleton OpenGL program (for Linux) that is provided for you is con-
tained in the following files:

• cgRender.h

• cgRender.cpp

• Makefile

To set the program up, create a new directory and copy all three files into
it. To compile the program, go to the new directory and type make at the
command line. This should compile the sample program for you.

To run the sample program, type ./cgRender at the command line. The
skeleton OpenGL program should create an empty window for you. Take a
good look at the skeleton program. It contains a number of hints on how to
use OpenGL to start solving the coursework.

3

Data

The data provided consists of two files, one contains the surface model and
the other contains the texture data.

Surface model file

The surface model of the face is stored in the vtk format file face.vtk pro-
vided. This surface model consists of three components: Vertex coordinates,
polygon data and texture coordinates.

You can assume that the surface model contains only simple and planar
polygons. In addition, you can assume that the surface model is consistent,
i.e. the ordering of vertices of the polygons is always the same.

The surface model file consists of the following four parts:

1. Header

The header contains the following lines:

vtk DataFile Version 3.0

Somebody’s face

ASCII

DATASET POLYDATA

2.Vertex data

The first line contains the key word POINTS to indicate the start
of the vertex data. The next number equals the number of vertices
of the surface model, followed by the type of each vertex (you can
assume that this always corresponds to float). Each of the following
lines contains the x, y and z world-coordinates for each vertex as
floating point numbers.

3. Polygon data

The first line contains the key word POLYGONS to indicate the start
of the polygon data, followed by the number of polygons and the size
of the cell list for all polygons. Each of the following lines contains
the number of vertices forming the polygon, followed by the indices
of the vertices which form the polygon. The indices of the vertices
correspond to the order in which they are listed in the vertex data
(see above).

4

4. Texture data

The first line contains the key word CELL DATA followed by a
number which you can ignore. The next line contains the key-
word POINT DATA, followed by the number of points with tex-
ture coordinates. The next line contains the key word TEX-
TURE COORDINATES to indicate the start of the texture data and
some miscellaneous information. The following lines contain the x
and y texture coordinates for each vertex as floating point numbers.
The order of the texture coordinates is the same as the order of the
vertices

Texture file

The provided ppm format image file face.ppm contains the 512×512 texture
map of the face. The texture map is represented as a PPM format file
with a short ASCII header followed by the R (red), G (green) and B (blue)
components for each pixel as a separate unsigned byte. To find out more
about the typical header of a PPM file, type man ppm at the command line
or see http://netpbm.sourceforge.net/doc/ppm.html.

5

